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LIMIT DESIGN OF AXISYMMETRIC SHELLS WITH APPLICATION TO CELLULAR COFFERDAMS

This pape � is devoted to the limit design of cellular cofferdams that are regarded as mixed struc tures where th� ba � kfill 1s model�d as � thre_e-dimensional continuum, while the surrounding sheet pile wall is treated as a . cylin _ drical s�ell. Deahng w1� this structure from a static point of view, it turns out that the problem under . consideration requ1res the calculation of the ultimate load value of a circular cylindrical shell subjected to a lm � arly varying pressure distrib � tion rep � esenting th � thrust of the backfill material. Extending the results of prev10u � works, a com � lete solution to this .

problem IS developed for different boundary conditions. The cor : espondm � results are discussed, notably the � � �uence of the shell relative thickness. They are applied to the des1gn of a smgle cell � lar c c;> fferdam _ whose stability under gravity forces is examined, with the strength of the granular backfill matenal bemg descnbed by a Mohr-Coulomb criterion.

INTRODUCTION

Cellular cofferdams are civil engineering structures that are most commonly encountered in hydraulic works, where they provide a convenient means for isolating dry work sites in water-covered areas. They may also be used as breakwaters or retaining walls. They are constructed by assembling vertical metallic sheet piles, either driven into the soil or simply resting on it, in order to form circular cylindrical cells filled with a granular material. Although the intensive use of these kinds of structures is not new (it may even be traced back to the beginning of the century), their mechanical behavior is still to be fully understood, particularly their limit design.

Simplified engineering design rules are already available (see, for instance, [START_REF] Bowles | Foundation analysis and design[END_REF] or [START_REF] Lacroix | Design, construction, and performance of cellular cofferdams[END_REF], based on the idea that the thrust of the backfill material inside the cell generates interlocking tensions between the sheet piles, to which the latter should be able to resist. One of the difficult points is to decide which value of the backfill thrust should � taken into account in such an analysis. A first comprehen Sive approach that provides a rigorous mechanical framework to this problem has recently been developed by Dormieux and Delaurens (1991), whose analysis is based on the yield design (or limit design) theory [START_REF] Salen�on | Calcul a la rupture et analyse limite[END_REF][START_REF] Salen�on | An introduction to the yield design theory and its application to soil mechanics[END_REF][START_REF] Salen�on | Yield design: a survey of the theory[END_REF]. Making use of both the lower bound and upper bound methods, they derived crude but rigorous estimates for the stability factor of a single cell subjected to its own weight. In regard to the lower ?ound estimates that they obtained through the static approach, 1t should be noted that their calculation implicitly amounts to disregarding any resistance of the sheet piles to bending mo ments. It thus appears that a possible way to improve these estimates consists of taking the bending resistance into ac count. It is, therefore, necessary to get a better insight into the mechanical behavior of the sheet pile cell, which from now on will be modeled as a homogeneous cylindrical shell.

Limit analysis methods applied to plates and shells, re garded as two-dimensional continuous media, have formed the subject of many prominent works, among which one should quote those of [START_REF] Drucker | Limit analysis of cylindrical shells under axially symmetric loading[END_REF], [START_REF] Hodge | The rigid-plastic analysis of symmetrically loaded shells[END_REF][START_REF] Hodge | Limit analysis of rotationnally symmetric plates and shells[END_REF], [START_REF] Onat | Limit analysis of shells of revolu tion[END_REF], [START_REF] Eason | The influence of free ends on the load carrying capacities of cylindrical shells[END_REF], and [START_REF] Drucker | Limit analysis of symmetri cally loaded thin shells of revolution[END_REF]. [START_REF] Drucker | Limit analysis of symmetri cally loaded thin shells of revolution[END_REF], for instance, pro posed a simplified yield strength criterion for shells, involving no interaction between normal forces and bending moments. This criterion may be regarded as an approximation to the true strength criterion for a shell made of a homogeneous Tresca material. Using such a criterion, [START_REF] Olszak | Die grenztragfahigkeit von zylin drischen schalen bei verscheidenen formen der plastizitatsbedingung[END_REF] have derived solutions to the classical problem of a tank sub mitted to a hydrostatic distribution of pressure. These results have been reported, with slight modifications, in Save and M _ assonnet (1972). Unfortunately, they cannot be directly ap phed to cellular cofferdams, since the analysis performed by [START_REF] Olszak | Die grenztragfahigkeit von zylin drischen schalen bei verscheidenen formen der plastizitatsbedingung[END_REF] in the relevant situation (tank with free upper edge) was restricted to "short" shells; that is, to shells whose length is small compared to their radius (given a value of the thickness).

The main purpose of the present paper is to derive exact solutions to the aforementioned problem, for short as well as long cylindrical shells. Three kinds of boundary conditions conc � ming the lower edge of the shell will be successively exammed. They are representative of different situations one may come across in practice, depending on the construction conditions of the cellular cofferdams. These solutions are first obtained by means of the yield kinematic approach, making use of failure mechanisms involving hinge circles, then by exhibiting generalized stress distributions along the shell, in order to prove that the lower and upper bound estimates co i � cide. Th � results so � btained make it possible to quite sig mficantly Improve prev10us lower bound estimates for the sta bility factor of cellular cofferdams.

STABILITY ANALYS IS OF CELLUL AR COFFERDAM: STATEMENT OF PROBLEM

Cellular cofferdams are civil engineering structures com prised of a cylindrical shell made of metallic sheet piles con nected to each other along the vertical direction filled with a � ohesionl � ss granular material (sand or gravel) [Fig. 1 (a)]. It 1s co � vement to analyze the stability of such a structure by resortmg to _ a so-called "mixed modeling" approach where the surroundmg sheet pile wall is schematized as a cylindrical shell, while the backfi ll material is considered as a three-di mensional continuous medium whose strength properties are defined through a Mohr-Coulomb condition that writes f(a) = (a, -<1 3 ) + (a, + a3)sin 'P s 0

(1)

where a = stress tensor at any point of backfill material; a1 �d <13 =major and minor principal stresses, respectively (ten sile stresses are counted as being positive); and 'P = friction angle. It is thus assumed that the backfill material exhibits no cohesion.

The whole structure is resting on a horizontal rigid bedrock.

It is referred to as a cylindrical coordinate system (r, 6, z) with the origin being taken as the intersection of the lower plane with the symmetry axis. No surcharge is applied to the struc ture apart from the gravity characterized by a uniform field of body forces equal to -"Ye., where "Y is the specific weight of the backfill material [Fig. l(b)]. Concerning the sheet pile wall, modeled as a cylindrical shell of height H and radius R, it will be assumed that no external load is applied on its upper edge (z = H), while the following three kinds of boundary conditions will be considered in the sequel for the lower edge (z = 0):

• Free edge-the lower end is free to move horizontally as well as to rotate

• Simply supported edge-the displacements are fixed equal to zero, while the rotation remains free

• Clamped edge-no translation and rotation are allowed These boundary conditions may be considered as modeling, in a realistic way, the physical interaction between the sheet piles and the substratum. By way of illustration, the third boundary condition (clamped edge) corresponds, for instance, to the case when the sheet piles are driven deep enough into the substratum, while the free edge condition would be asso ciated with negligible horizontal friction forces between the sheet pile extremities and the substratum. The second type of boundary condition represents an intermediate situation.

Ta king into account the axisymmetry of the problem, it is advisable to consider distributions of stresses in the shell that also satisfy this symmetry.

In terms of normal and shear resultants as well as bending moments (referring to an infinitesimal shell element such as that shown in Fig. 2), the following components vanish: ( 2 a-c)

Resorting to the same argument of axisymmetry, it appears that the stress vector T applied at any point of the shell by the backfill material is of the form

T = p(z)e, + T( z)e.
(3)

Enforcing both the resultant and moment equilibrium of the shell element shown in Fig. 2 leads to the following equations:

dV . N.. dM ZZ dz -R + p(z) = 0; dz + v. = 0 dN .. dM 00 dz + T(Z) = 0; de = 0 (4a, b) (4c, d)
Eliminating v. between (4a) and (4b), the following clas sical second-order differential equation is obtained:

d2 M zz Noo dz 2 + R -p(z) = 0 (5)
which may be found, for instance, in [START_REF] Chen | Plasticity for structural engineers[END_REF]. According to the yield design theory (or limit design) for mulation [START_REF] Salen�on | Calcul a la rupture et analyse limite[END_REF][START_REF] Salen�on | An introduction to the yield design theory and its application to soil mechanics[END_REF][START_REF] Salen�on | Yield design: a survey of the theory[END_REF], the stability of the whole structure is ensured if one can exhibit a stress distri bution of membrane forces (N ", N99) and moments (M66, M") in the shell, with both of them complying with equilibrium and strength requirements. Dealing with this problem by means of the static approach, a particular choice is now being made concerning the stress fields in the backfill material, de fined as follows in the cylindrical coordinates:

CJ'zz = -y ( z -H), CJ'rr = CJ'eo = li.CJ".. and

(7a)

CJ"11 = 0 for the other components where Ka = (1 -sin <p)/(1 + sin <p) and K P = K:; 1 denote classical active and passive earth pressure coefficients, respec tively.

The corresponding stress distribution exerted on the sur rounding shell is therefore It then remains to be seen whether the shell will be able to resist the linearly varying pressure distribution (10). This will now be considered in itself as an auxiliary yield design prob lem, where P stands for loading parameter.

T = a•(-e,) = -X:y(z-H)e,

YIELD DESIGN FORMULATION OF AUXILIARY PROBLEM

The auxiliary problem under consideration is that of a cy lindrical shell of height H and radius R subjected to an internal pressure distribution increasing linearly from zero at the top of the shell to a prescribed value denoted by P at the bottom (Fig. 3). As a result of (6) with z = 0, it appears that N,, = 0, so that the only stress components having nonzero values are Nee and M,, which fulfill equilibrium (5), while from (4d) Mee is an arbitrary function of z. Following Olszak and Saw czuk's (1959) approach, a simplified criterion limiting the val ues of Nee and M,,, respectively, will be adopted

(l1a,b)
Such a criterion may be considered as an approximation of the actual strength criterion, which can be derived in the case of a shell made of a homogeneous Tresca material [START_REF] Drucker | Limit analysis of symmetri cally loaded thin shells of revolution[END_REF]. More specifically, denoting by <Yo the resis tance of the constituent material under a uniaxial stress, it can be shown that (11) is an upper bound of the exact criterion if one takes N0 = cr0e and M0 = cr0e2/4 (e is the thickness of the shell), while it turns out to be a lower-bound estimate when N0 = (3/4)cr0e and M0 = (3/16)croe2• In the case of a cellular cofferdam, the shell being constituted by an assemblage of metallic sheet piles, it seems reasonable, in the absence of more specific data, to adopt a simple criterion as (11), taking for N0 the force per unit length along the connection between two sheet piles necessary for tearing them apart. This force can be measured through a very simple testing procedure.

Within the framework of the yield design theory, it appears that the ultimate load p+ is defined as the maximum value of P for which one can exhibit at least one distribution of Nee and M .. As it is quite apparent from the previous definition.!+ may be written as

(19)
that is, as a function of the sole parameter k.

Lower Bound Static Approach

This approach simply consists of applying the definition of f+; that is, in exhibiting particular classes of stress distribu tions that satisfy both equilibrium and strength requirements. As a first very simple approach, one may consider such dis tributions where the bending moment is taken to be equal to zero [m(u) = 0]. Eq. (13) then immediately gives

n(u) = f(l -u) (20)
and the strength condition (14), which reduces here to ln(u)l s 1 u E [0, 1 ], implies that f ::5 1.

It follows that

(21)
for any value of k � 0.

Upper Bound Kinematic Approach

This approach results from the dualization of the static ap proach by means of the virtual work principle, which makes use of kinematically admissible velocity fields for the problem. Any such field that respects the condition of axisymmetry of the problem is characterized in each point of the shell by a set of two kinematic variables. These variables are the component of the velocity along the radial direction, denoted by v, and the rate of rotation w of the normal to the shell at the same point, counted positive along the orthoradial direction. Owing to the symmetry of the problem, v and w are functions of the z-coordinate only (Fig. 4). Note that these two variables are a priori independent.

The principle of virtual work states that, given any statically admissible stress distribution of Nee. M, .. and V, in the shell, the following equality holds: 

W,(v, w) + W,(v, w) = 0 whatever (v, w) (22) 
W;(v, w) = 2'TT R LH [ Vz (�;-w ) + Nos � + Mzz �:] d z Introducing { ( d v ) v dw ll( v , w) = sup Vz d z -w + N •• R + Mzz d z ;
( d v ) l v l l"l v , w = d z = No R + Mo v for w = d v = v ' (Kirchhoff-Love condition) d z (27) (28)
ll(v, w) = +oo otherwise; i.e., when w -:1-v' since the adopted strength condition involves no limitation on the shear com ponent v •.

The calculation of wmro and hence the kinematic approach, can be extended to velocity fi elds exhibiting discontinuities of both v and w, denoted by [ v ] 1 and [w) 1 , respectively, along a finite number of points along the vertical direction (i = 1-n).

It can be shown that the following quantity is to be added to the integral (27):

. 

L ll([ v ] 1 , [w] 1 )
[ v ] 1 , [w] 1 ) = + oo if [ v ] 1 -:1-0 (30) (31a) ll([ v ] 1 , [w] 1 ) = ll([ v ') 1 ) = M0 l[ v 'Jd if [ v ]; = 0 (31b)
taking into account the fact that the Kirchhoff-Love condition holds on both sides of the discontinuity. This means that the only relevant discontinuities are such that v remains continu ous, whereas its fi rst derivative (which coincides with the rate of rotation) may undergo jumps ("hinges") across horizontal circles drawn on the shell surface. Thus

Wm,(v) = 2'TT R {LH ( � o I v i + Mo l v "l ) d z + t Mo l[ v ']; j } (32)
Since W,( v ) = 21TRP f� (1 -z/H)v dz, one finally gets from (26) with P = p+

(33)
provided that f� (1z/H)v dz be strictly positive. The in equality in ( 33) clearly shows that the kinematic approach pro vides upper-bound estimates for the ultimate load p+.

CASE OF CYLINDER WITH FREE LOWER EDGE

This case will fi rst be dealt with by means of the kinematic approach, then through the static approach, thus obtaining the exact solution for the problem.

Kinematic Approach

The class of velocity yields v which we will consider is shown in Fig. 5. [O 11

f s = f , (u�> k) w1th u1 = z1/H u1 E , 1 -u1/3 (36)
The minimal value of the right member, that is, the optimal upper-bound value off+ derived from this particular class of mechanisms, is obtained for u, = ur such that hence

* ' k = u , 6(2 -ur) (37) 2 r :S n[uf(k), k] = /�(k) with f�(k) = 2 -ur (38)
Consequently, the optimal upper bound is given in the fol lowing implicit form as the solution of:

2 (f� -1) 3 k = 3 (/�) 2 (39)
This approach is completed by considering another class of mechanisms where no circular hinge is involved, as shown in Fig. 6.

The motion is defined by

v(z) = a ( 1 -t ) for 0 s z s H (40)
Performing the same calculations as before, one obtains

Wm,(v) = 27raN0H [ u1 -( 1 -2 �J J if U1 :S 1 (41)
We get the following upper bound: ing with the strength criterion everywhere. This can be achieved by using the theorem of association [START_REF] Salen�on | Calcul a la rupture et analyse limite[END_REF] as a guideline. More specifically, in the present case, this the orem states that if any such stress distribution exists, it nec essarily satisfies Nee = + N0 (or n = + 1) in the lower part of the structure, since the associated strain rate component viR in the optimal mechanism is positive. Therefore, the equilib rium (13) combined with the boundary conditions (16) gives

!+ s 3 (2u f -2 u 1 + 1) = /"( k) (42) (3u1 -1) 2 u "
1 [ u2 u 3 ] m(u < ur) = m-(u) = k (f" -1) 2 -f" 6 (45) 
It can be easily seen that this distribution is compatible with the strength condition <lm-1 s 1). It may be completed in the upper part (u :2: un by two kinds of distributions.

Sinusoidal Distribution

We consider the distribution defined by ,. 2 2 cos (,. u-ur )

m+(u) =-cos 7r ---1 + 1 1 [ ( u-u * ) J
2 (1 -ur) 1 -ur (47) 
A sufficient condition for this distribution to obey the strength condition <In + 1 s 1, ur s u s 1) is

2 (/" -1)(2 -/") 2 k < --"'-----'--'--: :----''---'- -,. 2 (/") 2 (48)
that is, taking into account the relationship between f" and k k :S 0.01629 (4 9)

It follows that F(k) =f"(k) for ks 0.01629 (50)

Polynomial Distribution

This kind of distribution is obtained by choosing n + = a = ct, so that integrating the equilibrium (13) and using the boundary conditions for u = 1 The same kind of approach as that previously developed for a free bottom edge is followed. The failure mechanisms ex plored in the kinematic approach are represented in Fig. 9. They involve up to three hinge circles, with the lowest one, located at the bottom of the cylinder, implying no contribution to the maximum resisting work for a simply supported edge. They produce upper-bound estimates for f+( k), which can be proved to be the exact solution by exhibiting associated stress distributions given in Appendices I and II. As an example, such a distribution, along with the associated failure mecha nism, is shown in Fig. 10 for the case of a simply supported cylinder.

+ 1 [ n 3 a 2 ] m =--(1 -u) --(1 -u) k 6 2 (51) 
The results of the present study are gathered in Fig. 11, in the form of curves giving the exact value off+ as a function of k for the three different boundary conditions.

As could be anticipated, the greatest value of f+( k) is ob tained for the case of a clamped edge, the intermediate curve corresponding to the simply supported edge which remains free to rotate about the orthoradial axis.

BACK TO INITIAL PROBLEM

Resuming the analysis of the cellular cofferdam undertaken in an earlier section of the present paper, it appears that the stability of the composite structure (backfill material + sheet pile wall) under its own weight is ensured provided that 'YHR I N0 ::5 ("/HR ! No t 

CONCL UDING REMARKS

By adopting a simplified expression for the yield criterion of an axisymmetrically loaded shell expressed in terms of nor mal forces and bending moments, exact solutions to the prob lem of a cylindrical shell submitted to a linearly varying in ternal pressure have been developed. In particular, it has been shown that the ultimate load increases with a parameter k, which characterizes the relative thickness of the shell. More over, the importance of the boundary conditions prescribed at the lower edge of the shell has been clearly pointed out. As an example, the improvement of the lower-bound estimate for the stability factor of a single cellular cofferdam resulting from such an analysis may range between 5% and 12% when com pared to previous conservative estimates where the resistance to bending moments is neglected. It should be emphasized that such improved lower-bound estimates remain valid for any strength condition governing the interface between the sheet pile wall and the backfill material. In other terms, taking into account nonzero shear stresses T along this interface and, hence, more complex stress fields in the backfill zone than those considered in the prior analysis (namely with rr,8 -:;:. 0) would necessarily result in deriving still better lower bounds. Likewise, upper-bound estimates for the stability factor could be expected from the kinematic approach. This would neces sitate constructing relevant velocity fields both in the backfill material and in the surrounding shell. {< 6-36f + 27/2 + 3!'-6v'6Vi+3t2 + 6v'6Vi+3 n} . +�[4(/ + 3)312 -4v6(f + 3) -l2v;+3 + 13v'6]312 (67) 

  FIG. 1. Mixed Modeling of Cellular Cofferdam: (a) Basic Struc ture; (b) Coordinate System

  FIG. 2. Equilibrium of Infinitesimal Shell Element under Axi symmetric Conditions

  Integrating (4c) over the height of the shell and taking into account the boundary conditions on the upper edge [N "(z = H) = 0] yields Nzz = -[ T(z ' ) dz' (6) Eqs. (5) and (6) express the equilibrium of the shell subject to the stress distribution p(z) and T(z).

  where ll. represents an arbitrary constant.These stress fields automatically satisfy the equilibrium equation (diva -"Ye, = 0) as well as the boundary conditions prescribed at z = H (stress-free top level). Moreover, it com plies with the strength condition (1) if and only if (8)

  with P = 'A:yH representing maximum pressure applied to bot tom of shell (z = 0).

  FIG. 3. Auxiliary Problem-Cylindrical Shell Submitted to Linear Distribution of Internal Pressure

FIG. 4 .

 4 FIG. 4. VIrtual Velocity Fields Considered for Problem where (v, w) denotes any kinematically admissible velocity field; and w. = work done by external forces W. ( v , w) = 2'TT R LH p( z ) v ( z) d z

  with v .. N88, and Mzz satisfying (11that a necessary condition for the structure to re main stable (i.e., P :S P+) is W.(v, w) ::5 Wm,( v , w) whatever ( v , w) (26) where Wmr(v, w) represents maximum resisting work defi ned as with n

  where ll([ v ] 1 , [w] ;) = sup{Vz[V]; + Mzz[W]; ; with v .. Mw and N88 verifying ( 11)}

  FIG. 5. Failure Mechanism with Circular Hinge

Fig. 7 FIG. 7 .

 77 Fig. 7 represents the giving the variations of both upper bounds f� and /2 as functions of parameter k. It follows that the best upper-bound estimate that can be derived from the two previous kinds of mechanisms is r :S f"(k) = min{f�./2} withf"(k) = /�(k) solution of (39) if k s 0.0276 and/2 ""' 1.4415 otherwise Static Approach

  This distribution verifies I m + I < 1, as well as the continuity of m and m' at the connecting point ur with mand the bound ary conditions on the upper edge [m(l) = m'(1) = 0]. Then, the equilibrium (13) makes it possible to calculate the corre sponding distribution of n, denoted by n + n+(u) =f"( l -u) + !5.

FIG. 8 .

 8 FIG. 8. Three Examples of Distributions of m(u) and n(u) In Equilibrium with: (a) f+(k) = 1.2, {b) f+(k) = 1.3, and (c) r(k) = 1.4415 The value of parameter a may be determined by enforcing the continuity of m and m' at the connecting point between m + and m-( 3!" -4 ) a =r sr-12 This distribution respects the strength condition <I a I and I m+ I ::5 1) if and only if 1.2 ::5 f"( k) :S 1.4415

FIG. 9 .

 9 FIG. 9. Failure Mechanisms Considered in Case of Simply Supported or Clamped Bottom Edge: (a) One Hinge Circle; (b) 1\vo Hinge Circles; (c) Three Hinge Circles -1 0

  APPENDIX I. RESULTS FOR CYL INDER WITH SUPPORTED EDGEIf k :S 0.01276, we have the following results:where u 1 and u 2 denote loci of the two hinges. The distribution mb must be completed in the upper part by two kinds of dis tributionsm, = � [cos ( 1T � = :: ) + 1 J (66a) m = .!. [ u-a) u2 -f u 3 +.!. (2a-f) u-.!. (3a -n]It can be proved that the distribution m, gives a static solution for 1 :Sf ::s; 1.759 (0 ::s; k ::s; 0.009061) and that m P gives a static solution for 1.421 ::s; f ::s; 1.893 (0.002371 ::s; k ::s; 0.01276).If 0.01276 ::s; k ::s; 0.07407, we have the following results with m�o the moment distribution, in the lower part (u :S u, ) and m2 for the upper part 1 k--18/2

2 (68)

If k =::: 0.7407, we have the following results:

1 ( u3 u ) f = 3; m = k -2 + u2 -2

APPENDIX II. RESULTS FOR CYLINDER WITH CL AMPED EDGE

If k :5 0.01108, we have the following results:

The distribution mb must be completed in the upper part of the shell by two kinds of distributions m. = � [cos ( 1r � = ::

It can be proved that m. gives a static solution for 1 :5 f :5 1.8762 (0 :5 k :5 0.00796) and that m P gives a static solution for 1.486 :5 f :5 2.0315 (0.002167 :5 k :5 0.01108).

If 0.01108 :5 k :5 0.05927, it can be proved that k is the only positive root of the following equation: 

u, = ± �� ( f + 3) -16k (76c)

If k =::: 0.059217, the study has been completely carried out by [START_REF] Olszak | Die grenztragfahigkeit von zylin drischen schalen bei verscheidenen formen der plastizitatsbedingung[END_REF]. The results are