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Bearing capacity of a foundation resting on a soil reinforced by a group of columns
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A new design method for a foundation on a soil reinforced by columns is described. A lower bound of the bearing capacity is determined within the framework of the yield design theory. It takes into account the three-dimensional nature of the problem and is applicable to a wide range of geometries. A parametric study on the improve ment of the bearing capacity as a function of the proportion of reinforcement, and on the strength characteristics, is presented. A complete analytical solution is given for the strength of a composite cell subjected to a triaxial loading, which provides an insight into the reinforcement mechanism.

INTRODUCTION

As a soil improvement method, the columns reinforcement technique has three purposes: to reduce the settlement of highly compressible soils such as soft clays, to accelerate the stage of primary consolidation, and to enhance the bearing capacity. This Paper is concerned with the last of these.

Common materials for columns are well graded clean sands, gravels or stones, hence the term stone columns [START_REF] Aboshi | The composer: a method to improve charac teristics of soft clays by inclusion of large diameter sand columns[END_REF][START_REF] Soyez | Methodes de dimensionnement des colonnes ballastees[END_REF]. However, the reduction of settlements rather than the bearing capacity of stone column reinforced foundations is generally the primary consideration when designing such structures [START_REF] Balaam | Effect of stone column yield on settlement of ngfd foundations in stabilized clay[END_REF][START_REF] Schweiger | Numerical analysis of stone column supported foundations[END_REF]. As far as bearing capacity is concerned, a remarkable per formance can be obtained by mixing the native soil with a low percentage of lime (the lime Le present article propose uoe methode de dimeo sionoement d'une foundation sur un sol renforce par colonoes, basee sur Ia theorie du calcul a Ia rupture. U ne borne ioferieure de Ia capacite por tante est obteoue eo tenant compte de Ia nature tridimeosioooelle de l'ouvrage. Elle est applicable pour uoe grande variete de geometries. On preseote uoe etude parametrique sur l'amelioration de Ia capacite portaote en fooction de Ia proportion de renforcement et des caracteristiques du materiau renfor�ant et du materiau initial. On s'ioteresse en outre a Ia resistance eo compression d'une eprou vette composite soumise a uo chargemeot triaxial classique, pour laquelle une solution complete est fournie sous forme aoalytique. Elle apporte un eclairage interessaot sur le mecanisme du renforce ment par coloooes. columns technique, Broms & Boman, 19 7 9). The strength of the column material can be described by a Mohr-Coulomb criterion (with appropriate friction angle and cohesion) while the native soil is modelled as a purely cohesive material.

Design calculations concerning the bearing capacity of such reinforced soils have mainly been presented for a trench-like reinforcement under the plane strain assumption [START_REF] Madhav | Strip footing on weak clay stabilized with granular trench or pile[END_REF][START_REF] Pruchnicki | Application de Ia theorie de l'homogeneisation aux colonnes bal lastees[END_REF] and for an isolated column in an axisymmetric condition [START_REF] Hughes | Reinforcing of soft cohesive soils with stone columns[END_REF][START_REF] Brauns | Die Anfangstraglast von Schottersiiu len im bindingen Untergrund[END_REF]. Few attempts have been made to deal with the case of a soil reinforced by a group of columns.

In the first part of the Paper, the strength of a composite cylindrical cell subjected to triaxial test conditions is investigated within the rigorous theoretical framework of the yield design theory [START_REF] Chen | Limit analysis and soil plasticity[END_REF]Salen�on, 1983Salen�on, , 1990)). The solution of this auxiliary problem provides an interesting insight into the way in which the native soil is actually reinforced by the introduction of columns. The second part is devoted to the case of a group of columns. A lower-bound solution for the bearing capacity of a foundation resting on reinforced soil is derived on the basis of the previously determined solution, and a quantita tive analysis of the gain of strength due to the reinforcement is developed.

COMPOSITE CELL SUBJECTED TO THE TRIAXIAL TEST

Consider a cylindrical composite cell ((J of height h made up of a circular reinforcement column surrounded by the native soil. The shape of the cross-section of the cell by any plane z = Z0 is not specified. To illustrate this, a square-shaped cell is shown in Fig. 1. The reinforcement column occupies the domain r < a and is composed of a frictional-cohesive material whose strength is described by a Mohr-Coulomb criterion f1(a) = a1(1sin cp)-a3(1 +sin cp)

-2CC cos cp � 0 (1)
where a 1 and a 3 are the major and minor prin cipal components respectively of the stress tensor a. Compressive stresses are taken as positive.

The domain outside the column (r > a) is occupied by the native soil, which is a purely cohesive material. Its strength is described by a Tresca criterion

(2)

Both criteria are expressed in terms of total stresses and are therefore relevant for a short term analysis. The ratio of the cross-sectional area na2 of the reinforcing column to the total cross-sectional area S of the cell is denoted by l'f, the proportion of the reinforcement. This composite cell is subjected to classical tri axial test conditions. The cell is in contact with two smooth and rigid plates located in the planes z = 0 and z = h. The lower plate is kept fixed while the upper one is given a vertical downward translation motion of velocity V. The force exerted by the upper plate on the cell is denoted by Q = -Qe. (Q > 0 when the vector Q is orient ed downwards). A uniform confining pressure pi s acting on the lateral surface, which is referred to as (}((j L. Thus, the loading of the cell is character- 

Q = i=h a •• dS (3c) (3d)
The convention of summation over repeated sub scripts is adopted in equations ( 3a) and (3b) with i orj = x, y, z.

(b) U KA with V u. = 0 for z = 0; u. = -V for z = h (4)

Generally, a given load (Q, p) is said to be safe (in the sense of limit analysis or yield design) if it can be equilibrated by a stress field that complies with the strength criterion everywhere in the cell. The aim of this section is to determine the domain K of safe loads (Q, p) restricted to the region defined by Q � 0 and p � 0. Practically, this involves determining, for a given pressure p, the maximum value of Q such that (Q, p) is a safe load. This value is referred to as Q + (p)

Q + (p) = max[Q > 0, (Q, p) E K ]
The set of points (Q + (p), p) for p > 0 defines the boundary of K (Fig. 2). Q+(p) can be determined by a combination of the so-called static and kine matic approaches, which are now described.

Lower-bound estimate of K: static approach

The static approach simply involves imple menting this definition of K. Thus, in order to p prove that a given load (Q, p) belongs to K, it is necessary to exhibit a stress field a that is SA with (Q, p) (i.e. that satisfies equation ( 3)) and complies with the strength criteria (equation (1) in the domain r < a and equation (2) in the remain ing part of the cell (a < r)).

Static approach using a piece-wise constant stress field. A first static approach to K can be achieved very simply on the basis of a stress field a taking a constant value a • in the native soil and another constant value a < in the column, so that the equilibrium equation ( 3a) is automatically satisfied. The stress tensors a • and a < are chosen in order to satisfy equations (3b) and (3c), as well as (5)

The continuity of the stress vector acting on the interface of the native soil and the column implies the continuity of the following components (in cylindrical co-ordinates)

A solution to the requirements given is where KP = (1 +sin q>)/(1 -s in q>) denotes the usual coefficient of passive stress.

The vertical force equilibrated by the stress field a defined in equation ( 7) is therefore, from equation (3d

) i = h G zz dS = S[p(l -'1 + KP '1 ) + 2C(l -'1 ) + 2cc11.J KP] (8)
which provides a first lower-bound estimate for

Q + (p) Q + (p)/S � [p(l-'1 + K p l'/) + 2C(l -'1 ) + 2cc11.J KP] (9)
Improvement of the static approach. i= h G zz dS = S(p(l -'1 + I'JKp) + 2Cc '1 .J KP

+ 2C{l + 1'/[(KP-l) ln(x) ( 12 
)
where x denotes the ratio c/a. Thus, a lower bound estimate of Q+(p) is obtained for any value

of c E [a, b], i.e. for any x E [1, b/a] Q : (p) � p(1-'1 + IJKp) + 2Cc '1 .JK P + 2C{1 + q[(K P -1) ln (x) -!(1 + x2)]} (13) 
The maximum value of the • right-hand side of equation ( 13) is achieved for x = .j(K P -1). Thus, if 2 � K P � 1 + (b/a)2, the best (i.e. the greatest) lower bound of Q+(p) that can be obtained from this improved static approach is

2 � K p � 1 + GY Q+(p) >-p(1-+ K) + 2CC IK s ""' '1 '1 p '1-y p + C[2(1 -'1 ) + IJg(<p)] ( 14 
)
where g(<p) is the following function of the friction angle <p g(<p) = (K P-1)

In (K P -1)-(K P -2) (15)
For K P � 2, the difference � = 11 Cg (<p) between the lower-bound estimates of Q + (p) given in equations ( 9) and ( 14) is a positive number. In other words the second static approach improves the first one as soon as <p � 19•5°, which is always satisfied in the case of a column made up of a purely frictional material, where the friction angle is usually of the order of 35° (stone columns). The second condition, K P � 1 + (b/a)2, will also be achieved for the usual values of <p, a and b encountered in practice. It is assumed below that this condition is always satisfied.

If K P � 2 (<p � 19•5°), which could correspond
to the case of lime columns, the best lower-bound estimate of Q+(p) provided by equation ( 13) is obtained for x = 1. For this value of x, the present static approach reduces to equation ( 9). It is now established by means of a kinematic approach that equation ( 14) when 2 � K P � 1 + (b/a)2 and equation ( 9) when K P � 2 give the exact limit load that can be sustained by the composite cell.

Upper-bound estimate by means of the kinematic approach

For any kinematically admissible velocity field U (see equation ( 4)), the kinematic theorem [START_REF] Chen | Limit analysis and soil plasticity[END_REF]Salen�on, 1983Salen�on, , 1990) provides a necessary condition of stability in the form of the inequality

0 � Q � Q+(p)=> "��' ••• (U) � "'f", •• (U) (16)
where "��' •• iU) and "'f", •• (U) denote respectively the work of the external forces and the maximum resisting work developed within the composite cell in the velocity field U under consideration.

The external forces acting on the cell are the force Q exerted by the upper plate and the lateral pressure p. Then

"'I' •• ,( U) = Q V + l pn • U dS Ja'lL ( 17 
)
where n is the inward unit normal to o'th. For a continuous velocity field U, the maximum resisting work is defined by the integral of a volume density denoted by n(d) which is a func tion of the strain rate tensor d associated with U

"'f", •• (U) = L n(d) dQ (18)
For a given strength criterion f(a), n(d) is defined as

n(d) =max ( -uiidii• f(a) � 0) a ( 19 
)
and may be interpreted as the maximum dissi pated energy per unit volume. Referring to the eigenvalues of the strain rate tensor d as d; (i = 1, 2, 3), the expressions of n(d) are (Salen�on, 1983(Salen�on, , 1990) ) (a) Tresca material (equation ( 2))

n (d) = {c( � 1 d ;l ) if � d; = 0 (20a) + oo otherwise (b) Mohr-Coulomb material (equation (1)) (d) = {_E__ (I d;) if I d; � sin <p D dd n tan <p ; ; ; + oo otherwise (20b)
Introducing equations ( 17) and ( 18) into equation ( 16), gives the general expression of the upper bound provided by any velocity field U

Q+(p) � � [I n(d) dQ + l -p n • Ud s ]
Ja'lL (a) ifr<a

n(d) = (KP-1)Cc/tan cp(V /h) (23a) (b) if r >a if KP � 2: n(d) = 2C(V/h)
if KP;;;. 2: r < a.J(KP-1):

n(d) = c[1 + (;y(KP-1)JV/h)
a.J(KP-1) < r:

n(d) = 2C(Vjh) (23b)
For the calculation of "11/" , •• (U), two cases have once again to be considered, according to the value of KP (a) KP � 2

"11/" , •• (U) = S[217CC.JKP + 2C(1-17)]V (24a) (b) 2 � Kp � 1 + (�Y 'if/" res( U) = S {217Cc .J KP + C[2(1 -11 ) + '1g(cp)]} v (24b)
where g(cp) is the function introduced in equation ( 14). The (resisting) work of the confining pressure in the velocity field defined in equation ( 22) can be easily derived from 27) and ( 28) suggests that the strength of the composite cell as a whole is equal to that which would be obtained by considering the same cell composed of an equivalent frictional and cohesive material defined by

f -Ue, • n dS = f div(Ue,) dO JV�L J� which leads to = f U'(r) + U( r ) dil ( 
(a) if KP � 2 KP • q = tan 1 2 4 + 2 = 1 -11 + 17Kp (29) (1t cp • q ) } ceq= .JKP • q [Cc11 .JKP + C(1 -17)] (b) if 2 � Kp � 1 + (�Y K eq = tan2( � + cp • q ) p 4 2 = 1-17 + 17KP + C[(1 -11 ) + hg(cp)]} (30) 
In both cases, the equivalent cohesion c•q thus defined appears to be a function of the propor tion of reinforcement 17, and of the strength char acteristics C, cc and cp, whereas the equivalent 
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Equations ( 29) and (30) show that the equivalen t cohesion is a linear ly increasing function of cc;c C«JfC = a( '7 , cpXCc/C) + P('7, cp) (32) turns out to be smaller than that of the original soil and decreases significantly for increasing values of the surface ratio '7 • Indeed, in this case, the reinforcement effect is ent irel y due to the fric tional prop erti es of the column material and can be quantitatively measured by the equivalent fric tion angle q>eq_ Likewise, Fig. 5 presents the variation of the equivalent friction angle q>eq as a function of lfJ for several values of the surface ratio ranging from 0•05 to 0• 3. q>eq is, as expected, an incre asing func tion of both '1 and q> which reaches 19° for '7 = 0•3 and q> = 38°.

BEARING CAPACITY OF A FOUNDATION

The problem of the: bearing capacity of a smooth and rigid footing on a soil layer n of limited depth d which occupies the region -d � z � 0 (Fig. 6) is now considered. This soil has been reinforced by a group of vertical columns in the region located beneath the foun dation. The area .91 of contact between the footing and the soil layer is located in the plane z = 0. The strength of the column material and that of the native soil are again described by equations (l) and (2) respectively. In this section, a truly three-dimensional stat ic approach is app lied to determine a lower-bound estimate for the bearing capacity Q -r. It is then shown how the same result can be obtained from very simple reasoning making use of the notion of equivalent material already intr oduced.

Three-dimensional static approach to Q + In order to achieve a result that could be applied to a wide range of practical situations, t he approach is not restricted to a particular sh ape of the footing or to a particular distribution of the columns below the foundation. However, for the sake of simplicity , all columns are supposed to A given vertical load Q applied to the soil by means of the footing is safe (i.e. Q:::; ; Q+) in the sense of yield design if it can be equilibrated by a stress field a that satisfies the conditions

Uxz = Uyz = 0 } (d) J(.ol) Uzz dS = Q Uxz = Uyz = Uzz = 0 (z = 0)-(d)
in the columns: f1(a):::; ; 0 in the native soil: f 2 (a):::; ; 0 (33)

In the construction of such a stress field, the result already obtained is used.

Static approach using a piece-wise constant stress fi eld. Around each column i a circular cylinder denoted re; of radius c = xa is defined, where x is a fixed parameter chosen in the interval [1 , D/2a] so that two different cylinders rei and rei cannot intersect each other (Fig. 7).

Improvement of the static approach in the case

In the region outside such cylinders rei, the stress field is as given in equation (35a). Inside each of them the construction of the stress field is the same as already given where 2C is substituted for pin equations (lOa) and (11) to ensure the contin uity of the stress vector across the boundary of rei. Thus 

Interpretation based on the concept of equivalent material

The previous result may be interpreted based on the concept of equivalent material and related notions of equivalent cohesion c•q and friction angle tp•q, as introduced with reference to the composite cell. Indeed, adopting a heuristic point of view, one could be tempted to substitute the equivalent material thus defined for the heter ogeneous reinforced soil, so that the solution of the initial bearing capacity problem (Fig. 8(a)) would reduce to that of the equivalent problem shown in Fig. 8(b).

Proceeding further with this kind of reasoning, a simple static approach can be implemented on the latter problem by considering the following stress field Qu'? = 2d(CKP •q + c•q .jKP •q )

(42)

which could be interpreted as a lower-bound esti mate for the equivalent bearing capacity problem. Now, referring to equations ( 29) and ( 30), it appears immediately that Qu'? is identical with the lower-bound estimate Q16 given for the initial problem by equations ( 36) and (39) for KP ::::; 2 and KP ;;:, 2 respectively.

However, the concept of equivalent material should be handled very cautiously as it bears no significance apart from the particular situation where the reinforced soil is submitted to a triaxial loading (axisymmetrical about the direction of reinforcement). It does not apply, for example, to the description of the overall strength properties of the reinforced soil when subjected to off-axis

I 0 \Ill C'q; I I : i ! i ! i ! i ! i ! i ! i ! l l l l •J<c . � • • • • • "' • • •"' : , : ) . • . A' fi: [ i � • ... . . : . � ; • : • • : ' "" • . • . • • • � . • � • " • • • . • • • • • • • • • • • : . : : . • • • • i • • • : .. • .
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• . : . • . • : . • forces. To attempt to implement a static approach on the equivalent problem, using stress fields with inclined principal directions, would lead to completely misleading conclusions. The idea of homogenization, which is only partially conveyed in the notion of equivalent material, can be rigorously formulated (de Buhan & Salen9on, 1990). It relies on the assumption that the reinforcing inclusions are regularly dis tributed throughout the soil mass, and that the spacing between two such successive inclusions can be considered small enough when compared with a characteristic length of the problem, such as the width of the footing. Such a theoretical approach has already been successfully applied in the geotechnical field to the design of reinforced earth structures (de Buhan, Mangiavacchi, Nova, Pellegrini & Salen9on, 1989). Contrary to what might be suggested by the preceding notions of equivalent cohesion and friction angle, it provides clear evidence of the anisotropic strength proper ties of the reinforced soil as a homogeneous material.

Quantitative assessment of the bearing capacity improvement

Although the exact value of the bearing capac ity remains unknown, and only lower-bound esti mates Qu(17) given by equations ( 36) and ( 39 

R = 1 + � [(K p -2) + �c .j KP J (b) for KP ;;:, 2 (43) '1 [ C' J '1 R = 1 + l (KP-2) + C .jKP + 4 g(tp)
where g(<p) is as given in equation ( 15). As is apparent from this equation, the reinforcement �;�;�;�;�;�;�;�;�; � i i t� l � i [ �� " " " ����'0:'\t:..���\ Reinforcement by stone columns. The reinfor cing material is a compacted sand or gravel with a high friction angle (<p = 35°-40°) and practically no cohesion (CC/C = 0). The enhancement of the bearing capacity of a foundation lying on such a reinforced soil remains limited. Thus, for '1 = 0•2, the reinforcing factor can barely reach the value 1• 5. This theoretical result confirms the idea that increasing the bearing capacity is not the prime objective of this kind of reinforcement.

Reinforcement by lime columns. The constituent material is obtained by mixing a small proportion of lime with the in situ clay, thus increasing the strength of the latter by a factor of up to 20. Although significantly lower than in the case of the stone column material, a friction angle can also be measured. As can be seen from Fig. 9(b) (for '1 = 0•2), the bearing capacity can easily be increased threefold even if a zero friction angle is assumed.

CONCLUSIONS

The improvement of the bearing capacity of a foundation soil expected from its reinforcement by columns has been investigated in two stages. First, a triaxial loading test on a representative volume comprising a single column of reinforce ment was simulated. The strength properties of such a composite cell expressed in terms of com pressive force and confining pressure have been determined exactly through the combined imple mentation of the yield design static and kinematic approaches. Such a study paves the way for a possible experimental validation of the theoretical predictions.

Making use of the optimal stress field exhibited in the static solution of the composite cell model, a general lower-bound estimate for the bearing -------------------------------, (b) 40,--------------------------------30 capacity of a foundation-raft lying on a soil rein forced by a group of columns was then deter mined in the form of readily usable analytical expressions. The main interest of this estimate lies in the fact that it provides a reliable assessment for the three-dimensional bearing capacity problem, regardless of the shape of the founda tion and the geometrical arrangement of the columns. It is a convenient engineering design tool, allowing the efficiency of different technical solutions to be compared in terms of bearing capacity improvement. Moreover, it can be shown that the range of applicability of the lower-bound solution developed in this Paper (equations ( 36) and ( 39)) can be extended to take gravitational forces into account, and to the case where the strength properties of the column material are expressed in terms of effective stresses. However, it remains to be seen whether this lower-bound solution is sufficiently close to the exact value of the bearing capacity. This could be determined by implementing upper bound kinematic solutions for the problem, pro vided that the shape of the foundation and the exact distribution of the columns were specified, in which case a homogenization method should probably be used. 
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  Fig. I. Composite cell under triaxial loading

Fig. 2 .

 2 Fig. 2. Domain K of safe loads (p, Q)

  a<r a" • = G ss 5 = P} u zz ' = p + 2C other G;i = 0 r<a a,/= a8/ = p } uzz " = KP p + 2Cc.JKP other a u = 0

Fig. 3 .

 3 Fig. 3. Three-zone axisymmetrical stress field

  now a velocity field of the form U = U(r)e� -(V/h)ze,, where the radial velocity U(r) is (a) for r < a (in the column) U(r) = trK P (� ) (22a) (b) for r > a (native soil) U( r ) = t[r + :2 (Kp-1)](�) (22b) This velocity field is kinematically admissible with V and remains continuous across the inter face r = a. The density n(d) can be computed from equation (20)

  Introducing these values of "11/" , •• (U) and equation (26) into equation (21), gives two different expres sions of an upper-bound estimate for Q +(p) according to the value of KP . It can easily be verified that each of them is equal to the corre sponding lower-bound estimate given by equa tion (14) or equation (9). Finally, a combination of a static and a kinematic approach have yielded the exact value of Q+(p), i.e. KP � 2 Q : (p) = p(1-'1 + Kp 17) + 2C(1 -17) + 2Cc11.JKP 2 � Kp � 1 + (�Y Q+(p) = p(1 -+ K ) + 2Cc .JK s of a homogeneous cell composed of a frictional and cohesive material (friction angle cp* and cohesion C*), the limit load Q * +(p) can readily be derived from the strength criterion (equation (1)), where cp and cc must be replaced by cp* and C* (28) with KP * = (1 + sin cp*)/(1 -sin cp*), which appears to be a linear function of the confining pressure p. A simple identification of equations (
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Fig. 4 .

 4 Fig. 4. Equivalent cohesion C.,. for ce = 0 plotted against friction angle tp
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 45 Fig.4p resents the variation of the ordinate P('7, cp) at th e origin (cc;c = 0) for '1 varying between 0•05 and 0•3. P('7, cp) can be i nt erpreted as th e equivalen t cohesion in the case of a purely fric tional column materia). This equivaJent cohesion

Fig. 6 .

 6 Fig. 6. Rigid footing on a soil reinforced by a group of columns

  Consider first the stress field defined as follows (a) outside the domain located below the area Uxx = Uyy = 2C; Uzz = 0; other U; j = 0 (34) (b) below the area (d) in the native soil Uxx = Uyy = 2C; Uzz = 4C; other U; j = 0 (35a) in the columns Uxx = Uyy = 2C; Uzz = Kp2C + 2C\jKP; other u ii = 0 (35b) The continuity of the stress vector and the com patibility of a with the strength criteria are obvi ously satisfied. It can be easily verified that the stress field a defined above is statically admissible with the force Qu given by This equation provides a first lower-bound esti mate of Q+ /d which offers the advantage of being valid without restricting the geometrical characteristics or the strength parameters.

  KP ;::,: 2. Consider the following cases.

  (a) Outside the domain located below the area (d), the stress field is the same as in equation (34).

( b )

 b Below the area (d), let D be the minimal dis tance between the axes of two columns.

0 Fig. 7 .

 07 Fig. 7. Zoning of the mass of soil below the foundation

  (a) within the zone composed of the equivalent material (Jxx = (Jyy = 2C; } (40) u = 2CK eq + 2C eq I K eq zz p field obviously complies with the strength criteria of the original soil and of the equivalent material in each of the two zones. It equilibrates the force

  ) are available, it seems reasonable to assess the bearing capacity improvement due to the reinforcement by means of the ratio R = Qu( 'I )/Qu(O), where Qu(O) represents the value of the lower bound obtained for the unreinforced structure (Qu(O) = 4dC) (a) for KP::::; 2

Fig. 8 .

 8 Fig. 8. Bearing capacity problem: (a) initial; (b) equivalent

Fig. 9 .

 9 Fig. 9. Contour lines of the bearing capacity enhance ment factor R: (a) 1J = 0•1, (b) 1J = 0•2; (c) 1J = 0•3

NOTATIONa

  radius of the column d surface of the foundation C cohesion of the native soil c• cohesion of the reinforcing material cohesion of the equivalent material c•• D minimal distance between the axes of two columns K domain of safe loads (Q, p) applied to the com posite cell K P coefficient of passive stress of the reinforcing material of the reinforcement ({I friction angle of the reinforcing material ({I•• friction angle of the equivalent material

/ /