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CAVITY GROWTH AND RUPTURE OF /J-TREATED
ZIRCONIUM: A CRYSTALLOGRAPHIC MODEL 

J. CREPIN, T. BRETHEAU and D. CALDEMAISON 
Laboratoire de Mecanique des Solides, C.N.R.S. U.R.A. 317, Ecole Polytechnique, 

91128 Palaiseau Cedex, France 

Abstract-This study aims to understand the damage mechanisms observed in #-treated zirconium. 
Damage voids are characterized by a tubular morphology with hexagonal cross-section; their growth 
kinetics is determined experimentally. From these observations, a model based on the principle of creation 
of free surface by crystallographic slip permits one to explain the stability of the hexagonal shape and 
to predict a growth rate closer to the experimental value than traditional models. This improvement is 

due to the sensitivity of the free surface creation mechanism to the stress concentration factor k, which 
can not be accounted for in models based on continuum mechanics.  

Resume-Cette etude a pour but de comprendre les mecanismes d'endommagement observes dans le 
zirconium traite p. L'endommagement est caracterise par des cavites de forme tubulaire a section
hexagonale; leur cinetique de croissance est determinee experimentalement. A partir de ces observations, 
un modele base sur le principe de creation de surface libre par glissement cristallographique permet 
d'expliquer la stabilite de la forme hexagonale et de prevoir une vitesse de croissance plus proche de la 
valeur experimentale que celles prevues par les modeles traditionnels. L'amelioration de la prediction est 
due a la sensibilite des mecanismes de creation de surface libre vis a vis du facteur de concentration de
contrainte k, ce qui ne peut etre pris en compte dans un modele base sur la mecanique des milieux con tin us.

INTRODUCTION 
Zirconium, a material mainly used in the nuclear 
industry, is characterized by the existence of two 
allotropic varieties, the f3 phase and the c,; phase which 
are b.c.c. and h.c.p. crystals, respectively. The former 
is found above, and the later below 1138 K. The
grade 702 zirconium tested had undergone an 
c,;--+ f3--+ c,; cycle at a slow cooling rate ( -15° /s) 
inducing a bainitic transformation. The resulting 
microstructure consists of colonies of parallel laths 
with the same crystallographic orientation; the "lath 
boundaries" are planes where the precipitates of 
betagenic elements (Fe, Cr, Ni) locate. Three 
deformation mechanisms are activated, prismatic 
slip (1010)(1210), (10I2)<10TI) twinning and 
(1121)(1126) twinning, depending on the colony 
crystallographic orientation with respect to the tensile 
axis in accordance with Schmid's law. Prismatic slip 
is either homogeneous or concentrated in coarse slip 
lines along the lath boundaries [l]. This last 
mechanism is the most frequent one. 

CHARACTERIZATION OF DAMAGE AND RUPTURE 
Experimental procedure 

Flat tensile test specimens (20 x 5 x 2 mm) 
were polished mechanically and electrolytically 
(U = 22 V, T = 300 K, t = 30 s, in CH3COOH:80%, 

HCL04:20%). Then they were chemically etched 
(HF:22%, HN03: 11 %, glycerol:67%, T = 300 K, 
t � 5 s) to reveal the microstructure. 

To follow on the sample surface the deformation 
mechanisms and the growth rate of damage, a Raith 
tensile stage located inside a SEM was used with a 
strain rate of the order of 10-4 s-1• Fiducial 1 mm2

gold grids with 5 µm pitch deposited on the surface 
of the sample permit one to follow qualitatively and 
quantitatively the local deformation mechanisms [2]. 

The local crystallographic orientation of crystal 
domains a few µm3 large is determined with Electron
Backscattering Diffraction (EBSD). This technique, 
which involves indexing the Kikuchi lines, provides 
the orientation of the studied crystal relative to a 
macroscopic reference axis attached to the sample 
tensile axis. Consequently, with the approximation of 
uniaxial stress, the Schmid factor of any deformation 
mechanism can be calculated in each grain. 

The sample surfaces during a tensile test 

At the surface of tensile test samples, damage 
cavities are observed for a global strain between 3 and 
6%, far before any necking. Ductile rupture occurs at 
a global strain of about 10%, necking remaining 
weak in any case. The first damage cavities always 
appear in colonies subjected to prismatic slip either 
concentrated or homogeneous, but never in colonies 
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Fig. 1. Cavity alignments parallel to the lath boundaries; localization of deformation along the boundary 
observed thanks to the deformation of fiducial grids. 

subjected to twinning; they appear on the sample 
surface between the precipitates located at the lath 
boundaries or inside the lath between the last coarse 
slip line and the remaining undeformed part of the 
lath. In a colony, the cavities form alignments parallel 
to the lath boundaries (Fig. 1 ). During this growth, 
the cavities remain contained within one lath and 
their ultimate size is of the order of the thickness of 

the lath which is 10 µm. Cavities can show a peculiar 
hexagonal shape. Cavity coalescence occurs inside the 
alignments (Fig. 2) with the possibility of rupture of 
the ligament between two neighboring alignments. 
The absence of deformation exhibited by fiducial 
grids for the laths which are not affected by voids 
shows that damage remains confined along the lath 
boundary (Fig. 1 ). 

Fig. 2. Cavity coalescence inside alignments; rupture of the ligament between two neighboring alignments. 
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Fig. 3. Observation of the rupture surface. 

Another type of damage has been observed at the 
inter-colony boundaries; it is due to the strong strain 
incompatibility between colonies which stemmed 
from a same former f3 grain and have a misorienta
tion of either 60 or 90° (this misorientation is a 
consequence of the allotropic transformation). This 
damage development involves the activation of 
prismatic slip or twinning according to the orien
tation of the grain with respect to the tensile axis [l]. 
Rupture occurs along the cavity alignments. The 
connection of the cracks developed inside adjacent 
colonies proceeds either by rupture of the damaged 
intercolony segregation zones or of the lath 
extremities. 

The rupture surface 

In Fig. 3 the rupture does not seem to be ductile 
because small circular dimples on the rupture surface 
are absent. It shows large areas of parallel elongated 
shapes with a long axis of several hundred 
micrometers and a small axis of about 10 µm 
corresponding to the size of the colonies. The 
comparison of the two associated rupture surfaces 
allows one to conclude that these elongated shapes 
are large elongated dimples. Such dimples called 
"fluting zones" were described by Aitchinson and 
Cox [3] and Spurrier and Scully [4] in the case of 
stress-corrosion rupture. They reported that the long 
axis of these dimples is parallel to the local crystalline 
( c > axis. Some zones constituted of small rounded 
dimples are also detected in the rupture surface, but 
found to be less numerous than the elongated ones. 
EDS analysis shows that the zones with small 
rounded dimples are rich in intermetallic precipitates, 

whereas zones with elongated large dimples do not 
have such precipitates. 

Relation between the two observed surfaces 

The necessary coherence between the different 
observations, the sample surfaces and the rupture 
surface, allows one to characterize the cavity 
morphology. If the same cavity is observed either on 
the sample surface [Fig. 4 (a)] or on the rupture 
surface [Fig. 4 (b)] it shows, without ambiguity, that 
it is tubular; an EBSD analysis of the lath orientation 
permits one to conclude that the tube axis is parallel 
to the (c > crystalline axis. Some of the cavities have 
a hexagonal cross section with faces parallel to 
prismatic planes. This probably results from a 
predominant role of prismatic glide. The parallel 
ridges in the fracture surface correspond to the 
remaining ligaments due to the coalescence of these 
tubular cavities aligned along a lath boundary. The 
small dimple zones are associated with the rupture of 
lath extremities necessary to allow the principle crack 
to propagate from a colony to the neighboring one; 
the stress state in these zones is triaxial and activates 
secondary slip systems resulting in the small rounded 
dimples. 

Cavity nucleation 

Cavities can appear either on the prec1p1tates 
constituting the lath boundaries or inside the lath. 
Does this mean that two different types of nucleation 
sites have to be distinguished? Successive polishing of 
the surface presenting initially a cavity inside a lath, 
allows one to locate the tubular cavity in the bulk of 
the sample. It appears that the nucleation had 
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occurred at the lath boundary. Thus, it seems that 
cavities systematically nucleate on the rows of 
precipitates constituting the lath boundaries; then 
the location of a cavity appearing inside a lath in the 
sample surface is due to the angular difference be
tween the tube axis of the cavity, which corresponds 
to the < c) axis of the lath and the plane of the 
boundary, which is close to a prismatic plane due to 
the allotropic transformation [l]. 

THE HEXAGONAL CAVITY 
The main conclusions so far consist of the link 

between the activation of prismatic slip, principally 

(a) 

(b) 

localized in coarse slip bands, and the occurrence of 
damage. The main damaging effect is due to tubular 
cavities, which nucleate on precipitates and have an 
axis parallel to the local < c) axis. The propagation of 
the cracks is a consequence of the coalescence of these 
cavities. 

In the following, special attention will be paid to 
the hexagonal cavities (Fig. 5), from the geometrical, 
mechanical and kinematical point of view. 

Experimental characterization 

One particular cavity (Fig. 5) and the slip lines 
surrounding it have been characterized by means of 
EBSD technique. The determination of the orien-

Fig. 4. (a) Hexagonal cross-section of the cavity observed in the sample surface. (b) Tubular dimple due 
to the cavity observed on Fig. 4(a) after rupture. 
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Fig. 5. Hexagonal cavity with the three prismatic slip systems (1,2,3) activated two by two (vertical 
tensile axis). 

tation of the lath in the sample coordinate system 
permits one to conclude that the local < c) axis is
quasi-perpendicular to the sample surface (87°), 
which contains the tensile axis and that the faces of 
the hexagonal cavity are the three prismatic 
planes. The slip traces, observed around the 
cavity, are due to the same prismatic planes. It 
must be noted that the slip traces can be observed 
because of the imperfect orthogonality of the (c) axis 
with respect to the sample surface. If the < c) axis
was orthogonal to the sample surface, the gliding 
(a) dislocations should be parallel to the sample 
surface and consequently should not leave any 
trace. The slip systems are activated two by two 
depending on the considered hexagon angle (thus, in 
a clockwise rotation one can observe the activation of 
systems 3 and 2, then 3 and I, then I and 2). The
Schmid factor of each prismatic slip system has been 
determined: 

F1 = 0.49, F2 = 0.16, F3 = 0.33;

using a hypothesis of uniform stress. 
For a distance greater than two or three times the 

radius of the cavity, but within the same colony, only 
Systems 1 and 3 are activated (not observable on 
Fig. 5), the lowest Schmid factor being 0.33 for 
System 3. The fact that System 2 is solely observed 
within a distance to the cavity of the order of the 
radius, although its Schmid factor is weak 
(F2 = 0.16), suggests that the cavity produces a
perturbation of the local stress field. 

Moreover a video depicting the nucleation and 
growth of a cavity was recorded during an in situ 

tensile test (nominal strain rate Ex of the order
10-4 s-1 ). This video shows that the cavity appears
with a rounded shape (0.2 µm) and after few seconds 
(2 s) takes on an hexagonal shape that remains stable 
during the deformation with a homothetical growth. 
The cavity growth rate can be written as: 

B = (Ex with ( = 260.
R 

(I) 

Rice and Tracey [5] studied the case of a spherical 
cavity of radius R growing in material following a 
Norton-Hoff law (2): 

( ·)"'a = ao Zo (2) 

they obtained: 

+(I - m)[l + m(0,4175 + 0,144x(sgn am))]}''" (3)

with: am, hydrostatic stress;
a,", von Mises equivalent stress;
€,", von Mises equivalent strain rate;
m, stress sensitivity factor; 
x = + 1 if the axial stress is greater than the radial

stress -1 otherwise. 
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Also, in the case of uniaxial tension for a Newtonian 
material (m = 1), this expression gives: 

R (3)(1Tm). 
R. = 4 a €,q. (4) 

McClintock [6] studied the case of a cylindrical cavity 
of radius R; for a Newtonian (m = 1) material or a
perfectly plastic (m = 0) material subjected to a
uniaxial tension his model predicts a ( value of order 
1 (Fig. 6). Therefore, the experimental cavity growth 
rate is much faster than predicted by these models. 
The experimental observations and contradiction 
with the prediction pose three questions: 

Why are the three prismatic slip systems activated 
two by two around the cavity? Why is the hexagonal 
shape stable? Why is the cavity growth rate so high? 

Stress field analysis 

To solve the problem analytically, the calculations 
performed are for an isotropic elastic solid in plane 
strain. These geometrical restrictions are consistent 
with the observation of cavity growth by the sole 
activation of prismatic slip systems. Consider a 
circular hole of radius R in an infinite plate subjected 
to a remote uniaxial tensile stress S. The stress at any 
point of the plate in a polar coordinate system 
(r, B, z) is [7]:

S ( R2) S ( R4 R1) 
ITr = 2 1 - /I + 2 1 + 3 -;A - 4 /I COS W, 

ITe = - 1 + - - - I + 3 - cos W S ( R') S ( R4) 
2 r2 2 r4 ' 

McClintock prediction 
form= 1 
form=O - -

(5) 

(6) 

(7) 

- ... -=.:-;:-:..=-- "' 

___ ... - --_,-

__ -::-... -: - ... 
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Fig. 6. Comparison between experimental cavity growth 
rate of zirconium and McClintock prediction for Newtonian 
(m = I) and perfectly plastic (m = 0) material. O Exper-

imental values. 
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Fig. 7. Evolution of the local stress concentration factor on 
the three prismatic systems vs e around the cavity. 

This stress state is now projected on the three 
potential prismatic slip systems. If the <c) axis is 
considered as. the tube axis (in agreement with the 
obervations) and parallel to the z axis, and if <P is the
rotation angle around this axis between the crystal 
base and the macroscopic base, it follows that: 

<1 = [�(j3 sin 2</J - cos 2</J )IT12

+ Hsin 2</J + J3 cos 2</J )(IT22 - 1T11)]; (8)

sin 2</J 
T2 = COS 2</JIT12 + -2- (IT11 - IT22); (9) 

T3 = [ - Hcos 2</J + J3 sin 2</J )IT12

with 

+�(sin 2</J - J3 cos 2</J ) (IT22 - 1T11)]; (10)

IT11 = ITr cos' (} + ITo sin2 (} - ITro sin W, (11)

sin W 
IT12 =(IT, - ITe)-2- + IT,e COS 2(), (1 2)

IT22 = IT, sin2 (} + ITo cos2 (} + ITro sin W. (13)

In the test reported here above (Fig. 5) it can be 
noticed that far from the cavity only Systems 1 and 
3 are active; since the lowest Schmid factor of these 
systems is equal to 0.33, this value will now be
considered as critical for the activation of a system. 
Thus, the different zones where this criterion is 
reached can be determined (Fig. 7); Systems I and 3
are activated everywhere except in the pole regions. 
The perturbation of the applied stress field by the 
cavity induces areas where System 2 is activated. The
different activation zones are in good agreement with 
the observed slip traces (Fig. 5). The variation of the 
resolved shear stress of System 2 around the hole 
(Fig. 7) shows that its sign changes, systematically 
inducing a centrifugal glide consistent with the 
growth of the cavity. 
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Fig. 8. Results of a finite element calculation for an 
elastic-plastic material with kinematical hardening. Left 
part: representation of the area (shaded) where the criterion 
is reached on System 3 for a semi-hexagonal cavity. The area 
of activation of System I is obtained by symmetry with 
respect to the horizontal axis. Right part: representation of 
the areas where the criterion is reached on System 2 for a 

semi-hexagonal cavity. 

Another solution of this problem consists of taking 
a finite element approach with an elastic-plastic and 
kinematical hardening behavior as a constitutive 
relation. The result of the calculation is presented in 
Fig. 8 for the same activation criterion as above. The 
three prismatic slip systems are also activated two by 
two around the cavity and the stress concentration 
factors on each of the systems are equal, which means 
that there is the same quantity of gliding on the three 
slip systems. 

The question about the activation by circular 
permutation of the three prismatic slip systems finds 
a satisfactory qualitative answer in this simplified 
approach. 

Morphological stability 
The stability of the hexagonal morphology can be 

discussed by analogy between the behavior of each of 
the six angles of the cavity and the observations made 
by Neumann [8] and Pelloux [9] of the crack 
propagation without blunting occurring in a single 
crystal in double glide under tension. These authors 
consider that the crack propagates by alternate 

It ® @ 
/; 

Fig. 10. Decomposition of a kinematical model based on 
activation of the three prismatic systems two by two around 

the cavity with the same amount of gliding. 

activation of the two slip systems concentrated at the 
crack tip (Fig. 9). This model can be adopted to 
simulate the growth behavior in each of the six angles 
by activation of two prismatic slip systems with the 
same quantity of gliding; this assumption is in 
agreement with the results of the finite element 
calculation. A simulation is presented in Fig. IO by
means of a decomposition in six steps, which 
correspond to one increment of growth; this kind of 
representation justifies the homothetic growth of the 
cavity. Of course, it must be assumed that a certain 
amount of hardening on an active slip system induces 
its disactivation and the activation of another one. 
That hardening may be due to a dislocation pile-up, 
induced by the stress gradient (l/r2) around the
cavity, which produces a strong decrease in 
dislocation velocity. If the traces of the slip bands are 
kept around the cavity and their length is taken equal 
to the present size of the cavity, the previous 
simulation conducts to the apparition of triangular 
patterns that compares favorably to the experimental 
ones (Fig. 5). Moreover, this kinematical model 
applied to an initially circular cavity transforms its 
shape to a hexagon during one increment of growth. 

Growth kinetics 
In the kinematical model, cavity growth occurs by 

the creation of steps due to the plastic slip resulting 
from the nucleation and propagation of dislocations 
in the vicinity of the hexagon corners. The length (/) 
of the resulting slip bands can be taken proportion
ally to the cavity size (R): 

I = aR, with a � I.  (14) 

The longer the band the larger is the number of 
dislocations in the corresponding pile-up and the 

Fig. 9. Model proposed for crack opening under tension by alternate activation of two slip systems [8). 
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larger is the step. If e is the step size, in first
approximation: 

e = /31, (15) 

with f3 a proportionality factor. 
For geometrical reasons only, the homothetic 

growth of the cavity imposes that the shear 
magnitude in each slip band is y = I near the cavity.

Under the assumptions that the macroscopic 
Norton-Hoff (2) law applies at the shear band scale: 

(16) 

and that the shear stress Yoe far from the cavity is 
induced by a shear stress -rx, the shear strain at a
corner of the cavity under the local shear stress kroc 
obeys: 

(17) 

where k is a stress concentration factor. The time for 
the formation of one step, i.e. for reaching y = 1, near
the cavity is: 

y 1 
e = y = 

Yookum. (18) 

One increment of growth for the cavity needs six steps 
(Fig. 10) and a time !it = 68; during that time the
cavity grows by !'!.R = 2e. Then the cavity growth rate
IS: 

!'!.R 2e I . ki'm f;i = 
68 

= 3ey"' . '

and after combination with equations (14) and (15): 

l!'!.R - ! p· k11m R!'!.t - 3et: Yoo • 

In the considered geometry: 

. -�· fx - 4 Yx, 

equation (20) is transformed into 

!!:_ - 4a{J klfm. 
R - 3

J3 foo. 

(19) 

(20) 

(21) 

The micrograph (Fig. 5) reveals that I :::::: 5 µm and
e :::::: 0.5 µm. So, it is consistent to propose for a = I 
and f3 = 0.1, and consequently:

� = 8 X 10-2klimfoc. (22) 

Thus, for the present model: 

( = 8 X 10-'kl/m. (23)

Results from the literature [IO] allow one to 
estimate m to be in the interval: 

0.02 ,;:;; m ,;:;; 0.03. 

These values inserted in equation (23) give a very high 
growth rate if the concentration factor k is greater 

than 1. This case should correspond to the stress state 
close to the corners of the hexagon. This value is not 
explicitly determined by an analytical solution, but a 
finite element approach, with a crystalline finite 
element model, could afford the determination of the 
concentration factor. However, it seems to be 
reasonable to take one in the order of 1.2 or 1.3. It 
follows: 

� � 100£00, for k = 1.2 ;

�:::::: 3000£00, for k = 1.3. 

Then for the cases where the stress sensitivity factor 
m is weak but nonequal to 0 this kind of model can 
afford to explain the very fast cavity growth rate (( 
coefficient) and the stability of the hexagonal shape, 
observed experimentally. 

DISCUSSION 
The model presented is based on a description of 

cavity growth and accounts for crystallographic slip 
localized in narrow bands, which develop at the 
corners of the hexagonal cavity. It explicitly accounts 
for the effect of local stress state near these peculiar 
points and introduces the material constitutive 
relation in the growth rate equation. The (coefficient, 
which characterizes the cavity growth rate (23) is 
directly proportional to the local stress concentration 
factor and depends on the stress sensitivity factor m. 

In the classical models based on continuum 
mechanics (e.g. McClintock [6] or Rice and Tracey 
[5]) the driving force for cavity growth is the global 
state of stress triaxiality and not the local stress; 
moreover, in these models there is no real free surface 
formation since there is not any discontinuity during 
the cavity growth, two neighboring points remain 
neighbors. The model presented gives a more physical 
description of the growth of cavities. 

To investigate the difference between these two 
types of models, two extreme cases are considered: a 
Newtonian material (m = I) and a perfectly plastic
material (m = 0). 

A Newtonian material shows a weak stress 
sensitivity and a growth rate coefficient ( pro
portional to the stress concentration factor k, near 
unity. In that case the crystallographic model gives a 
growth rate one order of magnitude lower than the 
continuum mechanics models ( :::::: I as shown in
Fig. 6. 

A perfectly plastic material shows an infinite stress 
sensitivity or in other words no strain hardening. The 
crystallographic model predicts an infinite growth 
rate; this value represents the unstable behavior of a 
crystal without strain hardening: plastic glide 
concentrates in a slip line impeding the activation of 
other systems (except if geometrical hardening is 
active). Therefore, cavity nucleation is impossible and 
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rupture occurs by concentrated glide. Nevertheless 
continuum mechanics models predict a ( value still 
close to unity (( � 1.2).

Thus, the crystallographic approach of cavity 
growth shows a much stronger sensitivity to the 
material behavior than the continuum mechanics 
ones, due to the introduction of the local stress state 
and of the crystallographic glide. This type of 
crystallographic approach imposes the knowledge of 
the constitutive relation of the material and its 
application to the local scale on each slip system. This 
is a very important assumption, but for zirconium 
deformed at room temperature, a "Norton-Hoff"
type constitutive relation seems to give a good result. 
This good result is certainly due to the fact that at 
room temperature there is only one type of slip 
system activated, the three prismatic systems. 

CONCLUSION 
Damage mechanisms in P-treated zirconium are 

linked to the principal deformation mechanism, 
prismatic slip. The main damage mechanism is the 
early nucleation and fast growth of tubular cavities. 
The slip localization along lath boundaries forces 
these cavities to form alignments parallel to these 
boundaries; rupture occurs by crack propagation 
along the dotted lines formed by the cavities. The axis 
of the cavities is parallel to the < c > axis of the crystal 

and, for crystallographic orientations of the lath 
inducing double glide, these cavities have a hexagonal 
cross-section. A crystallographic model accounts for 
the creation of free surface by localization of 
deformation and explains the hexagonal shape and 
the very fast cavity growth rate. 
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