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Abstract 

A general framework for the modelling of mechanical behavior of structures has been recently proposed by J. Zarka et al. 

Its essential feature consists of the introduction of a group of internal parameters which characterize the local inelastic 

mechanisms of the structure, and a group of transformed internal parameters which are linearly linked to the previous ones 

through a symmetrical non-negative matrix. With this approach, the treatment of the local plastic yield conditions can be 

made easily from simple elastic analysis. The problem of the determination of the limit state in the case of cyclic loading is 

then reduced to the determination of the asymptotic values of the transformed internal parameters. In most cases, this is done 

by simple geometrical constructions. As an example, we will present a simple structure made of two connected elastoplastic 

workhardening cylinders of different radius, subjected to cyclic imposed displacement at one end, in order to show the 

efficiency of the method. 
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Fatigue analysis of structures submitted to cyclic 
loading is now assumed as a part of the design 
process for mechanical parts. In order to be able to 
include such analysis in an optimization cycle, it is 
necessary to compute quickly the limiting cycle (in 
the case when a limiting cycle exists). 

It is obvious that the loading path should be 
maintained in the elastic range, but it is not always 
possible. In such cases, we have also to take into 
account the non-linear part of the response of the 
structure. 
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A general framework, which enables the design
ers to effectively modelize the main non-linear ef
fects observed during experiments, has been pro
posed [1]. 

In this paper, the principle of the method will be 
briefly exposed and its tractability will be shown on 
a simple analytical example. 

To describe mathematically the behavior of mate
rials, a micro-macro type procedure can be used: A 
representative fundamental volume element is com
plex and composed of various elements. Its global 
behavior is linked to some local elementary inelastic 
mechanisms and their distribution in the volume. 
Some qualitative and quantitative data relating to 
those inelastic mechanisms can be determined, by 
means of monotonic or cyclic, one dimensional or 
multidimensional, very slow or fast loading on a test 
specimen. We shall have: 
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1. mechanisms with dry friction (mechanisms a )
which will replicate instantaneous inelastic strains
with a threshold; they will include all dry slip
mechanisms, dislocations ... ; 

2. mechanisms with time effects (mechanisms {3)
which will replicate delayed inelastic strains with
out a threshold; they will include all diffusion
processes;

3. mechanisms with dry friction and viscosity
(mechanisms 'Y) which will replicate delayed in
elastic strains with a threshold; they will include
all thermally activated processes.

Those laboratory tests allow to determine the sim
plest model which is able to represent the observed 
behavior. 

All those inelastic mechanisms are linked by an 
elastic media; their inelastic strains, X, will be con
sidered as our internal parameters (they are tensorial 
objects). X = [a f3 'Y F 

Let us denote by .! the applied global stress 
tensor on the volume element. The local stresses at 
the level of each inelastic mechanism can be written 
in the form: a = [ <Ta a13 a.,, F = A · .! - b · X = A · 

.!- y, with: y = [ya Y13 y"Y]T = b · X 
e ( <Ta, a13, <TY) are the local stresses which are

associated with the local inelastic strains; 
e A is the elastic localization matrix of the inelastic 

mechanisms; 
e b is the inelastic mechanisms interaction matrix 

(symmetrical and non-negative); 
e (Ya, y13, Yy) are the transformed internal parame-

ters. Two cases have to be considered: 
if b is regular, there is a one to one relation 
between X and y, and we may follow either X 
or y; 
if b is singular, at any X, we can find a y 
which will belong to a compatibility subspace 
2'. We shall have to follow X and y simulta
neously. 

Let us denote by EP the plastic strain of the 
voh1me element. EP is defined by: EP =AT· X We 
define an evolution law for each of the inelastic 
mechanisms: 
1. a mechanisms: for those mechanisms there is a

convex set, C0, centered on the origin and which
is such as <Ta E Co and a E iJIP" Co( <Ta) i.e. a is an
external normal to C0 in <Ta. 

2. {3 mechanisms: for those mechanisms, in the
simplest form, we have {3 = a13/ 77 with {3 = 0 if 
u13 = 0, where 77 is the damping factor of the f3 
mechanism. 

3. 'Y mechanisms: for those mechanisms there is a
convex set, 00, centered on the origin and which
is such as i' = ow/ oaY, where w is the viscoplas
tic potential of the 'Y mechanism.
We shall now consider a structure made of such

materials and subjected to an arbitrary loading. The 
materials have been characterized: we have identi
fied the nature of the internal parameters X, the 
various matrices A and b, the transformed internal 
parameters and the local evolution laws. We shall 
limit ourselves to the case of small deformations and 
quasi-statical loading. Moreover, we shall assume 
that the decomposition of the boundary of the struc
ture (surface forces-displacement), remain constant 
during the loading path. 

Let us denote by Ue1(t), Ee1(t) and .!e1(t), the
displacement, strain and stress response of the struc
ture remaining virtually elastic; and by lJ.. t ), E{.t)
and �( t ), the real response of the struCture. We
have: 
e �1(t) = M · .!°1(t) + E(t), where E(t) is the 

mitial strain field and-M the elastic matrix; 
e B_t) = E(t) + �(t) +e'(t), which is the strain 

decomposition In initiaCelastic and plastic parts; 
e .!(r)= M-1 

• F(t); 
The real response of the structure can be decom

posed into an elastic and an inelastic part, the inelas
tic one being auto-equilibrated 

� .+I _jne !:!_( t) = !:! ( t) + !:! ( t)
.5_( t) = g1 ( t) + gn"( t)

with: g""( t) = M · f!_( t) + _€'( t)

�( t) = �I ( t) + f!.( t)
This last relation means that we have a linear 

elastic problem which implies symbolically: R( t) 
= Z0 · e'(t), where Z0 is a linear operator whicll is 
symmetrical, non-poSitive and generally singular. 

Now we shall use a mathematical trick in order to 
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come down to the resolution of a simple problem. 
We may write: 

�t) = ! · �(t) -I(t) 

= ! · t•1( t) - (I( t) -! · fi( t))

= ! . �1(t) - !(t) ,

with: !( t) =I( t) - ! · fi( t)
=b. X( t) -A. z . AT. X( t) 

- - _ _  o _  -
=!!·!(t) 

Y(t) is a new field of transformed parameters for 
the structure and B is symmetrical and non-negative. 
If B is regular, the knowledge of !°1(t) and Y(t) is 
then sufficient to define the global evolution of the 
structure: by invertin� !!· we deduce !( t) = !!- 1 
· Y(t), then e'(t) =A · X(t), R{t) = Z0 • e'(t) and
!Cr)=!°1(tf+R{t):- - - - -

When all the IOcal b matrices are regular, we may 
prove that B is regular too, which implies that to 
obtain the giobal evolution of the structure, we Just
have to determine Y(t), the evaluation of S (t) 
being straightforward� In such a case, we have: 

f'(t) = !T ·�-I· (.!_(t) + ! · !i_(t)) )
Eine(t) = M· fi(t) + g(t)

= gne ( t) = ( M + !T . !!- I . !) . .EJ.( t)
+!T.�-1·.!_(t) 

We shall now look at a particular application of 
this framework: structures containing only a-mecha
nisms and subjected to cyclic loading. In the case of 
cyclic loading, we may prove that when all the local 
matrices b are regular, only elastic or plastic shake
down can occur; elastic and plastic shakedown being 
obtained when the stabilized asymptotic cycle is 
respectively elastic (Y(t) is constant) and periodic 
(Y(t) is periodic). -

- We shall limit ourselves to the case where all the 
local matrices b are regular. 

We have a{t) E C0 and a(t) =A· !°1(t) -Y(t), 
which implies Y(t) E C(A · !°1(t)) = C0 +A 
. !°1(t). We shall notice that C(A-: !°1(t)) is known 
once the elastic response of the-strllcture has been 
computed, i.e. obtaining !°1(t) for one cycle [O, T], 
and that C(! · �1(t)) is locally constructed, i.e. we 

treat each inelastic mechanism independently of the 
other ones. 

Moreover, a{_t) E iJl/l'c (a(t)), which implies that 
a{_t) belongs to an intern�T normal to C(A · !°1(t)) 
m .!_(t) (i.e. �t) E -iJl/l'C(�· �<1(t))(!_(t))[° aild we
have Y(t) = B . a(t). 

Thus, to Obtain the nature of the limit state, for 
each mechanism, we have to check if all the plastic 
yield surfaces defined by C(A · !°1(t)), for each 
time t in [O, T], have a common part. In such a case 
the elastic shakedown will occur (for each mecha
nism, Y( t) is constant and inside the common part); 
otherwise, plastic shakedown occurs. 

Finally, to compute the stabilized response of the 
structure, according to the nature of the limit state, 
the asymptotic values of Y(t) have to be locally 
determined (which is done by simple geometrical 
constructions). 

We shall now consider a structure composed of 
two connected cylinders (cylinder 1: length LI , sec
tion S 1; and cylinder 2: length L2, section S2 with 
S2 > Sl). 

This structure is made of a kinematical hardening 
material (hardening modulus= h) which is supposed 
to be elastically isotropic (Young modulus = E, Pois
son ratio = v, elastic limit in tension = uY ). 

We suppose that the initial state is virgin (no 
initial strain). This structure is embedded at the end 
of the cylinder 1, and subjected to a cyclic imposed 
axial displacement, U2(t), at the end of the cylinder 
2; Uz(t) varying monotonically between 0 and V
(Fig. 1). 

The problem is to determine analytically the limit 

S1 L 1 

S2H-J �· 
' -''-- lh � lh(t)

Fig. I. Structure made of two connected elastoplastic workharden
ing cylinders, subjected to cyclic imposed displacement. 
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state of the structure, according to its geometry, the 
mechanical properties of the material and the im
posed loading. We shall neglect the influence of the 
geometrical discontinuity, i.e. we shall consider that 
strain and stress fields are uniaxial. 

For a kinematical hardening material ( a-mecha
nism), the yield criterion can be written in the form: 
f = f(u) = f(!- h · P), which implies, by identifi
cation with <T = A · ! - b · X: A = 1 and b = h (b is 
regular). 

First of all, we shall begin by establish the elastic 
response of the structure: 

* Compatibility equations: ( P1(t) has to be kine
matically admissible with Uz(t)) ( Ef 1 ( t) = Uf I ( t) I LI

E�1( t) = (U2( t) - Uf1( t))/L2 

* Statical equilibrium equation: SI · !f1(t) = S2
. .r;1c r)

* Elastic behavior law: (we have no initial strain.
i.e. E1(t) = O) ( ! f1 ( t) = E · ( Ef1 ( t) - 0) 

!;1 ( t) = E · ( E�1 ( t) - 0) 
The resolution of this system implies: Uf1(t) = 

(S2 · Ll/(Sl · L2 + S2 ·LI))· U/t) 
S2 

Ef1( t) =  SI·L2+S2·LI 
·U2( t)

SI 
E�1( t) = 

SI · L2 + S2 ·LI . U2( t)

E· S2 
!f1( t) = SI· L2 + S2 ·LI . U2( t)

E· Sl 
.r;i(t) = 

SI· L2 + S2 ·LI . U2( t) 

Let us assume that U2( t) is such as there is some 
plastic strain just in the cylinder I. This condition 
implies: 
max[ .l' f1 ( t)] > uY and max[ .r;1 (t)] < ur 

The nature of the limit state of the structure will 
depend on the elastic response of the cylinder num
ber one: 

The convex set C(!f1(t)) = C0 + 2:f1(t), has a 
constant radius, uY, and moves linearly between 
C(min[!f1(t)] = 0) = C0 and C(max[!f1(t)]) = C0
+ (E · S2/( SI · L2 + S2 ·LI))· V. 

Elastic shakedown will occur when those two sets 
have a common part and max[!f1(t)l? <TY, i.e.: 
(TV< (E. S2/(Sl . L2 + S2. LI)) . u < 2__: <Ty. 
Otherwise, i.e. (E · S2/(SI · L2 + S2 ·LI))· U> 2 
· a:v, plastic shakedown occurs. 

According to the nature of the limit state, we have 
now to determine the stabilized response of the 
structure. 

So. we have to express the inelastic response of 
the structure: 

* Compatibility equations: ( Eine( t) has to be
kinematically admissible with Uz(t) = 0) 
E;""( t) = U!"e ( t) /LI

E�ne ( t) = ( 0 - U!"« t)) I L2
* Statical equilibrium equation: SI · R1(t) = S2 

· R2( t) 
* Behavior laws: (we have: A =  I, b = h, Ej(t)

=F 0 and Ef(t) = 0 
- Cylinder 1: R1(t) = (M+ I/h)-1 ·(E!"<(t)

Y1(t)/h) = E' · (E!"'<t)- Y1(t)/h) with: E' = (E ·
h)/(E + h) 

- Cylinder 2: Rz(t) = M- 1 • (E�"°Ct) - Ef(t)) = 
E · (E�"<(t)- 0) 

The resolution of this system implies: U!"<(t) = 
(LI· L2 ·SI· E'/(E' ·SI· L2 + E· S2 ·LI))· (Y1(t)/h)

L2·Sl·E' Y1( t)Elll"(t) ----------

1 - E' · SI · L2 + E · S2 · LI 
. -

h
-

LI ·SI· E' Y1( t) E�ne ( t) = - E" SI . L2 + E . S2 . LI 
. -h

-

S2 ·LI· E · E' Y1( t)
R

i
( t) = -

E'-Sl·L2+E·S2·LI 
·-

h
-

SI· LI· E · E' 
R2( t) = - -E-, ·_S_l _· _L _2 _+_E_·_S_2_·_L_I 

. -
h

-

The stabilized inelastic response of the structure is 

y 
- 0 I t 

' 
/). t ,,.cr�I/ 

rl� \ min0'.81110 . i / . Y. Y; �. . /'j--- lim 1 
T 

Fig. 2. Elastic shakedown evolution of the plastic yield surface in 
the Y space. 
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Fig. 3. Plastic shakedown evolution of the plastic yield surface in 
the Y space. 

obtained by determining the asymptotic value of 
Y1(t).We have: {Y1(t) E �( .rf1(t))Vt (spherical convex set)

E[( t) = a1( t) E -c1Pcc��'(t))( Y1( t)) 

Y1( t) = B · a1( t) ( B is linear and regular) 

which implies (Figs. 2 and 3): 
* in the case of elastic shakedown: Y1(t) tends

toward the constant value lim Y 1 = ( E · S2/( SI · 
L2 + S2 · Ll)) · V- (T y 

* in the case of plastic shakedown: Y1(t) varies
periodically between lim Y1min and lim Y1max_ 

E·S2 
lim ylmax = 

SI . L2 + S2. LI . V- <Iy; 
limYmin =<I I y 

The stabilized response of the structure is then 
finally computed by adding the elastic response with 
the stabilized inelastic one. We have expressed it in 
terms of the geometry, the characteristics of the 
material and the imposed loading. 
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