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Finite-element simulation of a new two-dissipative
mechanisms model for bulk medium-density

polyethylene
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Laboratoire de Mécanique des Solides, URA 317 CNRS, Ecole Polytechnique, Palaiseau

91128 Cedex, France
K. BOYTARD

Gaz de France, DETN, 361, avenue du Président Wilson, BP33, La Plaine Saint-Denis 93217,

France

A two-dissipative mechanisms model, associating a Maxwell and an elastoplastic model in
parallel, is discussed in arder to account for the non-linear viscoelasticity of bulk
medium-density polyethylene. On the one hand, the experimental determination of the
constitutive equations coefficients is described from a tensile specimen machined from gas
pipes. On the other hand, finite-element simulation of the stress relaxation experiment,
proposed by Sweeney and Ward, is achieved, which yields a complete analysis of the
dissipative mechanisms interaction during the test. The finite-element code built upon this
modelling is finally used in a tentative simulation of a cyclic pressure test on a pipe

specimen.

1. Introduction

Predicang the answer to successive loads applied to
polyethylene structures presents a critical interest im
a wide field of applications, including gas or water
pipes design. The key problems are, on the one hamd.,
to describe satisfactorily the constitative equations of
the material, which implies takmg account of stress
relaxaion, geometrical recovery amd —stram-rate
effects, and om the other hand, to study real structures,
and mot omly ome-dimemsiomal temsile specEmens,
which requires the availability of nomerical tools, such
as finite-clement codes, providing an easy access to the
predictions of the constitotive equations.

The purpose of this work was te introdues an alter-
native two-mechanisms model to the cassical appro-
aches based on viscoelasticity, such as that of Sweeney
and Ward [I], in order to give an interpretation of
the cyclic behaviour of polyethylene samples, and to
derive a computational method for polyethylene
strectures. Professor Ward and collaborators put i
evidence that a model based on a pair of thermally
activated Maxwell models (Fig. I} accurately repres-
ents crecp and stress-relaxation phenomena for high-
modulus polyethylene fibres. Moreover, Sweeney and
Ward [ 1 | demonstrated the superiornty of this approach
to that of Lefebvre and Escaig [ 2], based on a unique
thermally activated Maxwell model, when analysimg
the response of orented polyethylene fibres submitted
to a sequence of loading im two particalar cases.

(1) The step stress relaxation experiment (Fig. 2)
a tensille specimen is rapidly loaded to a stress

Go Ao, where Ac & g, and the stram then is held
constant while the stress is allowed to decay to the
value Gy, at which point the specimen is rapidly re-
loaded to the stess Gy + Ac, and again allowed to
relax, and so on. The decay tume between: the ith and
(@ + Dth loadimg step is witttem as Af;. The above
authors experimentelly stated that the sequence of At;
mcreases, bat the sequence of ratios At . ./At; tends to
one.

(i) The step rclaxation and recovery experiment
(Fig 3) the previously deszribed test is imterrupted
and followed by a rapid derrease of the imposed strain
until stress level oy is reached. Stress recovery is then
obsexved mntil the value o + Ao, is attzined, where
a mew strain decrease canses the stress to take again
the valne oy, and another recovery is allowed, and so
on. An analytical study of this experiment led the two
authors to more similar resalfs conceErmng sequences
At; and Af;, o JAt; tham im the step stress relaxation
experiment. The Ldebvre and Escaig theory was in-
comsistent with that very pomnt.

We propose: a model assodating a simple Maxwell
model znd am elastoplastic model with kiwematic
hardenimg (Fig. 4). mtrodnction of an elastoplas-
tic model, winch is characterized by a threshold, is
necessary to accowmt for the emistence of residual
stress, winch cam be obssrved in polyethyleme gas
pipes, for example: were elastoplastic effects inexistent,
these streswes should completely decay after some
time. Thus, the diffevemces compared with the theory
of Sweeney and Ward lies first in substituting an
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Figure I The two-provess Sweeney and Ward model.

At Afm

Gyt A
s

| Strain

e o

Stress

Time

Time

Figure 2 The step stress relaxation expenmment.
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Figure 3 The stress relaxation and sscovery €xperiment.

elastoplastic mechamism to a Maxwell one, and sec-
ond in disregardimg thermal activation processes for
the sake of simplicity. Our theory is inspired from the
study of bulk mediwm-density polyethylene samples
obtained from extruded gas pipes. We intended to
show that, on the one hand, it is consistent with
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Figure 4 Coefficients of the proposed model.

Sweeney and Ward’s conclusions concerning the step
stress relaxation experiment, and the stress relaxation
and recovery one, and on the other hand, that it
enables discussion of a step pressure experiment real-
ized on tube segments, for which a finite-element simu-
lation was achieved. But first, we will detail some
properties of the model and specify a route to identify
experimentally the coefficients thus introduced.

2. Model analysis
It is necessary to describe an experimental procedure
which enables a unique determination of coefficients
in order to assert that the model is a reliable and useful
tool for engineers. Coefficients of a constitutive equa-
tion provide indeed basic data to compare properties
of materials, so testing organization is important.
Our models introduces five coefficients: modulus,
E,, and viscosity, n, for the Maxwell mechanism,
modulus, E,, threshold, 65, and a coefficient for kine-
matic hardening, o, for the elastoplastic mechanism.
We realized a series of traction—relaxation—geometri-
cal recovery tests detailed below, in order to evaluate
these parameters. We used a classical tensile specimen
(Fig. 5) machined from a gas pipe wall, its main axis
corresponding to the extrusion direction. Experi-
mental apparatus consisted in an Instron press with
a 500 kg load cell, an RDP transducer with range
"+ 5 mm, and an automatic data acquisition software

-~ agnes achieved in the LMS and running on a PC. The
" traction-relaxation—geometrical recovery test simul-
"taneously takes into account strain versus time and

stress versus time evolutions (Figs 6 and 7), and con-
sists of three steps:

(i) choose a strain rate, £;,,, and a strain level,
Eimp, and realize a traction until the selected strain
value is reached; c,,,, denotes the maximum value of
stress recorded;

(i) hold the strain and allow the stress to relax
during a period At,;, at the end of which further
evolution of the stress may be estimated to be negli-
gible. Note the ultimate value oy;,;

(iii) dismount the specimen from the press without
removing the displacement captor (some reduction
of the imposed strain may help) and observe the
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Figure 5 The tensile specimen and finite-element mesh.
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Figure 6 Stress versus time curve during the three-step e{periﬁlent_
for different values of &, .
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Figure 7 Strain versus time curve during the three-step experiment
for different values of &,_ .

geometrical recovery during a period At... So the
specimen size reduces quickly first, then slowly, and
stabilizes when At,.. is large enough, showing evidence
of some unrecoverable elongation at room temper-
ature, corresponding to a residual strain, €.

Thus described, the test associates 6y, and €. to
€imp- One remarkable point is that the use of an initial
strain rate ten times greater or lower than &, scarcely
modifies those values but, of course, affects the
maximal stress. recorded, G,.,, at the end of the tensile
step. We found it convenient, for our material, to
conduct the experiment with the values At,.; =24 h,
Atree =24h and &,, =0.250x 1072571, while we
also tried 0.025 x 1072 s~ ! without noticeable change.
Fig. 8 shows the stress versus time. relaxation step for
both strain rates when &, = 15%, and Fig.9 the
following geometrical recovery step. As an example of
the series of measures to be followed in order to
identify the coefficients, Fig. 10 shows the stress versus
time evolution for various values of &, yielding vari-
ous values of oy, and Fig. 111is the recovery step with
values of ¢, as an issue. Those data enable the draw-
ing of G, VEIsus &y, curve and g,; VErsus €;y,, CUIves,
as in Figs 12 and 13, on the basis of which the deter-
mination of the coefficients is done.

To retain information from those drawings, one
must keep in mind that a parallel association of two
mechanisms simply sums their individual properties.
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Figure 8 Measured stress relaxation over 3 h.
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Figure 9 Measured geometrical recovery over 24 h.
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Figure 10 Stress relaxation occuring over more than 1 hfor g, =
0250 1072 57" and (1) By =008, (2 &, = 0115, (3) 5, =015.
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Figure 12 Oy, versus g, curve; (@) experimental and (2A) analyt-
cal data.

If the constitutive equation for the Maxwell model is
o, =mnE&’
= E,(e—z") 1

and for the elastoplastic mechamism with tmear kin-
ematic hardening (Fig. 14)

Ccp, = E,g¢ ifo,<op

Cp, = E,(e + glE—&))
ifo,>ocswithe, = 22 {2)
EP
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Figwre 13 ¢ versus g, curve; (@) experimental and (A) analyti-
cal data.

Figure 14 Stress wersns strain curve for the elastoplastic mecha-
mism.

the constitutive equation for our model reads
6 = o,+0, 3

Assuming that the mechanisins are independent (this
point will be discussed later), the relaxation step and
the geometrical Tecovery siep isolate the elastoplastic
mechamism part of the behaviour: after relaxation, this
very mechanism withstands the overall stress, and
after geometrical recovery, the eventaal residual strain
is conmected to some movement of the shde. So we
only need to try to identify the oy, versus g, curve as
a classienl stress strain curve for a tensile specimen,
and consider it as the effect of an elastoplastic consti-
tutive equation in the casc of kinematic hardening.
The determmation of E, and o, is then quite nsual
from the imitial slope and the slope change. The coef-
ficient o is deduced from the second slope by

a = Lo @

]
The &, Versns &, COrve must prove to be consistent
with the previous one: consader a point with coordinates



(€mp»> O1im) and imagine an elastic unloading, i.e. draw
a segment with slope E, from this point to the strain
axis. The point reached indicates the value g, that
should be read on the (&mp, £res) diagram (Fig. 14).

The determination of E, and 1} is easier now that the
other coefficients are known. The choice of a simple
Maxwell model without any thermal activation nat-
urally leads us to evaluate a relaxation time, t

o5 5
T

which is a rough approximation of the physical reality;
we are aware of this. We deduce that the concept of
a time-relaxation spectrum captures more precisely
the complexity of polymer behaviour in this field, see,
for example, Hadley and Ward [3]. However, this
assumption retains enough simplicity within our
model, to complete the investigation of its properties,
and enable numerical sirnulations, which was our in-
itial goal. So let us consider one of the relaxation
curves and treat it like an exponential stress decay.

t—te
¢ = exp<— T 1> (Gmax - c’1im) + Olim (6)

which yields T when

Omax — Olim

c = + Olim

e
Our experimental procedure withdraws much infor-
mation from the fully relaxed state, which in counter-
part does not enable an easy determination of E,
straight from the measurements. We have to find E,
before an evaluation of its value from the recorded
data, and then refine it with the help of a numerical
software.

The previous evaluation is done on the basis of
a test for which we suppose 6y;, = op and then estimate

E &imp + Cp (7)

Gmax

which yields an approximation of E,. If numerical
simulations of the tensile step of the test are achieved,
and E, is allowed to vary slightly, it is possible to fit
the data satisfactorily and to select the desired value.
This was achieved with our finite-element code, but
any software taking into account Equations 1 and
2 could help in this task.

Finally, the values of the obtained parameters
corresponding to our medium-density extruded
polyethylene are E, = 175.0 MPa, of = 4.375 MPa,
o = 245.6 MPa, E, = 65.0 MPa, nn = 280.0 GPas.

One can now observe that our theory quantifies
both plastic and viscous phenomena, very well known
in the study of polymers. The elastoplastic model
appears particularly well adapted to give an account
of the memory effects of the material. We would like to
point out that it is difficult to identify the parameters
of our model just from a tensile test, or a creep test.
The modelling just attempts to use the total diversity
of experimental resources to capture the non-linear
properties of the material.

To illustrate this, let us briefly discuss the coupling of
the elastoplastic and the viscous mechanisms. It is

experimentally evinced by modifying the second step
of our procedure and by setting At.; to zero. So
when the geometrical recovery phase immediately
follows the traction, a reduction of the &g,
values recorded is stated. To explain this, one may
imagine that the chain reorganization occurring dur-
ing relaxation influences further geometrical evolution
of the specimen, which reveals some aspects of the
versatile memory effects of the material [4]. Therefore,
it is unnecessary to describe the stated coupling with
an explicit relationship between internal parameters:
when writing the generalization of Equations 1 and
2 in order to build a finite-element algorithm, this
coupling becomes implicit from the equations of
statics. We expand the details in another paper.

3. Analytical validation

Analytical expressions simulating the three-step ex-
periment discussed in the previous section, can easily
be derived from Equations 1 and 2. Let us suppose
that &;,, and &,,, are known; then

(i) the traction step: for the Maxwell mechanism

E.c.
Oy = Méimp I:l — exp (— %):I (8)
. imp

and for the elastoplastic mechanism, assuming

C

Gy = Op

o
—FE < 9
Op o+ E, ®)

p
&imp + ———=-C
p~1mp CX+EP p

thus, with these values, Gy, = Oy + Op;
(i) relaxation step: the Maxwell mechanism de-
creases to zero, following

. Evgimp> ] ( Evt>
Oy = Mé&mp| Xp|l———— | — 1 |exp| — 10
n p[ p(naimp p m (10)

and the elastoplastic mechanism is steady, yielding oy,

Otim = Op

E
imp + P Gc (11)

——E,&
o+ E," " o+ E, °

(iii) recovery step: we must observe that during this
step the overall stress is zero
6 = o,+6, =0 (12)

At the end of this step, o, = 0.
The elastoplastic mechanism unloads elastically
with a slope E,, thus residual strain is identified as

Ep(gimp - 8res) = Olim (13)
E &mp — Op

s = —— 4

& a+E, (14)

Analytical values of G,5, Glim, &res are estimated from
the data given in Section 2, and are reported in Figs 12
and 13, where they compare satisfactorily with experi-
mental data.

These expressions have been used to check the accu-
racy of the numerical results obtained by a prototype
two-dimensional finite-element code. Our purpose is



to validate definitely the code and then compute struc-
tures such as polyethylene gas pipes.

4. Step stress relaxation simulation

In order to illustrate the interest of the modelling and
the numerical tool, which allows an easy investigation
of the evolution of a phenomenon through variations
of the coefficients, we first treat a one-dimensional
case: the step stress relaxation experiment. We thus
simulate loading upon an axisymmetric 6 x 10”2 m
long rod and 0.5 x 10”2 m in radius, and only need to
mesh a rectangle of these dimensions, representing
a meridian section, with 120 linear rectangular ele-
ments (Fig. 5). Instructions given to perform the com-
putation are quite close to the experimental practice:
the operator specifies 6, Ac, &;,,, and leaves the rest to
the computer.

We investigate here one conclusion drawn by
Sweeney and Ward [1] from the experimental study of
step stress relaxation of high-modulus oriented fibres.
It is concerned with the role of each mechanism during
the test: it is hinted here that, at the beginning, the
viscous mechanism part is predominant in the overall
stress; then the successive relaxation steps cause this
part to decay, while the elastoplastic mechanism com-
ponent in the real stress smoothly increases. There is
a process of transfer of stress between the mechanisms.

This leads to the simulation for two sets of coeffi-
cients.

(i) The first one corresponds to a material asso-

ciated with the data: E;, =130.0MPa, of =
705MPa, o=106MPa, E,=650MPa, n=
280.0 GPas.

We then chose 6y = 9.0 MPa and Ac = 1.0 MPa,
and &, = 0.83x 10725~ 1 In Fig. 15 we state how
the plastic mechanism will step-by-step hold the im-
posed value of o while the viscous mechanism shows
a decreasing evolution. Nevertheless, the viscous
mechanism exhibits a lower contribution to the global
stress than the elastoplastic one, even from the begin-
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Figure 15 First set of coefficients: computed breakdown of the
stress in the step relaxation experiment: (1) overall stress o,,,
(2) elastoplastic mechanism part, c_,_, (3) viscous part .

pzz?

ning of the experiment, which marks a difference with
the analysis reported below. In our modelling, the
values of the coefficients definitely influence the ratio
of the contribution of each mechanism in the apparent
stress, which will be confirmed by the next example. It
may be noticed that the ratio E,/E is here close to 0.5.
Fig. 16 shows the calculated increase of the-strain;
we unfortunately cannot produce any comparative
measurements, because controlling the evolution of
the stress between 6y and Ac indeed requires a sophis-
ticated electronic apparatus. We should remark that
a real specimen cannot withstand a level of strain
greater than 0.30 without the occurrence of necking
— this event is not predicted by the code — and there is
a limit to the accuracy of the simulation. However, the
number of oscillations found appears satisfactory
compared with what can be evaluated from rough
experiments. Fig. 17 provides evidence for the three-
dimensional properties of the modelling: the radial
components of the stresses associated with each
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Figure 16 First set of coefficients: strain evolution.
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Figure 17 First set of coefficients: radial components, (1) elasto-
plastic mechanism part 6, and (2) viscous part G,,.



mechanism, o,,, and c,,,, take opposite values, dem-
onstrating that the numerical computation introduces
non-trivial effects in the plane perpendicular to the
tensile axis. ‘

(i) The second set of coefficients that we tried was
partly inspired from Sweeney and Ward’s Table I [1],
that is, we aimed to simulate some material with
properties close to high-modulus oriented polyethy-
lene, although we did not test such a specimen. We
thus adopted E, = 28.0 GPa and E, = 2.5.GPa and
more arbitrarily fixed t. = 150.7 MPa, o = 1.0 MPa,
1 = 140.0 GPas. Strain rate is the same as in the first
case. We also chose oy =170.0 MPa and Ac =
30.0 MPa. Results in Fig. 18 are consistent with the
previously reported analysis, i.e. the plastic mecha-
nism plays the part of a slow decay-rate mechanism,
and initially bears lower stress level, while at the end it
takes the whole overall value. The ratio E,/E, is here
11.2, and our model conforms'to the scheme drawn by
Sweeney and Ward, on a qualitative point of view.
Quantitatively, it may seem odd that the simulation
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Figure 18 Second set of coefficients: computed breakdown of stress
in the step relaxation experiment: (1) over-all stress G, (2) elasto-
plastic mechanism part o, (3) viscous part &,
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Figure 19 Second set of coefficients: strain evolution.

terminates in a corresponding time of 200 s: this is
a consequence of some inappropriate choice for 1, but
we had no experimental data to refine this value.
Another effect is that the corresponding number of
cycles is also lower than could be expected. Fig. 19
shows the evolution of strain, and indicates eventually
that the strain level of 10% is not reached during the
test. This tentative calculation leads us to think that
a determination of the coefficients for high-density
polyethylene from the three steps test, may improve
the results.

The numerical analysis of the stress relaxation and
recovery experiment does not settle new technical
difficulties: it is only needed to substitute a strain
decay to a strain increase. So we again considered the
two previous sets of coefficients. In each case, the
complete stress relaxation test is executed and con-
tinued with the stress recovery experiment.

With the first set of coefficients, we chose
0.83x1072s™! as the strain decay rate, o, =
3.0 MPa and Ac; = 0.5 MPa. From Figs 20 and 21

10
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Figure 20 First set of coefficients: stress relaxation and recovery.
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Figure 21 First set of coefficients: strain evolution during stress
relaxation and recovery.
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Figure 22 Second set of coefficients: stress relaxation and recovery.
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Figure 23 Second set of coefficients: strain evolution during stress
relaxation and recovery.

we observe the occurrence of a unique cycle. With the
second set of coefficients, we took 0.16 x 10725~ ! as
the strain decay rate, o; = 50.0 MPa and Ao, =
10.0 MPa. This time the number of cycles is more
important and the stress stabilizes for a strain level
close to 2% (Figs 22 and 23). Both calculations have to
be handled carefully, as no experimental reference can
be given, even for the number of cycles.

Incidentally, it should be noted that each simulation
approximately takes 1 h CPU on a Hewlett-Packard
420 workstation.

Finally, we may conclude from all these results that
our modelling enables practical material testing and
provides predictive and versatile information concern-
ing the behaviour of the specimen.

5. Three-dimensional cyclic experiment
Superiority of a finite-element software becomes
evident when we try to analyse successive loading of

PE tube
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I 250 mm

Y

LR

1 mini1 min

Time!

Figure 24 The EAHP experiment.

a real structure. The experiment presented as an
example is currently being performed by Professor
Pixa’s team at the Ecole d’Application des Hauts
Polyméres in Strasbourg. Let us consider a portion of
a polyethylene pipe, about 250 mm long, 20 mm dia-
meter and 2 mm thick. An extremity of the tube is kept
fixed and closed. At the other end, a valve enables the
admittance and evacuation of pressurized air. This
valve electromechanically controls the opening of
a fluid reserve bottle so that it is possible to impose on
the polyethylene pipe any level of pressure within the
range 0.4-20.0 MPa and to hold it as long as is neces-
sary. A thin wire is wound round the specimen and is
attached to an extensometer in order to record vari-
ations of the diameter and hence deduce radial strain.
One test begins by subjecting the tube to a pressure
level p (reached in a few seconds) and holding it for
1 minute, then emptying the tube and allowing recov-
ery for 1 minute: the whole scheme is repeated ten
times (Fig. 24). For the ith step Ag; denotes the ampli-
tude between the maximal and minimal strain. The
difference Ag,o, — Ag, is denoted As. When the test is
repeated with increasing values of p, a Ae versus
p curve is drawn. As expected, the tube explodes dur-
ing the experiment, and this event is announced by
a strong change in slope of the previous curve. We
simulated the whole test for a section of a tube in the
approximation of plane strain. A quarter of the section
was meshed with 60 rectangular elements. It is pos-
sible to evaluate the radial strain evolution for some
values of p (Fig. 25), and to try to predict the Ag versus
real wall stress curve (Fig. 26). In the latter, some
noticeable difference between experimental and
simulated values are noted at the beginning, but the
variation of slopes corresponds quite satisfactorily
around p = 10.0 MPa. Furthermore, from other cal-
culations, the coefficient of the model responsible for
this effect seems to be the threshold o}. The coeffi-
cients used in this simulation are as follows (the tensile
specimen is made from a different material):
E, =700MPa, of=705MPa, o=2503MPa,
E, =100.0 MPa, n = 4.0 GPas.
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Figure 25 The predicted strain evolution versus time for various
levels of imposed pressure (1) 1.2 MPa, (2) 0.6 MPa, (3) 0.1 MPa.

6. Conclusion

Two dissipative mechanisms models are capable of
predicting the non-linear viscoelastic behaviour of
polyethylene. For medium-density polyethylene, we
proved that our proposal associating a Maxwell
mechanism and an elastoplastic one, was realistic,
because the coefficients can be identified from a single
three-step uniaxial test, and was practical because it is
consistent with literature and enables finite-element
simulation of real structures. It is then worthwhile to
examine the influence of ageing or temperature to
develop this approach, and to try to expand it to
a wider set of materials.
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