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A STUDY OF MIXED-MODE DYNAMIC CRACK INITIATION IN PMMA 

D. Rittel and H. Maigre I 
Faculty of Mechanical Engineering, Technion 

32000, Haifa, Israel 

Introduction 

The effect of mode-mix on crack initiation (toughness and trajectory) is well documented 
both theoretically and experimentally for quasi-static fracture [ 1]. Dynamic fracture (single 
or mixed-mode) analysis is generally more complicated since inertial effects cannot be 
neglected [2]. 
Recent (mode II) shear impact experiments in steel and polycarbonate have shown the 
existence of fracture mode transitions (brittle to ductile. including shear band formation) as 
a function of the impact velocity [3-5]. 
Here we report experimental results for mixed-mode dynamic crack initiation in commercial 
PMMA as a model for brittle materials. The two-dimensional combination of a major and a 
minor mode (1-11 or 11-1 respectively) was systematically achieved using two distinct 
specimen geometries impacted at various velocities. The results show that, regardless of the 
dominant loading mode, the initial kink angle between the crack and the original notch line 
increase with the impact velocity. 
These results are described and discussed in terms of a simple criterion. 

General framework 

The history of the dynamic stress intensity factor(s) (SIF) can be determined by hybrid 

experimental-numerical techniques relying on the use of path-independent integrals or 

dynamic weight functions [2, 6, 7]. In these reports, the dynamic SIPs are determined either 

from the experimental forces or from the experimental displacements. 

Experimental investigation of dynamic crack initiation under single loading mode (e.g. 

mode I) can be achieved by keeping both the specimen's geometry and the loading 
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symmetrical (see, e.g .• [8]). The lack of symmetry will cause (often unwanted) mixed mode 

to occur [9]. On the other hand, systematic investigation of mixed-mode dynamic crack 

initiation can be achieved provided the crack-tip fields can be accurately determined ( 1 0]. 

Fracture time, is a key parameter which can be determined from fracture gage readings. For 

linear-elastic solids (brittle fracture), it has recently been shown that additional information 

is gained by using the reciprocity between the force and displacement based formulations 

[II]. Bulk fracture is thus defined as the time at which the evolutions of the SIF. 

determined using once the experimental forces and once the experimental displacements, 

diverge. Bulk fracture time is a useful complement to gage readings which generally 

precedes them by a few microseconds. 

Experimental 

We use an instrumented bar to apply and measure the transient forces and displacements 

applied to the specimen. As the striker impacts the bar a compressive pulse propagates 

towards the specimen. The pulse is then partly reflected-partly transmitted at the specimen­

bar interface [ 12]. 

Since the applied loading is unsymmetrical, mode mixity develops [I 0]. 

The setup for dominant I (CCS-Compact Compression Specimen) or II mode (shear) 

experiments is depicted schematically in Fig. I. 

Results & Discussion 

In this series of experiments, direct calculation of the SIFs was carried out using the 

dynamic weight function method. For each mode, we calculated the SIF from the 

convolution of the experimental force (or displacement) with the calculated response of the 

specimen subjected to a unit (dirac) force (or displacement) pulse. Typical evolutions of the 

I and II mode SIFs are shown in Figs. 2a and b for CCS and shear experiments respectively. 

From Fig. 2a it can be noted, as expected, that the mode II is minor although it may reach 

significant values. Fig. 2b shows that the mode I component is essentially negative in 

accordance with previous reports [4, 13]. 
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The initial kink angle was measured locally from magnified pictures of the notch-tip. This 

measurement was delicate in several cases where the initial kink curves continuously. Yet it 

was observed that the macroscopic crack angle values can be considered as upper bound 

values with respect those obtained by local measurements. In all cases the initial kink angle 

increases with the impact velocity regardless of the dominant mode, as summarized in Table 

I. The same trend was observed for the absolute values of the SIFs. 

The reported results represent a systematic attempt to explore the two extremes of I-II mode­

mix using the same experimental and theoretical methodology. To explain the observed 

kink angle-velocity relationship, one can invoke the maximum energy release rate criterion. 

For positive mode I this criterion is a maximum normal stress (creel criterion [ 14]. 

Yet when the mode I component becomes negative, it can no longer be applied and one can 

reasonably assumed that the crack will dissipate energy through a shear mechanism[ 15]. 

This amounts to searching for the angle at which the shear stress (crre) is maximal. 

The crack will ultimately select the initial kink angle corresponding to the maximum 

energy release rate, be it by combined opening + shear, or by shear alone. The stresses are 

determined from the experimental values of the SIF's [2]. A detailed description of the 

criterion will be presented in a subsequent paper. Next, the experimental results are analyzed 

using the proposed guidelines. 

Fig. 3 describes the evolution of the kink angle as predicted from the criterion for two 

different velocities for mode I experiments. It can be noted that at times corresponding to 

bulk fracture, the predicted and observed angles are in good agreement. Here the operative 

mechanism is clearly mode I (opening) fracture. 

Fig. 4 describes the evolution of the kink angle for mode II experiments. Fracture gage 

readings yield information of little accuracy as net separation of the two specimen halves 

occurs much after the actual fracture. Reciprocity-based estimates yield more reasonable 

values. In this case, we do not look for a prediction of the initial kink angle but rather use 

observed values in conjunction with the criterion's predictions. Fig. 4 shows a sharp 

transition in the kink angle values from low values (typically I 0°) corresponding to a shear 

mechanism to high values (typically 65°). By comparing the bulk fracture times and the 

observed kink angles, it appears that at lower impact velocities, the shear specimens fail by 

a shear mechanism (mode II). By contrast mode I becomes energetically favorable at higher 
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impact velocities and the initial kink angle is thus larger [4]. Therefore, the maximum 

energy release rate will dictate which of mode I or II crack initiation mechanism will 

operate. 

Despite a certain simplification, as we deal with notches rather than sharp cracks (without 

frictional effects [ 15]), it seems that the present approach can predict the effect of the impact 

velocity on the initial kink angle. 

Conclusions 

Dynamic crack initiation experiments were carried out on PMMA, as a model of 

brittle material. 

The mode mixity was systematically varied between dominant mode I and 

dominant mode II and a range of velocities was applied. 

The initial kink angle increases with the impact velocity independently of the 

dominant mode. 

The initial kink angle is reasonably well predicted in terms of a maximum stress 

criterion, i.e. maximum normal stress for combined opening +shear, and 

maximum shear stress for shear + negative opening (closure). 
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Table I: Experimental results. CCS: compare observed and predicted angles. Shear, 
note the transition from mode II to mode I initiated kink with increased 
impact velocity. 
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Figure2: Typical evolutions of dynamic Kr and Krr for CCS (a) and shear 

experiments (b). (Note the negative Kr for shear experiments) 
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Predicted kink angle as a function of time. Note the angle at 
bulk fracture time (divergence point, Table I). 
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Specimens SHEAR2 and SHEAR3. Evolutions of the mode II 
SIFs determined using experimental forces and displacements. 
Predicted kink angle as a function of time. Note the angle at 
bulk fracture time and the shift in fracture mechanism 
(divergence point, Table I). 
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