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Bearing capacity of a foundation resting on a soil reinforced by a 
group of columns 

M. BOUASSIDA*, P. DE BUHANt and L. DORMIEUXt 

A new design method for a foundation on a soil 
reinforced by columns is described. A lower bound 
of the bearing capacity is determined within the 
framework of the yield design theory. It takes into 
account the three-dimensional nature of the 
problem and is applicable to a wide range of 
geometries. A parametric study on the improve
ment of the bearing capacity as a function of the 
proportion of reinforcement, and on the strength 
characteristics, is presented. A complete analytical 
solution is given for the strength of a composite 
cell subjected to a triaxial loading, which provides 
an insight into the reinforcement mechanism. 

KEYWORDS: bearing capacity, design, failure, foot
ings/foundations, ground improvement, reinforced soils. 

INTRODUCTION 

As a soil improvement method, the columns 
reinforcement technique has three purposes: to 
reduce the settlement of highly compressible soils 
such as soft clays, to accelerate the stage of 
primary consolidation, and to enhance the 
bearing capacity. This Paper is concerned with 
the last of these. 

Common materials for columns are well graded 
clean sands, gravels or stones, hence the term 
stone columns (Aboshi, Ichimoto, Enoki & 
Harada, 1979; Soyez, 1985). However, the 
reduction of settlements rather than the bearing 
capacity of stone column reinforced foundations 
is generally the primary consideration when 
designing such structures (Balaam & Booker, 
1985; Schweiger & Pande, 1986). As far as 
bearing capacity is concerned, a remarkable per
formance can be obtained by mixing the native 
soil with a low percentage of lime (the lime 

* Formerly Laboratoire de Mecanique des Solides, 
Palaiseau, France, now Ecole Nationale des lngenieurs 
de Tunis. 
t Ecole Polytechnique, Palaiseau. 

Le present article propose uoe methode de dimeo
sionoement d'une foundation sur un sol renforce 
par colonoes, basee sur Ia theorie du calcul a Ia 
rupture. U ne borne ioferieure de Ia capacite por
tante est obteoue eo tenant compte de Ia nature 
tridimeosioooelle de l'ouvrage. Elle est applicable 
pour uoe grande variete de geometries. On preseote 
uoe etude parametrique sur l'amelioration de Ia 
capacite portaote en fooction de Ia proportion de 
renforcement et des caracteristiques du materiau 
renfor�ant et du materiau initial. On s'ioteresse en 
outre a Ia resistance eo compression d'une eprou
vette composite soumise a uo chargemeot triaxial 
classique, pour laquelle une solution complete est 
fournie sous forme aoalytique. Elle apporte un 
eclairage interessaot sur le mecanisme du renforce
ment par coloooes. 

columns technique, Broms & Boman, 1979). The 
strength of the column material can be described 
by a Mohr-Coulomb criterion (with appropriate 
friction angle and cohesion) while the native soil 
is modelled as a purely cohesive material. 

Design calculations concerning the bearing 
capacity of such reinforced soils have mainly been 
presented for a trench-like reinforcement under 
the plane strain assumption (Madhav & Vitkar, 
1978; Pruchnicki & Shahrour, 1991) and for an 
isolated column in an axisymmetric condition 
(Hughes & Withers, 1974; Brauns, 1978). Few 
attempts have been made to deal with the case of 
a soil reinforced by a group of columns. 

In the first part of the Paper, the strength of a 
composite cylindrical cell subjected to triaxial test 
conditions is investigated within the rigorous 
theoretical framework of the yield design theory 
(Chen, 1 975; Salen�on, 1983, 1 990). The solution 
of this auxiliary problem provides an interesting 
insight into the way in which the native soil is 
actually reinforced by the introduction of 
columns. The second part is devoted to the case 
of a group of columns. A lower-bound solution 
for the bearing capacity of a foundation resting 
on reinforced soil is derived on the basis of the 
previously determined solution, and a quantita
tive analysis of the gain of strength due to the 
reinforcement is developed. 
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COMPOSITE CELL SUBJECTED TO THE 
TRIAXIAL TEST 

Consider a cylindrical composite cell ((J of 
height h made up of a circular reinforcement 
column surrounded by the native soil. The shape 
of the cross-section of the cell by any plane z = Z0 
is not specified. To illustrate this, a square-shaped 
cell is shown in Fig. 1. The reinforcement column 
occupies the domain r < a and is composed of a 
frictional-cohesive material whose strength is 
described by a Mohr-Coulomb criterion 

f1(a) = a1(1- sin cp)- a3(1 +sin cp) 

- 2CC cos cp � 0 (1) 

where a 1 and a 3 are the major and minor prin
cipal components respectively of the stress tensor 
a. Compressive stresses are taken as positive. 

The domain outside the column (r > a) is 
occupied by the native soil, which is a purely 
cohesive material. Its strength is described by a 
Tresca criterion 

(2) 

Both criteria are expressed in terms of total 
stresses and are therefore relevant for a short
term analysis. The ratio of the cross-sectional 
area na2 of the reinforcing column to the total 
cross-sectional area S of the cell is denoted by l'f, 
the proportion of the reinforcement. 

This composite cell is subjected to classical tri
axial test conditions. The cell is in contact with 
two smooth and rigid plates located in the planes 
z = 0 and z = h. The lower plate is kept fixed 
while the upper one is given a vertical downward 
translation motion of velocity V. The force 
exerted by the upper plate on the cell is denoted 
by Q = - Qe. (Q > 0 when the vector Q is orient
ed downwards). A uniform confining pressure p is 
acting on the lateral surface, which is referred to 
as (}((j L .  Thus, the loading of the cell is character-

z 

y 

Fig. I. Composite cell under triaxial loading 

ized by the two parameters p and Q. A statically 
admissible (SA) stress field a and a kinematically 
admissible (KA) velocity field U are respectively 
subjected to the following conditions 

(a) a SA with p and Q 

o(aij)/oxj = 0 (3a) 

a;ini = pn; on o((JL (n = n;e;, inward 

oriented unit vector normal to iJ((JL) (3b) 

axz =a,.= 0 for z = 0 and h 

Q = i=h 
a •• dS 

(3c) 

(3d) 

The convention of summation over repeated sub
scripts is adopted in equations (3a) and (3b) with i 
orj = x, y, z. 

(b) U KA with V 

u. = 0 for z = 0; u. = - V for z = h (4) 

Generally, a given load (Q, p) is said to be safe (in 
the sense of limit analysis or yield design) if it can 
be equilibrated by a stress field that complies with 
the strength criterion everywhere in the cell. The 
aim of this section is to determine the domain K 
of safe loads (Q, p) restricted to the region defined 
by Q � 0 and p � 0. Practically, this involves 
determining, for a given pressure p, the maximum 
value of Q such that (Q, p) is a safe load. This 
value is referred to as Q+(p) 

Q+(p) = max[Q > 0, (Q, p) E K] 
The set of points (Q+(p), p) for p > 0 defines the 
boundary of K (Fig. 2). Q + (p) can be determined 
by a combination of the so-called static and kine
matic approaches, which are now described. 

Lower-bound estimate of K: static approach 
The static approach simply involves imple

menting this definition of K. Thus, in order to 

Q 

0 

I 
I 
I 
I 

+ 

P =Po 

K 

Fig. 2. Domain K of safe loads (p, Q) 

p 
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prove that a given load (Q, p) belongs to K, it is 
necessary to exhibit a stress field a that is SA
with (Q, p) (i.e. that satisfies equation (3)) and 
complies with the strength criteria (equation (1) in 
the domain r < a and equation (2) in the remain
ing part of the cell (a < r)). 

Static approach using a piece-wise constant 
stress field. A first static approach to K can be 
achieved very simply on the basis of a stress field 
a taking a constant value a• in the native soil and 
another constant value a< in the column, so that 
the equilibrium equation (3a) is automatically 
satisfied. The stress tensors a• and a< are chosen 
in order to satisfy equations (3b) and (3c), as well 
as 

(5) 

The continuity of the stress vector acting on the 
interface of the native soil and the column implies 
the continuity of the following components (in 
cylindrical co-ordinates) 

A solution to the requirements given is 

a<r 

a"• = Gss5 = P}
uzz' = p + 2C 

other G;i = 0 

r<a 

a,/= a8/ = p }
uzz" = KP p + 2Cc.JKP

other au= 0

(6) 

(7a) 

(7b) 

where KP = (1 +sin q>)/(1 - sin q>) denotes the 
usual coefficient of passive stress. 

The vertical force equilibrated by the stress 
field a defined in equation (7) is therefore, from 
equation (3d) i=h Gzz dS = S[p(l - '1 + KP '1)

+ 2C(l - '1) + 2cc11.J KP] (8)

which provides a first lower-bound estimate for 
Q+(p) 

Q+(p)/S � [p(l- '1 + K pl'/)

+ 2C(l - '1) + 2cc11.J KP] (9) 

Improvement of the static approach. Let b
denote the minimum distance from the axis of the 
reinforcement column in the cell to the lateral 
boundary surface fJ'CL. For any radius c E [a, b],
a class of axisymmetrical stress fields is defined 

X 

Fig. 3. Three-zone axisymmetrical stress field 

in the three intervals [0, a], [a, c] and r > c by 
(Fig. 3) 

c<r 

(lOa) 

a<r<c 

(lOb) 

r<a 

a.,= Gee; Gzz = KPu" + 2Cc.JKP (lOc) 
(all other u;i = 0). The continuity of the stress
vectors acting on the interfaces r = a and r = c
implies the continuity of a" across these surfaces.
Using the equilibrium equation (3a) which 
reduces here to 

d 1 
-
d 

a.,+- (a"- u99) = 0
r r 

(lOd) 

it is possible to specify the expressions of a., in
the intervals [a, c] and [0, a] 

r E [a, c] 

a.,= -2Cln(r/c) + p

r E [0, a] 

a.,= 2Cln(c/a) + p

(lla) 

(llb) 

Equations (10) and (11) completely determine a 
unique stress field a which complies with the 
strength criteria (equations (1) and (2)) in the 
domains r < a and r > a respectively. The vertical 
force equilibrated by such a stress field is i=h Gzz dS = S(p(l - '1 + I'JKp) + 2Cc'1.J KP

+ 2C{l + 1'/[(KP- l) ln(x)

(12) 
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where x denotes the ratio c/a. Thus, a lower
bound estimate of Q+(p) is obtained for any value 
of c E [a, b], i.e. for any x E [1, b/a] 

Q:(p) � p(1- '1 + IJKp) + 2Cc'1.JK P 

+ 2C{1 + q[(K P - 1) ln (x) 

- !(1 + x2)]} (13) 

The maximum value of the 
·
right-hand side of 

equation (13) is achieved for x = .j(K P - 1). 
Thus, if 2 � K P � 1 + (b/a)2, the best (i.e. the 
greatest) lower bound of Q+(p) that can be 
obtained from this improved static approach is 

2 � K p� 1 + GY 
Q+(p) 

>- p(1- + K )  + 2CC IK 
s ""' '1 '1 p '1-y p 

+ C[2(1 - '1) + IJg(<p)] (14) 

where g(<p) is the following function of the friction 
angle <p 

g(<p) = (K P - 1) In (K P- 1)- (K P- 2) (15) 

For K P � 2, the difference � = 11Cg (<p) between 
the lower-bound estimates of Q + (p) given in 
equations (9) and (14) is a positive number. In 
other words the second static approach improves 
the first one as soon as <p � 19·5°, which is always 
satisfied in the case of a column made up of a 
purely frictional material, where the friction angle 
is usually of the order of 35° (stone columns). The 
second condition, K P � 1 + (b/a)2, will also be 
achieved for the usual values of <p, a and b 
encountered in practice. It is assumed below that 
this condition is always satisfied. 

If K P � 2 (<p � 19·5°), which could correspond 
to the case of lime columns, the best lower-bound 
estimate of Q+(p) provided by equation (13) is 
obtained for x = 1. For this value of x, the 
present static approach reduces to equation (9). It 
is now established by means of a kinematic 
approach that equation (14) when 2 � K P � 1 
+ (b/a)2 and equation (9) when K P � 2 give the 

exact limit load that can be sustained by the com-
posite cell. 

Upper-bound estimate by means of the kinematic 
approach 

For any kinematically admissible velocity field 
U (see equation (4)), the kinematic theorem (Chen, 
1975; Salen�on, 1983, 1990) provides a necessary 
condition of stability in the form of the inequality 

0 � Q � Q+(p)=> "��' ••• (U) � "'f", •• (U) (16) 

where "��' •• iU) and "'f", •• (U) denote respectively 
the work of the external forces and the maximum 
resisting work developed within the composite 
cell in the velocity field U under consideration. 

The external forces acting on the cell are the 
force Q exerted by the upper plate and the lateral 
pressure p. Then 

"'I' •• ,( U) = Q V + l pn · U dS Ja'lL (17) 

where n is the inward unit normal to o'th. For a 
continuous velocity field U, the maximum 
resisting work is defined by the integral of a 
volume density denoted by n(d) which is a func
tion of the strain rate tensor d associated with U 

"'f", •• (U) = L n(d) dQ (18) 

For a given strength criterion f(a), n(d) is defined 
as 

n(d) =max ( -uiidii• f(a) � 0) 
a 

(19) 

and may be interpreted as the maximum dissi
pated energy per unit volume. Referring to the 
eigenvalues of the strain rate tensor d as d; (i = 1, 
2, 3), the expressions of n(d) are (Salen�on, 1983, 
1990) 

(a) Tresca material (equation (2)) 

n(d) = {c( � 1 d;l) if � d; = 0 
(20a) 

+ oo otherwise 

(b) Mohr-Coulomb material (equation (1)) 

(d) = 
{_E__ (I d;) if I d; � sin <p D dd n tan <p ; ; ; 

+ oo otherwise 

(20b) 

Introducing equations (17) and (18) into equation 
(16), gives the general expression of the upper 
bound provided by any velocity field U 

Q+(p) � � [I n(d) dQ 

+ l - pn · U ds] Ja'lL (21) 

Consider now a velocity field of the form U = 
U(r)e� - (V/h)ze,, where the radial velocity U(r) is 

(a) for r < a (in the column) 

U(r) = trK P(�) (22a) 
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(b) for r > a (native soil) 

U(r) = t[r + :2 (Kp- 1)](�) (22b) 

This velocity field is kinematically admissible 
with V and remains continuous across the inter
face r = a. The density n(d) can be computed
from equation (20) 

(a) ifr<a 

n(d) = (KP- 1)Cc/tan cp(V /h) (23a) 

(b) if r >a 

if KP � 2: n(d) = 2C(V/h) 

if KP;;;. 2: r < a.J(KP- 1): 

n(d) = c[1 + (;y(KP- 1)JV/h) 

a.J(KP- 1) < r: 

n(d) = 2C(Vjh) (23b) 

For the calculation of "11/", •• (U), two cases have 
once again to be considered, according to the 
value of KP 

(a) KP � 2 

"11/", •• (U) = S[217CC.JKP + 2C(1- 17)]V (24a) 

(b) 2 � Kp � 1 + (�Y
'if/" res( U) = S {217Cc .J KP +

C[2(1 - 11) + '1g(cp)]} v (24b) 

where g(cp) is the function introduced in equation 
(14). 

The (resisting) work of the confining pressure in 
the velocity field defined in equation (22) can be 
easily derived from 

f - Ue, · n dS = f div(Ue,) dOJV�L J� 

which leads to 

= f U'(r) + 
U(r) 

dil (25) J� r 

r pn • U dS = - p(1 - 11 + 17KP)V (26) Jo'liL 
Introducing these values of "11/", •• (U) and equation 
(26) into equation (21), gives two different expres
sions of an upper-bound estimate for Q + (p) 
according to the value of KP . It can easily be 
verified that each of them is equal to the corre
sponding lower-bound estimate given by equa
tion (14) or equation (9). Finally, a combination 

of a static and a kinematic approach have yielded 
the exact value of Q+ (p), i.e. 

KP � 2 

Q:(p) 
= p(1- '1 + Kp 17) 

+ 2C(1 - 17) + 2Cc11.JKP 

2 � Kp � 1 + (�Y
Q+(p) 

= p(1 - + K ) + 2Cc .JK 
s 11 11 p 11 p 

+ C[2(1 - 11) + 11g(c/J)] 

Interpretation of the result 

(27a) 

(27b) 

In the case of a homogeneous cell composed of 
a frictional and cohesive material (friction angle 
cp* and cohesion C*), the limit load Q

* 
+ (p) can 

readily be derived from the strength criterion
(equation (1)), where cp and cc must be replaced 
by cp* and C* 

(28) 

with KP * = (1 + sin cp*)/(1 - sin cp*), which 
appears to be a linear function of the confining 
pressure p. A simple identification of equations 
(27) and (28) suggests that the strength of the 
composite cell as a whole is equal to that which 
would be obtained by considering the same cell 
composed of an equivalent frictional and cohesive 
material defined by 

(a) if KP � 2 

KP•q = tan

1

2 4 + 2 = 1 - 11 + 17Kp 

(29) 

(1t cp•q) }
ceq= 

.JKP•q [
Cc11.JKP + C(1 -17)] 

(b) if 2 � Kp � 1 + (�Y
K eq = tan2(� + cp•q)p 

4 2 

= 1-17 + 17KP 

+ C[(1 - 11) + hg(cp)]} 

(30) 

In both cases, the equivalent cohesion c•q thus 
defined appears to be a function of the propor
tion of reinforcement 17, and of the strength char
acteristics C, cc and cp, whereas the equivalent 
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Fig. 4. Equivalent cohesion C.,. for ce = 0 plotted
against friction angle tp

friction angle q>eq depends so lely on '1 and q>
ceq;c = �(q>, '1· cc;q

q>eq = .F{'7, q>) (31)
Equat ions (29) and (30) show that the equivalent 
cohesion is a linearly increasing function of cc;c 

C«JfC = a('7, cpXCc/C) + P('7, cp) (32) 
Fig. 4 p resents the variation of the ordinate P('7,
cp) at the origin (cc;c = 0) for '1 varying between 
0·05 and 0·3. P('7, cp) can be i nterpreted as the
equivalent cohesion in the case of a purely fric
tional column materia). This equivaJent cohesion 

25,....-----------------------, 

20 

10 

5 

10 20 
<p 

30 40 
Fig. 5. Equivalent friction angle cp•q plotted against fric
tion angle tp 

turns out to be smaller than that of the original 
soil and decreases significantly for increasing 
values of the surface ratio '7· Indeed, in this case,
the reinforcement effect is ent irely due to the fric
tional prop erties of the column material and can 
be quantitatively measured by the equivalent fric
tion angle q>eq_ 

Likewise, Fig. 5 presents the variation of the
equivalent friction angle q>eq as a function of lfJ for
several values of the surface ratio ranging from
0·05 to 0· 3. q>eq is, as expected, an incre asing func
tion of both '1 and q> which reaches 19° for 

'7 = 0·3 and q> = 38°. 

BEARING CAPACITY OF A FOUNDATION
The problem of the: bearing capacity of a

smooth and rigid footing on a soil layer n of 
limited depth d which occupies the region 
-d � z � 0 (Fig. 6) is now considered. This soil 
has been reinforced by a group of vertical
columns in the region located beneath the foun
dation. The area .91 of contact between the
footing and the soil layer is located in the plane
z = 0. The strength of the column material and 
that of the native soil are again described by 
equations (l) and (2) respectively. In this section,
a truly three-dimensional stat ic approach is 
app lied to determine a lower-bound estimate for 
the bearing capacity Q -r. It is then shown how the 
same result can be obtained from very simple
reasoning making use of the notion of equivalent
material already introduced. 

Three-dimensional static approach to Q + 
In order to achieve a result that could be 

applied to a wide range of practical situations, the 
app roach is not restricted to a particular shape of 
the footing or to a particular distribution of the 
columns below the foundation . However, for the 
sake of simplicity, all columns are supposed to 

z 

0 

I 0 I X .. . .. .. .. .. 
.. .. . • .. -

/ / 

Fig. 6. Rigid footing on a soil reinforced by a group of 
columns 
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have the same radius a. The ratio between the 
total cross-sectional area of the reinforcement and 
the footing area is therefore rJ = Nna2/d, where 
N is the number of columns. Gravitational forces 
are not considered in this analysis. 

A given vertical load Q applied to the soil by 
means of the footing is safe (i.e. Q:::;; Q+ )  in the 
sense of yield design if it can be equilibrated by a 
stress field a that satisfies the conditions 

Uxz = Uyz = 0 }
(d) J(.ol) Uzz dS = Q 

Uxz = Uyz = Uzz = 0 (z = 0)- (d) 

in the columns: f1(a):::;; 0 
in the native soil: f2(a):::;; 0 

(33) 

In the construction of such a stress field, the 
result already obtained is used. 

Static approach using a piece-wise constant 
stress field. Consider first the stress field defined 
as follows 

(a) outside the domain located below the area 

Uxx = Uyy = 2C; Uzz = 0; other U;j = 0 (34) 

(b) below the area (d) 
in the native soil 

Uxx = Uyy = 2C; Uzz = 4C; other U;j = 0 

(35a) 

in the columns 

Uxx = Uyy = 2C; Uzz = Kp2C + 2C\jKP; 

other uii = 0 (35b) 

The continuity of the stress vector and the com
patibility of a with the strength criteria are obvi
ously satisfied. It can be easily verified that the 
stress field a defined above is statically admissible 
with the force Qu given by 

This equation provides a first lower-bound esti
mate of Q +  /d which offers the advantage of 
being valid without restricting the geometrical 
characteristics or the strength parameters. 

Improvement of the static approach in the case 
KP ;::,: 2. Consider the following cases. 

(a) Outside the domain located below the area 
(d), the stress field is the same as in equation 
(34). 

(b) Below the area (d), let D be the minimal dis
tance between the axes of two columns. 
Around each column i a circular cylinder 
denoted re; of radius c = xa is defined, where 
x is a fixed parameter chosen in the interval 
[1 , D/2a] so that two different cylinders rei 
and rei cannot intersect each other (Fig. 7). 

In the region outside such cylinders rei, the stress 
field is as given in equation (35a). Inside each of 
them the construction of the stress field is the 
same as already given where 2C is substituted for 
p in equations (lOa) and (11 )  to ensure the contin
uity of the stress vector across the boundary of 
rei. Thus 

(a) a :::;; r :::;; c (in the native soil) 

Urr = Uzz = 2C[log(;) + ll 
(37) 

(b) r :::;; a (in the column) 

urr = u99 = 2C[log(x) + 1]; 

Uzz = Kpurr + 2C\/KP 

This stress field a 1s in equilibrium with the 
force Q(x) given by 

Q(x) = d(4C + 2C\/ KP rJ + 2CrJ 

x {(KP- l)[log(x) + 1] 

- (1 + x2)/2}) (38) 

The optimal choice of x in the interval [1, D/2a] 
is J(KP- 1) and yields 

Qu/d = 4C + 2rJ[C(KP- 2) + ccJKP] 

+ CrJg( cp) (39) 

which constitutes a better lower-bound estimate 
of Q +  than equation (36) as it is obtained by 
adding the quantity CrJg(cp) (positive for KP ;::,: 2) 
to equation (36). The validity of equation (39) is 
subject to the condition KP:::;; 1 + (D/2a)2• 

0 

0 

Fig. 7. Zoning of the mass of soil below the foundation 
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Interpretation based on the concept of equivalent 
material 

The previous result may be interpreted based 
on the concept of equivalent material and related 
notions of equivalent cohesion c•q and friction 
angle tp•q, as introduced with reference to the 
composite cell. Indeed, adopting a heuristic point 
of view, one could be tempted to substitute the 
equivalent material thus defined for the heter
ogeneous reinforced soil, so that the solution of 
the initial bearing capacity problem (Fig. 8(a)) 
would reduce to that of the equivalent problem 
shown in Fig. 8(b). 

Proceeding further with this kind of reasoning, 
a simple static approach can be implemented on 
the latter problem by considering the following 
stress field 

(a) within the zone composed of the equivalent 
material 

(Jxx = (Jyy = 2C; } (40) 
u = 2CK eq + 2Ceq IK eqzz p '\I p 

(b) outside this zone 

(41)  

Such a stress field obviously complies with the 
strength criteria of the original soil and of the 
equivalent material in each of the two zones. It 
equilibrates the force 

Qu'? = 2d(CKP•q + c•q.jKP•q) (42) 

which could be interpreted as a lower-bound esti
mate for the equivalent bearing capacity problem. 
Now, referring to equations (29) and (30), it 
appears immediately that Qu'? is identical with 
the lower-bound estimate Q16 given for the initial 
problem by equations (36) and (39) for KP ::::; 2 
and KP ;;:, 2 respectively. 

However, the concept of equivalent material 
should be handled very cautiously as it bears no 
significance apart from the particular situation 
where the reinforced soil is submitted to a triaxial 
loading (axisymmetrical about the direction of 
reinforcement). It does not apply, for example, to 
the description of the overall strength properties 
of the reinforced soil when subjected to off-axis 

I 
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forces. To attempt to implement a static 
approach on the equivalent problem, using stress 
fields with inclined principal directions, would 
lead to completely misleading conclusions. 

The idea of homogenization, which is only 
partially conveyed in the notion of equivalent 
material, can be rigorously formulated (de Buhan 
& Salen9on, 1990). It relies on the assumption 
that the reinforcing inclusions are regularly dis
tributed throughout the soil mass, and that the 
spacing between two such successive inclusions 
can be considered small enough when compared 
with a characteristic length of the problem, such 
as the width of the footing. Such a theoretical 
approach has already been successfully applied in 
the geotechnical field to the design of reinforced 
earth structures (de Buhan, Mangiavacchi, Nova, 
Pellegrini & Salen9on, 1989). Contrary to what 
might be suggested by the preceding notions of 
equivalent cohesion and friction angle, it provides 
clear evidence of the anisotropic strength proper
ties of the reinforced soil as a homogeneous 
material. 

Quantitative assessment of the bearing capacity 
improvement 

Although the exact value of the bearing capac
ity remains unknown, and only lower-bound esti
mates Qu(17) given by equations (36) and (39) are 
available, it seems reasonable to assess the 
bearing capacity improvement due to the 
reinforcement by means of the ratio R = 
Qu('I)/Qu(O), where Qu(O) represents the value of 
the lower bound obtained for the unreinforced 
structure (Qu(O) = 4dC) 
(a) for KP::::; 2 

R = 1 + � [(Kp - 2) + �c .j KP J
(b) for KP ;;:, 2 (43) 

'1 [ C' J '1 
R = 1 + l (KP- 2) + C .jKP + 4 g(tp)

where g(<p) is as given in equation (15). As is 
apparent from this equation, the reinforcement 

�;�;�;�;�;�;�;�;�; � 

iit�l�i[��""" ����'0:'\t:..���\ 
(b) 

Fig. 8. Bearing capacity problem: (a) initial; (b) equivalent 
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effect can be attributed to both the cohesive 
(through cc;c) and the frictional properties 
(through <p or KP) of the column material. The 
increase of (the lower-bound estimate ot) the 
bearing capacity is directly proportional to the 
volume fraction of the columns. 

All these results are summarized in Fig. 9 
where the contour lines of R (called the bearing 
capacity enhancement factor) as a function of the 
non-dimensional strength parameters of the rein
forcing material (Cc;c, <p) are represented for 
three typical values of its proportion ('7 = 0·1, 0·2 
and 0· 3). Assuming, for example, that the columns 
are placed into the foundation soil following a 
periodic square-shaped mesh, these values corres
pond approximately to 2a/D = 0·36, 0·50 and 
0·62, where 2a is the diameter of the columns and 
D their horizontal spacing. 

Two situations commonly encountered in prac
tice are now examined. 

Reinforcement by stone columns. The reinfor
cing material is a compacted sand or gravel with 
a high friction angle (<p = 35°-40°) and practically 
no cohesion (CC/C = 0). The enhancement of the 
bearing capacity of a foundation lying on such a 
reinforced soil remains limited. Thus, for '1 = 0·2, 
the reinforcing factor can barely reach the value 
1· 5. This theoretical result confirms the idea that 
increasing the bearing capacity is not the prime 
objective of this kind of reinforcement. 

Reinforcement by lime columns. The constituent 
material is obtained by mixing a small proportion 
of lime with the in situ clay, thus increasing the 
strength of the latter by a factor of up to 20. 
Although significantly lower than in the case of 
the stone column material, a friction angle can 
also be measured. As can be seen from Fig. 9(b) 
(for '1 = 0·2), the bearing capacity can easily be 
increased threefold even if a zero friction angle is 
assumed. 

CONCLUSIONS 
The improvement of the bearing capacity of a 

foundation soil expected from its reinforcement 
by columns has been investigated in two stages. 
First, a triaxial loading test on a representative 
volume comprising a single column of reinforce
ment was simulated. The strength properties of 
such a composite cell expressed in terms of com
pressive force and confining pressure have been 
determined exactly through the combined imple
mentation of the yield design static and kinematic 
approaches. Such a study paves the way for a 
possible experimental validation of the theoretical 
predictions. 

Making use of the optimal stress field exhibited 
in the static solution of the composite cell model, 
a general lower-bound estimate for the bearing 

R�1 o+======r===---�----�----� 
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�,-------------------------------, 

(b) 
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Fig. 9. Contour lines of the bearing capacity enhance
ment factor R: (a) 1J = 0·1, (b) 1J = 0·2; (c) 1J = 0·3 
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capacity of a foundation-raft lying on a soil rein
forced by a group of columns was then deter
mined in the form of readily usable analytical 
expressions. The main interest of this estimate lies 
in the fact that it provides a reliable assessment 
for the three-dimensional bearing capacity 
problem, regardless of the shape of the founda
tion and the geometrical arrangement of the 
columns. It is a convenient engineering design 
tool, allowing the efficiency of different technical 
solutions to be compared in terms of bearing 
capacity improvement. Moreover, it can be 
shown that the range of applicability of the 
lower-bound solution developed in this Paper 
(equations (36) and (39)) can be extended to take 
gravitational forces into account, and to the case 
where the strength properties of the column 
material are expressed in terms of effective 
stresses. However, it remains to be seen whether 
this lower-bound solution is sufficiently close to 
the exact value of the bearing capacity. This 
could be determined by implementing upper
bound kinematic solutions for the problem, pro
vided that the shape of the foundation and the 
exact distribution of the columns were specified, 
in which case a homogenization method should 
probably be used. 

NOTATION 
a radius of the column 

d surface of the foundation 
C cohesion of the native soil 

c• cohesion of the reinforcing material 
cohesion of the equivalent material c•• 

D minimal distance between the axes of two 
columns 

K domain of safe loads (Q, p) applied to the com
posite cell 

KP coefficient of passive stress of the reinforcing 
material 

K •• 
p coefficient of passive stress of the equivalent 

material 
lower-bound estimate of the foundation bearing 
capacity 
maximum force sustained by the cell for a con
fining pressure p 

R bearing capacity enhancement factor 

Qti'1)/Qu(O) 
'1 proportion of the reinforcement 

({I friction angle of the reinforcing material 
({I•• friction angle of the equivalent material 
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