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ON THE USE OF SHPB TECHNIQUES TO 
DETERMINE THE DYNAMIC BEHA VIOR OF 

MATERIALS IN THE RANGE OF SMALL STRAINS 

HAN ZHAO and GÉRARD GARY 
Laboratoire de Mécanique des Solides, Ecole Polytechnique, 91128 Palaiseau, France 

Abstract-The classical Split Hopkinson Pressure Bar technique is re-examined in order to optimize 
its accuracy, especially in the range of small strains. For many nonmetallic materials such as 
concrete, rocks, ceramics and polymers, the most important aspects of their behavior can be located 
in the range of small strains. 

The accuracy of the basic measurements of forces and velocities at both sample faces is discussed 
concerning the early stage of the loading. This accuracy depends on data processing which consists 
mostly of an accurate dispersion correction and of exact delays setting. A more precise wave 
dispersion correction and a new method to set exact origins of waves are then proposed. The validity 
of the average stress-strain curve obtained from measured forces and velocities is analysed using an 
one-dimensional numerical transient simulation of the tests. A fictitious specimen with a rate 
sensitive behavior described by a Sokolovsky-Malvern type constitutive mode! is used for this 
simulation. For the case where the classical SHPB analyses do not give acceptable results, an 
identification technique based on an inverse calculation method is presented. It relates material 
properties to forces and particle velocities measured at both f a ces of the specimen without using the 
assumption of axial uniformity of stresses and strains.  

!. INTRODUCTION 

The Split Hopkinson Pressure Bar (SHPB), or Kolsky's apparatus has become a very 
popular experimental technique for the study of the constitutive laws of materials at high 
strain rates. Historically, the first use of a long thin bar to measure the pulse shape induced 
by an impact is considered due to Hopkinson (1914). This method was well established 
after the critical work of Davies (1948). The experimental set-up with two long bars and a 
short specimen was introduced by Kolsky (1949). 

The Split Hopkinson bar technique, which was initially used in compression, has been 
extended to tension (Harding et al., 1960) and to torsion (Duffy et al., 1971). An arrange­
ment which permits loading with one, and just one, pulse in compression, as well as in 
tension, has been reported in the work of Nemat-Nasser et al. (1991). It is very useful for 
post-test observations. 

Kolsky's original SHPB analysis is based on some basic assumptions. (1) The waves 
propagating in the bars can be described by one-dimensional wave propagation theory. (2) 
The stress and strain fields in the specimen are uniform in its axial direction. (3) The 
specimen inertia effect is negligible. (4) The friction effect in the compression test is also 
negligible. 

Those assumptions have been extensively studied in past decades. Following Davies' 
works (1948), a more accurate wave propagation theory has been used in data processing. 
The oscillations due to wave dispersion effects observed in the average stress-strain curve 
have been diminished (Follansbee and Franz, 1983; Gorham, 1983; Gong et al., 1990; 
Lifshitz and Leber, 1994; Zhao and Gary, 1995). 

The assumption of axial uniformity of stress and strain fields permits relating the 
average stress-strain curve to forces and velocities measured at both faces of specimens. 
Investigations have been reported by Conn (1965), Hauser (1966) and Jahsman (1971), 
using a one-dimensional simulation of the wave propagation in the specimen. A two­
dimensional numerical simulation is given by Bertholf and Karnes (1975). Experimental 
observations of the strain field using the diffraction grating technique have been reported 
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by Bell (1966). It has been proved that stresses and strains are not axially uniform, especially 
in the early stage of the test. 

In order to minimize friction effects, Davies and Hunter (1963) recommended an 
optimal length/diameter ratio of the specimen. In this case, radial and longitudinal inertia 
effects should be taken into account. This correction, based on the assumption of axial 
uniformity of fields, is proposed. Other propositions for the correction of inertia and of 
friction effects can be found in later works (Klepaczko, 1969; Dharan and Hauser, 1970; 
Malinowski and Klepaczko, 1986). Most of those corrections have been analysed and 
proved by the numerical simulation work of Bertholf and Karnes (1975). 

The materials studied with SHPB in the past are often metals, the plastic behavior and 
rate dependence of which have been of the main interest. Most of the analyses mentioned 
above are of metals and corresponding models. Since the accurate measurement of the 
material behavior in the range of small strains is not very important for metals (it can be 
assumed purely elastic), the range of small strains is partly neglected in SHPB analysis. It 
is even sometimes considered that the measurement of the behavior in the range of small 
strains cannot be very accurate. 

However, as SHPB has enjoyed an increasing popularity, it is also been applied to 
many nonmetallic materials such as concrete, rocks, sait-rock, polymers and polymeric 
foams (Chiu and Neubert, 1967; Gong et al., 1990; Gary et al., 1991; Dioh et al., 1993). 
The knowledge of the behavior in the range of small strains is in some cases (ceramics, 
concrete, polymeric foams, for instance) of the most important interest. 

Furthermore, particular situations in testing such materials lead to secondary effects 
more important than in the testing of metals. For example, the study of rock-like material 
needs Hopkinson bars with a large diameter, to ensure the representativity of the specimen, 
and a strong wave dispersion effect is observed in this case. Another example is found in 
testing some polymeric foams which have a very low material wave speed. In this case, the 
assumption of uniform stress and strain fields in the specimen is not verified. 

The aim of this paper is then to re-examine the SHPB technique in order to optimize 
the accuracy of the measured material behavior in the range of small strains. For this 
purpose, it is more convenient to distinguish two different kinds of problems studied in this 
paper. In Section 2 we consider the measurement problems which are directly related to the 
SHPB arrangement (assumption (1) for example). In Section 3, we consider the identi­
fication problems relating material behavior to experimental measurements where assump­
tions (2)-(4) are involved. 

2. SHPB MEASURING TECHNIQUES AND OPTIMIZED DATA PROCESSING

2.1. SHPB measuring technique 
A typical SHPB set-up is outlined in Fig. 1. It is composed of long input and output 

bars with a short specimen placed between them. The impact of the projectile at the free 
end of the input bar develops a compressive longitudinal incident wave ei(t). Once this wave 
reaches the bar specimen interface, a part of it, er(t), is reflected, whereas another part goes 
through the specimen and develops in the output bar the transmitted wave e1(t). Those 
three basic waves recorded by the gages cemented on the input and output bars allow the 
measurement of forces and velocities at the two faces of the specimen. 

This measurement technique is based on the wave propagation theory and on the 
superposition principle. According to the wave propagation theory, the stress and the 
particle velocity associated with a single wave can be calculated from the associated strain 
measured by the strain gages. Using the superposition principle in an elastic bar, the stress 
and the particle velocity in one section are calculated from the two waves propagating in 

Pro\cti le Inp� bar Spe!men Ou\t bar 

��·-��1 1.__�������ru�•���-·����� 
Fig. 1. SHPB test set-up. 
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opposite directions in this section. When the waves are known at bar-specimen interfaces, 
the forces and the velocities at both faces of the specimen are given by the following 
equation: 

/iinpu1(t) = SBE[ei(t) + e,(t) ] 

Foutput(f) = SBEet(f) 

Vinpu1(t) = C o[ei (t) -e, (t) ]

Voutput(t) = Coei(t )  (1 ) 

where Ss. E and C0 are, respectively, the bar's cross-sectional area, Young's modulus, and
the elastic wave speed. 

As the three waves are not measured at bar-specimen interfaces in order to avoid their 
superposition, they have to be shifted from the position of the strain gages to the specimen 
faces, in time and distance. This shifting leads to two main perturbations. First, waves 
change in their shapes on propagating along the bar. Second, it is very difficult to find an 
exact delay in the time shifting to ensure that the beginnings of the three waves correspond 
to the same instant. Those perturbations, if not controlled, can introduce errors in the final 
result, especially in the range of small strains. 

2.2. Correction for wave dispersion 
The wave dispersion effects on longitudinal elastic waves propagating in cylindrical 

bars have been studied experimentally by Davies (1948) . On the basis of the longitudinal
wave solution for an infinite cylindrical elastic bar given by Pochhammer (1876) and Chree
(1889) , a dispersion correction has been proposed and verified by experimental data. Even 
though the Pochhammer-Chree solution is not exact for a finite bar, it is found easily 
applicable and sufficiently accurate (Davies, 1948) . 

In Pochhammer-Chree's longitudinal wave analysis, it is assumed that the wave has a 
harmonie form as follows, 

1 f +co . u(r, Z, f) =ln 
-CO ü(r, w) el(/'(w)z-wt] dw 

where u(r, z, t) is the displacement vector, Ç is the wave number and w is the frequency.

(2) 

The complete solution of the governing equation, with boundary conditions on the 
external surface of the bars, leads to a frequency equation that gives a relation between the 
wave number Ç and the frequency w: 

f(Ç) = (la/r o ) (/32 + Ç2) l1 (ar0) J1 (/3r0) -(/32 - Ç2) 2 lo(ar o) J1 (f3ro ) -4Ç2af3J1 (ar o) Jo(f3ro) = 0

(3) 

with 

Pw2 pw2 
2 ;: 2 {32 = - - -;: 2 ;IX = À+ 2µ - i,, ; µ 

i,, 

where 10, 11 are the Bessel fonctions, À andµ are the elastic coefficients, r0 is the radius of 
the bar. 

This longitudinal wave propagation solution has been recently generalized to the case 
of cylindrical bars made of any linear viscoelastic material (Zhao and Gary, 1995) . It is
used in the case of a viscoelastic bar which is indispensable to test low impedance materials 
as polymeric foams (no pure elastic low impedance materials have been found). 

The harmonie wave solution in the elastic case has been numerically studied by 
Bancroft (1941) . Bancroft's (1941) data, solution of eqn (3), is given with the phase velocity
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ratio C/C0 as a fonction of Poisson's ratio v and of the ratio between the radius of the bar 

and the wave length r0/À  for a nondimensional interest , 

C/C0 = F(r0/À, v) (4) 

with C = w/Ç and À = 2n/Ç. 
Previous works (Follansbee and Franz, 1983; Gorham, 1983; Gong et al. , 1990; 

Lifshitz and Leber, 1994) use this data to correct the wave dispersion in bars. Following 
Yew and Chen's works (1978), they calculate harmonie components in the frequency 
domain of the signals by Fast Fourier Transform (FFT) and find the phase difference for 
each component from eqn (4). The corrected signal in the time domain is then recovered 
from the corrected frequency components. 

This correction procedure in terms of variation of the phase velocity can be re-written 
as follows. Using the dispersive relation between the wave number Ç and the frequency w 
given by the solution of eqn (3), one can calculate, from a measured wave u1;(t) at a 
particular point z0, the wave u�(t) at another point at a distance Liz. Let's consider the 
longitudinal component (z direction) of the displacement vector u(r, z, t) at the external
surface of the bar (r = r0) where the gage is cemented. Using formula (2), one can write
u1;(t) and u�(t) as follows. 

1 f +oo . 
u1;(t) = 

2n -OO 
Üz (ro , w) et[Ç(w)zo-Wt] dw

d (t) = - Ü (r W) ei[Ç(w)(zo+M)-wt] dw 1 f +oo 
z 2n z O• • 

-OO 

The wave shifting procedure can be then performed numerically by FFT. 

u�(t) = FFT-1 { eiÇ(wJAz FFT[if,'(t)l}.

(5) 

(6) 

It appears then that the correction accuracy depends only on that of the dispersive 
relation Ç(w) used in eqn (6). To obtain the dispersive relation from eqn (4), Follansbee
and Franz (1983), Gorham (1983), and Gong et al. (1990) use the nominal value C0 of the
wave speed. However, Lifshitz and Leber (1994) have indicated that a small error in this 
value (1 %, for instance), can give a significant oscillation in the signal. An iterative method 
(Lifshitz and Leber, 1994) was then proposed to calculate a more accurate value of C0 , 
using the comparison between the incident and reflected waves in the input bar in a test 
without specimen and without the output bar. Furthermore, it is also observed that the 
wave dispersion changes the slope of the signal during its rise time and has a sensitive effect 
on the average stress-strain curve in the range of small strains (Gary et al., 1991). It is then 
supposed that the accuracy of the dispersive relation Ç(w), which is equivalent to the
accuracy of value of C0 if Bancroft's data are used, plays an important role in this correction. 

However, the use of Bancroft's data in eqn (4) induces errors on the dispersive relation 
for the following reasons. Firstly, as the value is given only in the form of a table for 
particular values of Poisson's ratio, a linear interpolation is necessary to obtain the value 
for the given Poisson's ratio. Secondly, eqn (4) is an implicit relation between the wave 
number Ç and the frequency w. For a given value of w, Ç is found by resolving eqn (4). As
this relation is also in the form of a table for particular values of r0/ À, the dispersive relation 
solved from eqn ( 4) is not accurate because of interpolation errors again. 

In this paper, the dispersive relation is calculated directly from eqn (3) with a Newton 
type iterative numerical scheme (Zhao and Gary, 1995), in the form of wave number Ç as
fonction of frequency w for any given Poisson's ratio and Young's modulus. Though it
would not bring a significant improvement for a very small diameter bar often used in 
testing of metallic materials, it gives effectively a more precise result for a large diameter 
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Fig. 2. Comparison of dispersion corrections. 

bar needed for testing geomechanical materials such as concrete, rocks, etc. As an example, 
it is shown that the present work gives a more accurate correction than previous works in 
the case of a 40 mm diameter aluminium bar (Fig. 2). 

To check the accuracy of the correction, we use a method derived from Lifshitz and 
Leber (1994). However, it is proposed to calculate the force at the free end of the input bar, 
which must be zero when there is no specimen. This allows for checking together the exact 
delay setting of waves and it is more precise than comparing visually the waves (Fig. 3). 

2.3. Setting exact delays 
As mentioned above, the three waves used in SHPB analysis are not recorded separately 

and in a synchronized way. In the shifting between measuring points and interfaces, it is 
then not only indispensable to take into account the change in wave shapes due to dispersion, 
but also to determine the correspondence between the beginnings of each wave. lt has been 
shown that a very small error in this correspondence can induce a significant error in the 
stress-strain curve (Follansbee, 1986; Lifshitz and Leber, 1994), especially in the range of 
small strains (Zhao, 1992). 

ln the conventional analysis, the correspondence is determined visually or more accu­
rately by calculating the delay time from the longitudinal wave velocity in bars and the 
distance between the strain gages and the interfaces. However, it is difficult to determine a 
very exact value of the longitudinal wave speed in bars (Lifshitz and Leber, 1994). Fur­
thermore, in real situations, the contacts between the specimen and the bars are not perfect 

Force (kN) rtau1rt !ms 

30 " ............ �·. . ... . .. .. . .. .. . .. . .. .. . . . . . .. . . .. . . .. \. -
Force associated with incident wave 

10 

Fig. 3. Force at a free end. 
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Fig. 4. Determination of the beginnings by elastic simulation. 

(this can be due for instance, to the presence of grease used to reduce friction or to the 
roughness of the contact surface of the specimen). The time delay is consequently often 
longer than the estimated one. 

ln order to determine more accurately the correspondence of the beginnings of waves, 
an iterative method is proposed. This method is based on two assumptions. One is that the 
shape of the wave is more reliable than its time position. Another is that the materials 
tested demonstrate a quasi-elastic behavior at the early moments of the test. It consists of 
simulating the reflected and transmitted waves for the given incident one and a fictitious 
elastic specimen. The shapes of the simulated and the real waves are then compared for the 
early stage of the test. 

The case of a real test on a metal specimen is shown in Fig. 4. Trying different Young's 
modulus for the fictitious specimen, a simulation of the elastic behavior which correctly fits 
with the early part of the real curves is found. As the beginnings of the simulated reflected 
and transmitted waves are known, moving the real wave for coincidence with the simulated 
wave allows for an exact setting of the beginning of the real wave. 

The simulated waves fit with the measured ones only when the given Young's modulus 
of the fictitious specimen is quite near the real value (the quality of the fitting is appreciated 
visually). When the given Young's modulus is too small or too great, the simulated curves 
cannot fit with the real ones (Fig. 5). 

Vit. �-----------------�d=a�u1=d�l=11s,._, 

8 

-1 

simulations with (Eo/2) 

430 480 520 time (ps) 
Fig. 5. Simulated waves with a too small or a too great Young's modulus. 
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Fig. 6. Influence of the delay setting. 

Furthermore, if the dispersion correction is not taken into account, the simulation 
cannot fit the real reflected and transmitted waves with any given Young's modulus. The 
reliability of the method is then indirectly demonstrated. 

In order to show the influence of a correct setting of origins, the setting for a test on a 
concrete specimen lubricated at both ends is determined by classical data processing and 
by the present method (a difference of 3µs in the shifting of reflected wave is found between 
the two trials). U sing the same optimized SHPB analysis which will be discussed in Section 
3, the comparison of final results (stress-strain curves) for the two versions is illustrated in 
Fig. 6. 

3. MATERIAL BEHAVIOUR IDENTIFICATION 

3.1. Classical SHPB analysis 
The Split Hopkinson pressure bar arrangement can give very accurate measurements 

of forces and velocities at both sample faces if the data processing is carefully performed. 
There remains the second kind of problems of SHPB mentioned in the introduction, which 
consist of relating material properties to measured forces and velocities at the two specimen 
faces. The classical analysis assumes the axial uniformity of stress and strain fields in the 
specimen. An average stress-strain curve can be obtained from eqns (7a,b), which lead to 
the so-called two-waves analysis: 

ë,(t) = Voutput(t); Vinput(t) 
s 

(t) = 
Foutput(l) a, 

S 
. 

s 

(7a) 

(7b) 

This assumption is obviously not correct at the early stage of the test because of the transient 
effects: the loading starts at one face of the specimen whereas the other face remains at 
rest. A three-waves analysis has been then proposed to use the average of the two forces to 
calculate the stress using eqn (7c) instead of eqn (7b) (Lindhlom, 1964): 

(t) = finput(t) + Foutput(t) <1, 2 . 
s, 

(7c) 

To study the transient effects and the validity of those formulas (7), the known method 
used in previous works consists of simulating a SHPB test on a fictitious specimen with a 
given known behavior. The stress-strain relation obtained with simulated SHPB data using 
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those analyses is then compared with the input one. It is reported (Conn, 1965; Jahsman, 
1971; Bertholf and Karnes, 1975) that such analyses become quite realistic after a great 
number of round trips of waves propagating in the specimen when a short metallic specimen 
is tested. 

In order to know the validity of those SHPB formulas for nonmetallic materials such 
as concrete, salt-rock, polymeric foams, etc., especially in the range of small strains, it is 
necessary to perform the same kind of simulations. In previous simulation works on 
metals, a simple rate independent elastic-plastic model has been often used. The simulation 
proposed in this paper is performed with a more realistic and sophisticated model, which 
is able to describe some nonmetallic materials. 

3.2. Simulation of SHPB tests 
To take account of radial inertia and eventually friction effects, two-dimensional 

simulations should be used. On the other hand, it is easier to study transient effects within 
the one-dimensional assumption from the point view of numerical efficiency. 

The one-dimensional simulation is chosen here. Indeed, relating the behavior to the 
measurement of the forces and the particle velocities is an identification problem (an inverse 
problem) when classical analyses are no longer acceptable. The numerical efficiency of the 
simulation is then very important for the identification process. Furthermore, it is known 
from the two-dimensional simulation (Bertholf and Karnes, 1975) that friction effects 
change the axial uniformity but that their influence in the range of small strains is quite 
limited. The radial inertia effects can be corrected with known formulas. Furthermore, 
those effects can be neglected in the range of small strains if the specimen has a suitable 
size and lubricated ends (Bertholf and Karnes, 1975). 

The one-dimensional governing equations and the constitutive law are written as 
follows, 

aa(x, t) av(x, t) 
-- = p --

ax at 

ae(x, t) av(x, t) 
at ax 

f(a,e,à,ê,. .. ) = 0 

(8) 

where a, e, v are the stress, the strain, and the particle velocity in the specimen; and p is 
the mass density. 

The boundary conditions at the two faces of the specimen are given as follows : 

EBSB SB a(x, t) -
CBSs 

v(x, t) = 2
Ss 

E8ei (t) at the input side 

EBSB a(x, t) + 
CBSs 

v(x, t) = 0 at the output side (9) 

where Es. Cs. Ss. S, denote Young's modulus, the wave speed, the cross-sectional area of 
the bar and the section of the specimen; ei(t) is an input incident pulse. 

Once the specimen behavior is assumed, the direct problem described by eqns (8) and 
(9) gives a one-dimensional SHPB simulation. As mentioned above, the simulation can be 
the preliminary stage of an inverse problem which consists of finding the parameters of the 
model. Since parametric inverse methods need fast calculation procedures to allow for a 
great number of direct calculations with different sets of parameters, the specimen behavior 
should be numerically easy to calculate. It was decided to use the Sokolovsky (1948) and 
Malvern (1951) model to describe the behavior of the specimen: 
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08 1 aa 
àt E àt 

àe 1 àa 
- = --+g(ae) if a>a,
àt E àt ' (10) 

where the rate sensitivity is implicity described by the fonction g(a, e) and a, is the yield
stress. 

In this case, the characteristic network is composed of families of straight lines and 
the numerical integration of eqns (8) and (9) by the method of characteristics is very 
efficient. The three families of characteristic lines and the characteristic relation that must 
be satisfied along th ose lines are defined in eqn (11). 

dx 
dt= Co da= - pC0dv - pC5g(a, e) dt

dx 

dt = - Co da= pC0 dv- pC5g (a, e) dt

dx = 0 de = g(a, e) dt. (11) 

Using a regular discretization grid, the governing equations (11) with the boundary 
conditions (9) are numerically integrated. It is then possible to simulate SHPB tests on 
specimens with a behavior described by any Sokolovsky-Malvern type model. ln comparing 
the given behavior with the average stress-strain curve obtained from simulated waves, the 
efficiency of the classical SHPB analysis for this type of materials can be evaluated. 

It is noted that the Sokolovsky-Malvern constitutive model is a quite general rate­
sensitive one, though it has been introduced initially for metals. It can be also used to 
describe nonmetallic materials if the fonction g(a, e) is correctly chosen (Critescu, 1967).

ln order to have a general idea of the efficiency of the classical SHPB analyses for this 
type of constitutive models, a usual rheological mode! (Fig. 7) is examined here. 

It is of Sokolovsky-Malvern type with g(a, e) expressed as follows,

( 1 + i )a-a5-E,e

g(a, e) = ------­'1 (12) 

Simulations have been done for different sets of parameters. It has been found that the 
two stress-strain curves of classical analyses are in good agreement with the input one at 
relatively large strains. In the range of small strains, the three-waves analysis gives a result 
doser to the input one than the two-waves analysis. It is noted that in this three-waves 
analysis, the origin of the simulated transmitted wave is chosen at the same instant as the 
reflected one. The signal associated with the transfer time (which corresponds to the travel 
time of the wave through the specimen) is the first part of the transmitted wave. 

The three-waves analysis result is still acceptable when the viscosity is low, even when 
axial uniformity is not verified. On the other hand, when the viscosity is high, the two 
results of classical analyses are quite far from the input behavior (Zhao, 1992). It is 

crs 
Fig. 7. A rheological elastic-viscoplastic mode!. 
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Fig. 8. (a) Simulated forces and real forces for sait. (b) Simulated forces and real forces for concrete. 

emphasized that those conclusions are based on simulated waves so that no wave dispersion 
and exact delay setting effects do exist. It is then proved that the classical SHPB analyses 
can induce, in some cases mentioned above, a significant error which is independent of the 
data processing. 

3.3. SHPB analysis by inverse calculation 
Using the simulation works and the efficiency evaluation of SHPB analyses described 

in Subsection 3.2, the formula (7) is proved unacceptable for the elastic viscoplastic model, 
when the viscosity is relatively important. It is then necessary to develop a method which 
permits relating the material behavior to the measured forces and velocities without assump­
tion of uniformity. 

A SHPB test provides superabundant measurements which are forces and velocities at 
both ends of the specimen. Accordingly, an identification technique based on an inverse 
calculation method [see Bui (1993)1 can be introduced. We assume that an appropriate 
form of the material behavior is known, with parameters to be determined. Using part of 
the data (two velocities, for example) as input data, another part of the data (the two 
forces) are used to determine the best fit between them and the calculated forces, using a 
similar simulation method presented in Subsection 3.2 (with different boundary conditions). 
A set of parameters which gives the calculated forces in good agreement with the measured 
ones can then be found. 

Ill Figs 8(a,b), comparisons of salt-rock and for concrete between the measured forces 
and the best simulated ones are shown. 
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Fig. 9. Stress-strain curves from different analyses. 

The chosen model, with the set of parameters which gives the best agreement with 
experimental data, can be considered as the representative mode! of the specimen in this 
test. As a result, the stress and strain fields in the specimen are known so that a stress­
strain curve is found. The assumption on the uniformity of stress and strain fields is then 
no longer needed in such a method. Furthermore, it is possible to give a stress-strain curve 
at a constant strain rate via the identified model. 

It is emphasized that the goal of this method is not to identify the constitutive law of 
the material using only one test. The purpose is to simulate the stress-strain field from 
forces and velocities measured at the boundary, in order to optimize the analysis of the 
test. 

The stress-strain curve obtained with this method is compared with those of two­
waves or three-waves classical SHPB analysis. In the case of sait, those two curves are quite 
far from that of the present method in the range of small strains (Fig. 9). 

As a result, the inverse calculation technique is the only way to obtain accurate results 
for this type of material. On the other hand, in the case of concrete, the average stress­
strain curve is very close to the curve obtained with this method. The inverse calcula.tion 
could then be avoided in this case. Nevertheless, a systematic use of this identification is 
recommended even for metal testing. It is shown in Fig. 10, that the stress-strain relation 
calculated for a constant strain rate gives a clearer apparent elastic limit in the case of a 
metal. 

Stn!SS (MPa) 

400 

200 

0 0 1:1. 2'l. 
Fig. 1 O. Stress-strain curve for a constant strain rate. 
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4. CONCLUSION 

In this paper, the use of SHPB apparatus to determine material behavior in the range 
of small strains is analysed. In order to obtain accurate forces and velocities at both sample 
faces after data processing, it was proposed to calculate directly the dispersive relation 
rather than to interpolate from the implicit relation given by Bancroft's data. On the basis 
of the wave shape comparison, a method using the elastic simulation to determine more 
accurately correspondence between the wave beginnings was also proposed. For the deter­
mination of material behavior, the classical SHPB analyses can induce significant errors due 
to transient effects in the specimen, especially for nonmetallic materials. An identification 
technique based on an inverse calculation method was presented. It was successfully applied 
to the particular cases of rock-sait, concrete and metal. 
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