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Three-dimensional yield strength properties of jointed rock mass as a 
homogenized medium 

A. Bekaert* and S. Maghous 
laboratoire de Mecanique des So/ides (URA 317 CNRS), ENPC-CERCSO, Central 2, la Courtine, 

93167 Noisy-le-Grand cedex, France 

SUMMARY 

A comprehensive three-dimensional formulation for the strength criterion of regular jointed rocks is derived in this 
paper. The approach is based upon the implementation of the homogenization method of periodic media within the 
framework of the yield design theory. A rigorous explicit expression of the macroscopic criterion is given as a 
function of the strength properties of the intact rock and of the joints modelled as interfaces. Attention is focused 
on the particular case of an infinitely resistance intact rock. It is shown in particular how the relevant velocity 
jumps for the homogenized medium can be characterized from the introduction of the set of admissible stress 
vectors acting upon an elementary surface. The results make it possible to perform the static and kinematic 
approaches in order to address the stability analysis of rock masses cut by sets of regular joints, even for the three
dimensional geometries. 

KEY WORDS: jointed rocks; strength criterion; homogenization method; yield design; anisotropy 

I. INTRODUCTION 

A rock mass seldom appears as a homogeneous isotropic material, since it is always broken up by 
several joints, faults or bedding planes. Numerous laboratory and in situ experiments give evidence of
the anisotropic behaviour of a jointed rock mass (see, for example, References 1-4). And generally the 
presence of joints drastically complicates the evaluation of the strength criterion for the homogenized 
medium. The first difficulty is to obtain representative strength criteria for the joints and the intact rock 
mass separately, the second is to compute these criteria altogether in order to represent the strength 
properties for the considered material. 

To analyse the stability of a structure built into a jointed rock mass medium, some authors do not 
focus their research on the determination of a macroscopic criterion. They consider the intact rock 
mass as infinitely resistent, in such a way that the joints are the only weakness· zones into the body of 
the material (References 5-7 for example), so that a combination of these joints permits to identify the
possible failure patterns of rock blocks. One of the most important numerical techniques that should be 
mentioned is the so called 'distinct element method' (essentially due to Cundall and co-authors, (see 
References 8- 1 1  ). This numerical method, making use of an explicit finite difference scheme, 
considers the rock blocks as elastic or elastic-plastic bodies in motion, interacting one with another. 

The approach developed in the present paper is to be compared with another category of works 
taking account of both rock and joint criteria ( 12-16). The numerous experiments that have been 
conducted, enabled Hoek 17 to establish that for heavily jointed rock as for intact rock mass, the
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strength criterion could reasonably be considered as homogeneous and isotropic. In the intermediate 
cases the (analytical) models fall within two categories. 

(i) Discontinuous models, which rely on the hypothesis that the joint sets could be examined 
separately within the rock mass and then the associated criteria superposed.16•18•19 

(ii) Continuous models, where the jointed rock is considered as continuous at the sample scale. The 
strength criterion can either be a Mohr-Coulomb criterion with variable parameters with respect to the 
inclination of the joints 18•20 or expressed in a tensorial form with a finite number of parameters to be
determined by a curve fitting procedure on experimental data.21-23 

Nevertheless, none of these attempts have lead in a general case to a rigorous expression of a 
macroscopic homogeneous criterion for the jointed rock mass as a result of the combination of the 
joints and the rock mass own criteria. The aim of this contribution is to derive a formulation of this
criterion within the framework of the yield design homogenization theory. 24•25 It should be mentioned 
that the concept of equivalent medium for modelling heterogeneous rock masses has already been 
introduced to describe: 

(a) the behaviour of fractured rock masses (see, for example, Reference 26), where the intact rock, 
containing up to three sets of orthogonal joints, is assumed to be linearly elastic. The joints are 
modelled in a non-linear inelastic fashion in compression and tension, and in a linear elastic 
fashion in shear. 

(b) the macroscopic elastic behaviour of a stratified rock mass (see, for example, Reference 27).
(c) the macroscopic strength domain of stratified intact rock mass modelled as a multi-layered 

medium.28 

It should be kept in mind that the primary purpose of deriving such a homogenized criterion for the 
jointed rock mass is to be able to analyse the stability of structures such as sketched in Figure I (a)
(slopes, excavations, openings, etc.). Indeed, attempts to design such structures by considering the rock 
blocks and the joints separately are ultimately doomed to failure, since the numerical treatment of the 
problem is becoming rapidly untractable as the number of block elements increases. Fortunately in 
such a case, provided that some particular conditions that will be further stated be satisfied, the initial 
problem can be replaced by the study of a structure made of homogeneous, but obviously anisotropic, 
medium (Figure I (b) ). Therefore, it is essential to dispose of closed form analytical expressions for the 
strength criterion of the homogenized medium, thus making it possible to perform the stability analysis 
of the homogenized structure in a much more efficient way than through a direct approach. It is to be 
emphasized that one of the distinctive features of the approach developed hereafter consists in treating 
the joints as two-dimensional interfaces. 

2. BASICS OF THE YIELD DESIGN HOMOGENIZATION METHOD

The heterogeneous body under consideration occupies a domain n and exhibits a periodic structure so 
that it is possible to extract a 'unit cell', denoted by d, which represents the smallest elementary
volume necessary to describe the structure completely (Figure 2). 

As first shown by Suquet29 and later by de Buban, 30 the determination of the macroscopic strength 
condition of the above periodic heterogeneous material reduces to solving a yield design boundary 
value problem defined over the unit cell. 

Static definition of the macroscopic strength criterion 

Denoting by G(-!) the strength convex of the constituent material at every point :! of .s;f, the
macroscopic strength domain Ghom of the periodic medium is defined as the set of macroscopic states 
of stress �, such that there exists a stress field g defined over .s;f and satisfying
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initial stability problem associated homogenized stability problem 

(a) (b) 
Figure 1. Initial stability problem and associated homogenized stability problem 

(a) � = (g), where (. ) = � J . dv (volume average over .si/),
(b) div Q.(°,!) = Q v! E sil, I· I d 
(c) Q. · �-antiperiodic, i.e. taking opposite values on opposite sides of sil, where!! is the outer unit 

normal, 
(d) g(!) E G(!) V! E .si/. 

Conditions (a) to (c) express equilibrium, while condition (d) represents the strength requirement. This
may be summarized by 

Ghom = {� = (g) lg· n_ antiperiodic, div g = Q, g(!) E G(!) '1! E .si/}. (1) 

The convexity of G(!) whatever ! implies the same property for the macroscopic strength domain 
Ghom.

Kinematic definition of Ghom

Equation (1) represents the static definition of Ghom and its 'dual' kinematic definition may be 
expressed through the support function of Ghom defined as:31 
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Figure 2. Periodic heterogeneous material and associated unit cell 
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where [2 denotes any symmetric second order tensor. Let us introduce now, for a given [2, the set of 
virtual velocity fields !1 kinematically admissible with [2. That is the set of 1l satisfyliig the two 
conditions: 

-

(i) 

d. being the strain rate field associated with !1· 
(ii) !1 - [;_·!is periodic (i.e. taking the same value on opposite sides), where

(note that [2 represents the symmetric part of E). 
It can be proved (see for example de Buhan30) that the support function defined by (2) may be

computed as 

nh0m([2) =min{ (n@) },- !1 -

where n(.) denotes the support function of the convex domain G(!), defined as 

n(g) = sup{g : g; g e G(!)}.

(3) 

(4) 

This kinematic definition of Ghom can be geometrically interpreted in the six dimensional space of 
macroscopic stresses� as follows. Equation (2) shows that, for a given [2, nh0m([2) is proportional to
the distance from the origin to the hyperplane tangent to the boundary sWface ofGhom at the point(s) 
where the outward normal is parallel to [2 (Figure 3). Furthermore, equation (3) shows that for any 
velocity field !1 satisfying the above conclitions, Ghom is inclosed in the half space defined by 

Figure 3. Geometrical interpretation of the kinematic definition of Ghom 

(5) 
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Ghom may be defined a s the convex envelope of  tangent hyperplanes: 

Ghom = n {�I� : !2 - rl'om(Q) :::; O}.e -- - - (6) 

3. MACROSCOPIC STRENGTH CRITERION FOR FRACTURED ROCKS

3.1. Geometrical assumptions 
Consider a homogeneous rock mass medium comprising a periodic distribution of planar joints, such 
that the unit cell Sil is a parallelepipedic volume containingp planar rock joints (1 :::; p:::; 3) (Figure 4).
Each plane, denoted by P; (i = 1, p ), will be characterized by its unit normal !!; and its surace S;. By a
suitable scale change, its measure can always be set equal to 1, so that in subsequent analysis I.Jill = 1
will be assumed for simplicity. 

The strength capacities of the constituents of this composite material are defined as follows. 
The strength condition of the intact rock material, assumed to be homogeneous, is described by a 

fixed convex domain am (m for matrix) in the six-dimensional space of stresses:

G(!) =Gm, Vf E Ji/. (7) 

The joints are modelled as interfaces. Their failure condition is taken into account by means of a
convex domain of allowable stress vectors I acting upon those interfaces at any point, namely:

(8) 

where <§; c IR3 denotes de strength convex related to the interface i (1 :::; i:::; p), and assumed to be
independent of the point considered. 

Note that<§; may also be defined through its support function expressed by: 

n(!!;, l�D = sup {I·(�); I E <§;A}, (9) 

where l�I denotes the velocity jump across the interface i when following its normal !!;· 

n 
A 

joint i: P; 

Figure 4. Rock jointed structure and associated unit cell 
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Remark. The definition of the macroscopic strength criterion, shows that only the strength domain of 
the matrix and joints are involved. No additional information regarding the constitutive behaviour of 
the composit components, such as the elastic stiffness characteristics, is required. 

3.2. Static definition of Ghom 
It results directly from the general definition given by (1 ): 

I �= (Q), 
� E Ghom � 3g E Y' g(,!) E-Gm, Y! Ed, 

. gW. !'!; E <§;. \I!_ E f!I;, l = l,p,
(IO) 

where Y' denotes the set of stress fields Q defined on Sil and satisfying the equilibrium equations (i.e.
div Q = 0, Q · ?:! antiperiodic).

-

Definition (l 0) may be equivalently expressed as 

Ghom =am nG'. lnl' 

where 

G;n, = {�13g E fl',�= (g), Y! E f!I; gW · !!; E <§;for i = l ,p}.

By introducing the set G;n,, defined as 

p 
Gin/ ={�I�.!!., E <§;Vi= 1,p} = n {�I�. n; E <§;}.

i=I 
the identity between a;n, and G;ni can be established (see Appendix A ), so that 

(11) 

(12) 

(13) 

(14) 

Note that Ginr is a convex domain of IR6 whose elements are stress tensors that respect the strength
criteria of all the joints without taking into account the characteristics of the matrix material. 

Looking forward to implementing the kinematic approach over the homogenized structure by 
considering velocity discontinuities across surfaces, it is convenient to introduce the set gh0m(!f) c IR3 

of allowable stress vectors acting upon an elementary surface, of normal /Y_, of the homogenized 
material, defined by 

(15) 

It is equivalent to determine Ghom or {ghom(ti), V/Y_}, but the advantage of the latter is that it lends itself
more easily to a graphic representation, since gh0m(ti) is a domain of IR3.

The dual definition of the above convex is expressed by introducing its support function, defined in 
the same way as (9) for<§; 

1thom(N, (Q)) =sup{.[· IQ); I. E ghom(!f)}.

which may be computed with the help of the support function of Ghom by

y y 
where ® denotes the 'symmetric part of tensional product' (i.e. q ® !!. = ! (q ® !!. + !!. ® q)). 

(16) 

(17) 
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Remark. The previous domain may be expressed as 

ghom(!f_) ={I=�.!{!� E Gm,�.�; EC§; Vi= l,p}, 
which is different from the set defined by 

p 
g(!YJ = n {I=�. NI� E om,�. !!; E C§;J, 

i=I 

(18) 

(19) 

corresponding to the intersection of the strength domains relative to a rock mass medium with a single 
network of joints perpendicular to the direction �-

Comparing definitions (18) and (19), it comes out immediately that 

(20) 

which does not reduce to equality in the general case. This result shows that for the determination of 
gh0m(!YJ it is not equivalent to treat the problem of p planar networks of joints altogether and to 
intersect the domains obtained by taking each network separately. This second approach would only 
yield upper bound estimates for ghom(!f_). 

4. APPLICATION TO JOINTED ROCKS WITH INFINITELY RESISTENT MATRIX 

We will consider from now on the particular, but quite important case of a jointed rock mass whose 
constituent matrix material is assumed to be infinitely strong with respect to the joints. That is 

om= IR6• (21) 
In other terms, this assumption means that failure of the jointed rock mass as a whole is only due to 
that of the joints. Then definition (14) of ohom becomes 

p 
ahom = G;nt ={�I�.!!; E C§i Vi= l,p} = n {�I�.!!; EC§;} (22) 

i=I 
and ( 15) reduces, for any !:L to 

ghom(N) ={I=�. !{I�.!!; E C§i Vi= l ,p}. (23) 
Moreover, the strength capacities of the joints will he described by means of a Mohr-Coulomb's 
strength condition: 

Vi= 1,p, I E C§; <=> Ir! � c - a tan q>, (24) 

where a= I·� and r = II - <T!!;I are the normal and shear components of I respectively. c and q> 
denote the cohesion and the internal frictional angle. The corresponding n-function writes:31•32 

n(�.11')) = tan <p - :..=.i l _c
_(v) · n. if [1'1 • !!; � 111'11 sin q>, 

4.1. Kinematics of the unit cell 

+oo, otherwise. 
(25) 

The infinite strength assumption for the matrix material implies that the relevant velocity fields to be 
considered in the yield design kinematic approach of Ghom, are significantly simplified. Indeed, their 
associated strain rate fields must be everywhere equal to zero, except possibly on interfaces P;. In other 
terms, it means that a necessary condition for a velocity field 1' defined on d to be relevant is that the 
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restriction of Q to each of the zP blocks making up the unit cell and separated by the joints, corresponds 
to a rigid body motion. 

Consequently, the velocity fields to be explored are necessarily expressed as a sum of the p velocity 
fields V; defined as follows: 

t�\ { Q if:! E di,V-�= . + ""-' [!; + fQ; /\ :! If:! E d; , (26) 

where !!; and Q}_j denote the translation and roiation vectors of block dT separated from block di by 
the interface P; (Figure 5). 

The above velocity field is discontinuous when crossing P; following its nonnal !1: 
V! E P; l!!i) = !!; + Q}_j /\ :! 

and the associated tensor F; is given by 

F; = (grad!!;} = I l!!il ® !1JdS.- P, 

(27) 

(28) 

It can be established (see Appendix B) that the periodicity of!!=!!; - F;.· ! is ensured if, and only if, 

so that (26) reduces to 

and (28) becomes 

Q4=Q., 

if:! E di, 
if:! E dT 

(29)

(30) 

(31) 
The velocity fields to be explored in the kinematic approach are thus completely defined by p 
parameters, namely the [!; which define the elementaries !!; given through (26). More precisely, a 
necessary condition for a velocity Q defined on the unit cell to be relevant is 

p 3v;(i = 1,p) of the form (30) such that Q = L !!; 

,.,,, ... ' 

,
,,,,,, ... ' ,, 

. . . . . . . . . . . . . . ,_ __________ _ 

i=I 

A 

Figure 5. Elementary piecewise rigid block velocity field of the unit ceU 

(32) 
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and the corresponding macroscopic strain rate is then given by 

p .'I' 
D =" S.rx.© n. - � l=l _, - i=I 

4.2. Implementation of the kinematic approach 

(33) 

Taking into account the fact that in the definition (3) of nhom the minimization process may be
restricted to velocity fields satisfying (32), it is 

or 

nhom(/l) =min{ (n(g)); '.!:!satisfying (32) and (33)},

h {p p Y' }n om(/;?) = min L S;n(!l;. r!;); r!;l!J = L S/�.; © !1; · i=I i=I 

(34) 

(35) 

Moreover, as shown by formula (25), only velocities� subject to conditions�· !1; � IQ'..;I sin cp are to
be explored in the above minimization process. 

Equation (35) may finally be rewritten as 

nhom(Q) = -- x min LP· 11;; /3.1!2 = L P© 11; and P · !!; � IP I sin cp Vi , c {p p Y' } 
- tan <p i=I -1 ,_, - i=l ,_, -1 _, 

with p =S;�-
Be�use, from (33), tr (ll) = L�=I �i · !1;,

I _c_ tr(l2) 
nhom (!J) = tan cp -

+oo 
if f2 E CC, 
otherwise, 

where <fi c IR6 denotes the cone of outer normals to Ghom, defined by 

p Y'!J e CC ¢>- 3�;1Vi �i • 11; � Ill sin cp ; !J = L l® !:!; · i=I 
It follows from the kinematic definition of ohom, expressed by (6), that 

ahom = n {bib: !2- _c_ tr(l2) = (� - _c_ft) : l2 � o} 
-- - tancp - - tan cp- -QE'C 

(36) 

(37) 

(38) 

(39) 

It follows from (38) and (39) that Ghom, which may be drawn in !R6 as the convex envelope of tangent
hyperplanes normal to l2 e CC, is a cone of vertex b = (c/ tan cp )n (Figure 6).

The kinematic characterization of ghom UY) is automatically denved from ( 17):

where 

y - ;vJ · N if i:!:!l e CC(t{),
nhom (!{, f'.!:!J) = n;hom (!J = '.!:! © /j_) = tan cp - -I c +oo otherwise, 

Y' CC(t{) = \l!!ll!J = !!!J© 'ti  e CC). 

(40) 

(41) 
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Ghom _c_ I· tan<!>�

c 

Figure 6. Cone of outer normals to G
hom 

In the same way as Ghom, ghom(!:!J may be constructed as a convex envelope of planes in the space R3

ghom<J:!J = n {n(I - _c_!Y.) ·!�I� o}.
l!!JE�@ tan Cf) 

It is a cone whose vertex is defined by I = ( c /tan cp )N

5. CASE OF A ROCK MASS WITH A SINGLE NETWORK OF PARALLEL JOINTS

This case corresponds to p = 1. 

5.1. Domain Ghom

(42) 

l!i being the unit normal to the joints, definition (22) of the corresponding convex G�), where <§ 1 is
defined by (24), reduces in this case to 

1 

(43) 

The kinematic characterization of this convex is completely specified by means of<t'0. )•that is the set
of relevant macroscopic strain rates. Indeed (38) can be written as

1 

(44) 
Let us assume now that the physical space is referred to an orthonormal frame (e1, e2, e3) with g1 = !!i · 
Equations (43) and (44) may be rewritten as follows 

and 

� = I; r.ufl.; ® fl.j e at;,i <=> /r.r2 + r.r3 � c - r.11 tan <P IJ (45) 

f1: =I; Dug; ® fl.J E ct'<!!,> ¢>- {D!i = 0 if i # 1 andj # l, 2 tan cpJDr2 -+� � D11 }. (46) IJ 
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Consequently, G�,) may be defined in an equivalent manner by

To illustrate the anistropic properties of the strength criterion thus obtained, we suppose that a 
representative volume of intact rock and joints is subjected to uniaxial tension (resp. uniaxial 
compression) acting in the plane li'.1, f2). Let x E [O, 90°) be the orientation of the unaxial loading with
respect to fi = !!t · Denoting by !:+(X) and I:-(x) the tensile and compressive strengths of the

(a) 

(b) 

E*(X) 

o �--�---�---�x 0 • 11/4++12 11/2 

Figure 7. Macroscopic uniaxial tensile and compressive strengths of single jointed rock 
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composite, it comes from (45) that 

and 

:E+( )/c = 
COSq> 

X cos x sin(x + <p) 

'L-·(x)/c = cos xsin(x- <p) 
{ cos q> 

if x � cp,

-oo otherwise. 

(48) 

(49) 

Figure 7 displays the vanat1on of the above quantities as functions of X· In this figure
f,=2ccoscp/(I+sincp) andfc=-2ccoscp/(1 - sincp) are the strengths in simple tension and 
simple compression of an isotropic material whose strength capacities are described by a Mohr
Coulomb criterion (c, <p).

Remark. In the case of an intact rock material displaying limited isotropic strength properties 
(Gm =j:. IR6), equation (14) shows that the previous values of :t.+(x) and r.-(x) should be truncated
respectively by the strengths in simple tension and simple compression of the intact rock material. In 
this case, the above curves become similar to those given in Goodman. 33 

5.2. Domain l0m(!Y) 
The construction of convex gt;) (Ji) may be carried out by combining (41) and (42 ) .  Using the

definition (46) ofCC0.il' it appears
1
that three cases are to be considered (see Figure 8). 

Case 1: N · !1.i = I
The cone CC 0.i i® is defined by

CC 0.J!:D = {l!!lll!!I · !11 � 11!!)1 sin cp}, ( 50) 
so that tc;,) reduces to the Coulomb's cone

l�')UD = �1- (51)  

(/!i.. !!.l cl lamp ·�;.i..__ ____ _._ ____ r .11. 

Figure 8. Sketch of the convex ��(!Y) according to the orientation of ti. 
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Case 2: 0 :o::; 1£Y · !:!i I < sin<p 

yg0JN) = {0} and then g�)(£Y) = !R3. (52) 

This shows that when considering a facet far too inclined with respect to the joints direction, the 
strength properties of the homogenized medium expressed on this facet tend to those of the intact rock. 

Case 3: sin <p :o::; 1£Y · !:!1 I < 1
In this situation 

whence 

(53) 

(54) 

In the case when the considered facet is relatively close to the joints direction, domain g�) reduces to 
the half-space of IR3 containing the origin and bounded by the plane of normal !!i, pas�ing through
point (c/ tan <p)£Y.

6. GENERAL CASE OF p NETWORKS OF PARALLEL JOINTS

In this section, it will be shown how the macroscopic strength capacities for a rock mass comprising 
several families of joints may be directly obtained from the case p = I. 

6. 1. Domain Ghom

It results from (22) that 

(55) 

which may be interpreted by saying that there is no 'interaction' between joints. G�":. .. . n ) is then com
pletely defined with the help of the results established in Section 5. More prec1se!Y, (55) may be 
expressed as 

LE Ghom <=> { Vi= 1,p, 
= <!!1····!!p> IL·n -(n ·L·n)nl :o::;c-(n ·L·n)tan<p.= :.=., :...:..J =: -1-l -l = :.!.l 

Owing to (33), the set yg (!!1. .. .. !!pl of relevant macroscopic strain rates is characterized by
p 

� E yg(E1, •..• n) <=> 3D; E �C!!;l i = 1,pJ� = 'L, D;,...,, - i=l-
which may be rewritten as 

This relation is simply the dual form of (55). 

6.2. Domain ghom(N) 

(56) 

(57) 

(58) 

The determination of convex gh�1� •• n >(£Y) may either be deduced from its definition by using (55), or
more conveniently constructed by duafity through the determination of the convex of its outer normals 
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<ft<!! .... ,n l(N). This construction will be explicated for p = 2 families of joints in the next section.
Ne�ertheless, a first result may be established in the general case from the kinematic characterization
definition of g�1m .. IJ)!j.J. Indeed, considering the following definition,

it comes out that 

which implies that 

[I' p 
11!1 E %'01 .... 'l_ )(ljj <=?- 3D; E %'(!!,)\11!]® ti = L D;.P - i=I 

p 
%'('!.1····-'J./N) 2 L Cffl.!!_,)(N),

i=I 

p hom (N) c n hom 'N) c n hom(N\ g(!!1 , . •• ,n ) - - g(n;.n ) \!..!.. - g(!)_,) !.Y_J• ...,, . --J  iJ i=I 

(59) 

(60) 

(61) 

It is to be emphasized that the previous relationships do not reduce to equalities, as it has been noticed 
before . From a mathematical point of view, this is essentially due to the fact that, given any !2 in �6, it

.'I' -
is not always possible to exhibit [1!) E �3 such that !2 = [QJ ® fj_.

Relations (61) make it possible to get an upper botind estimate for g�1� •••• 1J,/HJ from the case p = I , 
or more finely from the case p = 2 developed in the next section. 

7. ILLUSTRATION ON THE CASE OF TWO NETWORKS OF PARALLEL JOINTS

This case corresponds top = 2 and the normals to the joints are denoted by lli, !'.!2 respectively. r:t. being
the angle (n1, n2) and () = ! 7t - oc, it is always possible to choose 0 � 11. � ! n and 0 � (} � ! n. It is
convenient to introduce the unit vector !'.!3 = f'.3 normal to the plane (!11 = f'.i , !'.!z). To avoid any
misunderstanding concerning these notations, it shall be specified that !!3 does not represent the normal
to any joint. All tensors will be expressed in the frame (!!1, !!z, !13) (Figure 9). 

joint no I 
Figure 9. Frame adopted for a rock mass with two families of joints 
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7.1. Domain Ghom and relevant macroscopic strain rates

The macroscopic strength domain G�1��2) is now given by:

� = L: °Lij!1; © !1j E G�,��z)IJ 

(no summation over repeated subscripts). 
Considering again the problem of macroscopic tensile and compressive strengths examined in 

Section 5.1, we suppose that the two networks of joints are perpendicular (() = 0), and denote by
x E [O, 90°] the orientation of the uniaxial loading (acting in the plane (111, 112)) with respect to lJ.1. We
obtain from (62) the following expressions for r.+(x) and r.-(x) 

and 

I 
'L+ (x)/c = ' cos x sin x + max(sin2 x. cos2 x) tan cp

I 
'L-(x)/c = . . . 2 • 

cos x sm x - mm(sm x. cos2 x) tan <p

(63) 

(64) 

The variations of'L+(x) and r.-(x) versus x are sketched in Figure 10. The same remark as that made
in Section 5.1, holds for the case of intact rock with limited strength properties. 

Concerning the determination of the cone � <!!i ·�» it appears from closely examining of the relation
(57), that the two cases should be distinguished: () � cp and () � <p. The results are summarized as
follows. 

1. 0 � () < cp (cp < tx � �n)
Let us first introduce angle (p E ]O, cp] defined as

then 

where 

tan (p = Jtan2 cp - tan2 (),

- tan(p tan e 
D12 = cose--D12 - 2 - (D11 +D22). tan cp tan <p tan cp 

{65) 

(66) 

(67) 

It should be pointed out that when the value of 0 tends to 0 (case of two perpendicular joints), (p tends 
to cp and D12 becomes identical to D12. 
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(a) r;+ <x l 

cltan4' 

1 

{b) 

I 

/ 

!. -----·--

00'--���"--���-'-��---' X it/4-�/2 rr:/4+�/2 rr:/Z 

/ 

. f, . --. ---- .. 

0-- x 0 n/4-+/2 n/4+�12 

r + 

/x 

I 
I 

_Ax 

Figure I 0. Macroscopic uniaxial tensile and compressive strengths for double jointed rock 

2. cp < () :::; ! n(O :::; " < <p)
One may easily establish that 

fl: = I:: D!i�i ® �J E ((/ �1 ·!!2> <=> IJ 
2
I: J0;+4tan2</JDT:i. 
i=I 

where 

tan (p = Jtan2 0 - tan2 <p 

(68) 

(69) 
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and 
A tan <P tan e 
D12 =cos e -- D 12 + 2 A (D11 + D22).tan <p tan <p tan <p 

7.2. Relevant velocity jumps 

(70) 

The construction of the cone !ft <rr, ·!! )(!!) is obtained from the results given in Section 7. l. All the 
vectors will be referred to through their components in the frame V!1, !!2, !!3).

1. O�fJ<rp 
Keeping in mind that N1 , N2, N3 are the components of tl in the frame (!11, !12, !13) and taking into

account (66) it turns out that 
3 

l!Z] = L V;!!; E �<rr1·!!2)(!f)i=l 

N;V; � tan <p/N3V; + N;V3/, i = 1, 2, 

l N3v3 = 0, 

/N2v1 + N1 v2I tan iP :s;; � J NlVf - tan2 <jl(N3v; + N;v3)2,

where <P is defined by (65), and

2. <{J < e < �n

N = 
cos e tan iP N _ tan e N ,1 tan <p 1 tan <p tan <P 2 

ii 
= 

cos e tan ii> N _ tan e N ,2 tan <p 2 tan q> tan <jl I 

Taking into account (68) it comes out that 
3 

l!ZI = I: V;!l; E !ft(!!, .11,Ni) i=I 

I 
N3v3 = 0, 

A A 2 / 2 2 2 (N2V1 + N1 V2) tan q, � E v N; Vf +tan </>(N3V; + N;V3) '

where <P is defined by (69), and 
N _ cosfJtanc{i N _ tanfJ 

N 1 - tan<p 1 tanq>tan</J 2'

N2 = cos e tan <P N _ tan e N 
tanq> 2 tan<ptanc{> 1'

(7 1) 

(72) 

(73) 

(74) 
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7.3. Convex t(;,�':!jtf..): the particular case of two perpendicular sets of joints

Since the relevant velocity jumps are now completely determined, the construction of the convex 
gZ;�n l(tf..) can be carried out automatically. Such a construction will be illustrated on the case of
pei1>°�ndicular joints (i.e. e = 0).

Due to obvious symmetry properties, one may restrict the study to N1 � N2 � 0. The following 
notation will be introduced 

* c T =T--N.- -· tan<p-

It results from (71) that two cases have to be distinguished.

N3 i= 0 

(75) 

Referring to Figure 11, this situation means that the projection of!!... onto the plane (!!1, rr2) lies 
strictly inside the unit disk (Nf + N} < I). The cone �(!;,.'!.JN) is then defined by 

where 

3 I V3 = 0, Vi � 0, V2 � 0,
(!'.I= t1 V;!J..;L�{!;,.'J.2>(!1_) <=> il1vi � 0, l.2ti � 0, . . - (N2v1 + N1v2)tancp � /I;vr + �. 

i.1 = Nf - Nl tan2 <p = tan2 cp(N?/ sin2 <p + N'f. - 1),
A.2 = N} - N} tan2 <p = tan2 cp(Nf / sin2 <p + Nf - 1 ).

It is evident that if ..11 < 0, conditions (76) impose V; = 0.

(76) 

(77) 

The combination of the kinematic definition of gt;,�'!.i>(H_) with (76) leads to distinguishing different
zones in the plane (N1, N2) plane (Figure 11 ) . 

Zone (1): defined by N1 < sin cp; the above cone reduces to vector Q and thus g��n >(!1_) = IR3•
In this case, like in Section 5.2, the presence ofjoints does not affect the strength1c�pacities of the 

material in the direction H_.
zone (2): defined by N1 � sin cp and /.2 < 0. All elements of �<!J.,.'J.,l(tf..) must satisfy

V2 = V3 = 0, Vi � 0, then 

I E g�1�'!.JH.) <=> Tt � 0. (78) 
In this case only joint n°1 has an effect on the resistance of the homogenized material. 

Figure 11. Domains of variation for the projection of ti onto the plane ('!. , '!.i) 
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I" E •R' 
zone (I) 

'J'.• I 

Figure 12. Sketch of the convex "":"'. ,® according to the orientation of!::!. oC!1·:.:.2 

Zone (4): defined by Ni �Ni � sin <p. Elements of �!!! •. �/JD satisfy conditions v3 = 0, v2 �
0 v1 � 0, thus

(80) 

In zones 3 and 4, both joints 1and2 reduce the strength capacities of the homogenized material in the
direction !f... These different situations are summarized in Figure 12.

N3 =0
It means that the extremity of the vector N lies on the unit circle (Nf +Ni = 1). The elements of the

cone re!!!, .IJ:i)@ are now defined by

Sine� 

���- (81) I Vi � lv3 tan <p, Vi � lv3I tan <p,
(N2vi + N,vi)tan<p � N1JfJr -� tan2 <p +N2../fli -�tan2 <p.
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r· 2 

r· l 

I"= I - c /tancp ti 

T• 3 

Figure 13. Strength domain ��,,_,Nil for q> = 30°, N3 = 0 and N1 = N;'. 

it comes out that g�mn ) (}!_) is a cone whose vortex coincides with the origin of the frame ( Tt, Tf, f:t).
It can be derived fr�� (82) that this domain is defined by 

(83) 

where µ satisfies conditions: µ � 0, µT{ + N2 tan <p > N1, µT2* + N1 tan <p > N2•
To illustrate such a domain g?;_

1
��J!i) is sketched in Figure 13 for <p = 30° and N1 = N2.

8. CONCLUDING REMARKS

Based upon the yield design homogenization theory, a three-dimensional closed-form formulation of 
the strength capacities of jointed rocks (at a macroscopic scale) is derived in this paper from the sole
knowledge of the strength characteristics of the intact rocks and of the joints. Even if a general 
formulation of the macroscopic strength domain Ghom has been given, the study has been more
particularly focused on the case of an infinitely resistent intact rock. Attention has been given to the 
characterization of the domain gh0m(!i) which represents the set of admissible stress vectors acting
upon any elementary surface, of normal N, of the homogenized media. 

The results derived here make it possible to deal with the stability analysis of structures made up of 
rock cut by joints (like slopes as exposed in the introduction on Figure 1, underground
excavations, ... ), by means of the static and the kinematic approaches of the yield design theory, 
implemented directly on the homogenized structure. Indeed, since explicit expressions of the support
functions rrhom have been established for the homogenized material, the use of failure mechanisms
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involving deformation or velocity jumps becomes now possible. That will constitute the next step of 
this work, and the results could then be compared to those derived from classical analyses. 

Further developments may be envisaged in the future: 

(i) the development of the approach when a finite yield condition is taken into account for the 
intact rock. 

(ii) as mentioned above, the use of such a criterion for carrying out stability analysis of structures 
made up of jointed rock masses. 

(iii) finally, as it has been already done for soils or rocks reinforced by inclusions,34 the derivation 
of an elastic plastic constitutive law for the jointed rock mass regarded as a homogenized 
anisotropic medium on the macroscopic scale. 
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APPENDIX A. PROOF OF IDENTITY (14) 

To establish the identity G;ni = G�,, we proceed in two steps. 

Step 1 
Let � E G;nt· We define the homogeneous stress field g on Sil by 

g(!} = �. VJ. E Sil, 
� = {g) and from the definition (12) of G;nt• it comes that � E G;,.1• Subsequently 

G;,., s;; G�. 

Step 2 

{Al) 

Let�<!. Gint· From definition (13), it means that there exists iO such that�· !!io ¢. �;0, which, when 
using the kinematic characterization of �;o, means that 

-

3� E IR3 I(�· !!;0) • w > n(!!;o • .!:!:'.), (A2) 
where n(!!;o, .) denotes the support function of the convex �m· 

For the sake of clarity, we assume that the unit cell is a cube of unit side (the demonstration for a 
general parallelepipedic volume shape is quite analogous). The plane (joint) P ;o divides the unit cell d 
into two domains s;1+ and .s;1- (Figure 14). 

�, = ll;o 
Figure 14. 
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Let us define now the velocity field !! by 

!h�)= {� if:! E .sd-,
if! E .sd+. 

The above velocity is discontinuous when crossing P;0, and !!!I=!!:'., 'rt! E P;0. Its associated tensors !; 
and f?: are equal to 

.'!' !; = S;o(!!:'. ® !!;o), f?: = S;o(!!:'. ® !!;o),

where S;o ( = 1 here ) is the surface of P;o enclosed in .sd. 
We will establish now that the associated velocity field!!.= Q - �!is periodic on .sd. 

• Faces of .sd normal to �3•
For all ! and i situated on these faces and such as ! - i = �3 

Y.W - g(,!') = -!; · �3 = -S;o(!!;o · �3)!:!'. = Q.
The same result is obtained when considering the faces of o.sd normal to �2. 

• Faces of (),sd normal to �1 = !!;o· 
Let! and i situated on these faces and such as ! - i = �1, it comes that 

g(!) - g(,!') = !!:'. - !; · �1 = (1 - S;o)!!:'. = Q,
which ends the proof that g is periodic. So, the velocity field !! defined above is kinematically 

ti' 
admissible with f?: = .5";0(!!:'. ® n;0). Moreover 

� : f?: = S;o(� · !!;o)!:!'. 
and, fl being the strain rate associated with 1!, 

{n(g)) = J n(!!;o• !!:'.) dS = S;0n(!!;o, !!:'.).
PiO 

Taking into account (A2), it comes that 
� : f?, > ( (n(g))) � n'hom<g),

where 1r.'hom denotes the support function of the convex G;nt·
Equation (A3) proves, when adopting the kinematic characterization, that � rf. G;ni· Thus 

G;n1 £; G;n1· 
The combination of(Al) and (A4) leads to identity (14). 

APPENDIX B. PROOF OF ASSERTION (29) 

(A3) 

(A4) 

As in Appendix A, and for sake of clarity, the unit cell d is assumed to have a cubic shape of unit side. 
The velocity field is defined by (26) and the associated tensor F; is given by (28). 

Let !i, !2, !i, !2 be any points (Figure 15) situated on the sides of .sd whose normal is !!; = f.;, and
such that 

(Bl) 

22



·� : "' 
�f---, 

As indicated on the above figure, !i and !2 are on the side P 0 of equation ! · � = l, !J and ii are on
the side P'o of equation!·� = 0. 

The periodicity of � = � - F; · ! implies that the following equalities

(B2) 

must be satisfied. 
Equations (Bl) and (B2) imply that

fQ; /\ (!1 -!2) = Q V(!1, !i) E P0 x P0, (B3) 

which is possible if and only if m; = 0. 
Now, as fQ; = Q, the expression of the elementary velocity field v; reduces to that given by (30), and

its periodicity is established in Appendix A. 
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