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Introduction

Let Ω ⊂ R d be the reference configuration of a body, partitioned into a coarse region Ω 0 where the properties of the material are rather smooth and where a coarse approximation should be sufficient, and into small disjoint boundary regions denoted by (Ω k ) 1≤k≤K where a fine discretization is required (e.g. geometrical refinements, fine behavior of the material). Such a situation typically occurs for tires, the internal structure and the surface sculptures playing the role of the coarse and fine zones, respectively. Let us denote by Γ D a part of the boundary of Ω where displacements are prescribed and by Γ N = ∂Ω \ Γ D its complementary part. Denoting by H 1 * (Ω) := {v ∈ H 1 (Ω) d , v| ΓD ∩∂Ω = 0} the space of admissible displacements, our model elastostatic problem consists in finding u ∈ H 1 * (Ω) such that:

a(u, v) := Ω E ijkl ε(u) kl ε(v) ij = Ω f • v + ΓN g • v =: l(v), ∀v ∈ H 1 * (Ω).
Here E denotes the fourth order elasticity tensor, f ∈ L 2 (Ω) d and g ∈ L 2 (Γ N ) d the loading forces, and (v) = 1 2 (∇v + (∇v) t ) is the linearized strain tensor. Considering that the solution must be computed with a multi-scale approach in order to respect the characteristics of the problem, the strategy proposed in this paper consists in using:

1. mortar formulations [START_REF] Bernardi | Domain decomposition by the mortar element method[END_REF][START_REF] Wohlmuth | Discretization methods and iterative solvers based on domain decomposition[END_REF] on the interfaces Γ 0k = ∂Ω 0 ∩ ∂Ω k enabling to use independent approximations in the coarse and fine regions respectively, 2. efficient Dirichlet-Neumann preconditioners [START_REF] Quarteroni | Domain Decomposition Methods for Partial Differential Equations[END_REF], which we adapt so that the computational cost of the full algebraic problem remains independent (or at least weakly dependent) of the number and the size of the fine subdomains (Ω k ) 1≤k≤K .

The sequel is organized as follows. After the introduction of a mortar formulation (section 2), we propose two possible Dirichlet-Neumann preconditioners and state their two-scale properties (section 3). In particular, the second enhanced preconditioner makes use of a coarse space counterbalancing the effect of essential boundary conditions imposed on the boundary sculptures. A simple numerical test shows its increased efficiency for a simple academic problem.

A broader perspective on the subject as well as complete proofs are given in [START_REF] Hauret | Méthodes numériques pour la dynamique des structures non-linéaires incompressibles à deux échelles (Numerical methods for the dynamic analysis of two-scale incompressible nonlinear structures[END_REF][START_REF] Hauret | Dirichlet-neumann preconditioners for elliptic problems with small disjoint geometric refinements on the boundary[END_REF].

Non-conforming formulation

For every 0 ≤ k ≤ K, let (T k;h k ) h k >0 be a sequence of meshes of the substructure Ω k , h k denoting the maximal diameter of its elements. The corresponding finite-element spaces of order q are denoted by (

V k;h k ) h k >0 ⊂ H 1 * (Ω k ).
As in [START_REF] Brezzi | Error estimates for the three-field formulation with bubble stabilization[END_REF][START_REF] Hauret | A stabilized discontinuous mortar formulation for elastostatics and elastodynamics problems, part ii: discontinuous Lagrange multipliers[END_REF], for stability purpose when using a discontinuous mortar formulation, interface bubbles can be added on the fine subdomains. As a consequence, we introduce the potentially enriched spaces of displacements X k;h k = V k;h k ⊕B k;h k for every 1 ≤ k ≤ K and X 0;h0 = V 0;h0 . For each interface Γ 0k , W k;h k will stand for the trace of the local space X k;h k on this interface. In order to impose a weak displacement continuity between Ω 0 and Ω k , a space of Lagrange multipliers M k;h k is introduced on the mesh T k;h k over Γ 0k . Actually, various choices of continuous or of discontinuous polynomial functions of degree r can be used [START_REF] Bernardi | Domain decomposition by the mortar element method[END_REF][START_REF] Seshaiyer | Non-conforming hp finite element methods[END_REF][START_REF] Wohlmuth | A mortar finite element method using dual spaces for the Lagrange multiplier[END_REF][START_REF] Kim | Multiplier spaces for the mortar finite element method in three dimensions[END_REF][START_REF] Hauret | A stabilized discontinuous mortar formulation for elastostatics and elastodynamics problems, part i: abstract framework[END_REF][START_REF] Hauret | A stabilized discontinuous mortar formulation for elastostatics and elastodynamics problems, part ii: discontinuous Lagrange multipliers[END_REF] but in any case, they must satisfy the following fundamental assumptions:

Assumption 1 [Coercivity]. Let u 0 ∈ H 1 (Ω 0 ) d and u k ∈ H 1 (Ω k ) d be rigid motions, i.e. ε(u 0 ) = 0 in L 2 (Ω 0 ) d×d and ε(u k ) = 0 in L 2 (Ω k ) d×d , satisfying the weak continuity requirement Γ 0k (u 0 -u k ) • µ = 0 for every µ ∈ M k;h k . Then u 0 = u k almost everywhere on Γ 0k . Assumption 2 [Inf-sup condition]. There exists a mapping π k : L 2 (Γ 0k ) → W k;h k such that for all v ∈ L 2 (Γ 0k ), Γ 0k (π k v) • µ = Γ 0k v • µ, ∀µ ∈ M k;h k , satisfying π k v k, 1 2 ≤ C v k, 1 2 .
The mesh dependent norm • k, 1 2 introduced above is defined as in [START_REF] Le Tallec | Une méthode d'éléments finis hybrides en décomposition de domaines[END_REF][START_REF] Wohlmuth | Hierarchical a posteriori error estimators for mortar finite element methods with Lagrange multipliers[END_REF] by

v 2 k, 1 2 = K∈T k;h k diam(K ∩ Γ 0k ) -1 K∩Γ 0k v 2 .
Assumption 3 [Accuracy]. The total degree r of Lagrange multipliers is bounded from below by r ≥ q -1, q being the total degree of the displacement shape functions.

Then, the mortar formulation of the problem of interest can be written as

finding u = (u 0 , u 1 , ..., u K ) ∈ K k=0 X k;h k and λ = (λ 1 , ..., λ K ) ∈ K k=1 M k;h k satisfying for every v ∈ K k=0 X k;h k and µ ∈ K k=1 M k;h k , a 0 (u 0 , v 0 ) + K k=1 b 0k (v 0 , λ k ) = l 0 (v 0 ) a k (u k , v k ) - b k (v k , λ k ) = l k (v k ), 1 ≤ k ≤ K b 0k (u 0 , µ k ) - b k (u k , µ k ) = 0, 1 ≤ k ≤ K. (1) 
The above problem uses the obvious notation

a k (u k , v k ) = Ω k E ijmn ε(u k ) mn ε(v k ) ij , l k (v k ) = Ω k f • v k + ΓN ∩∂Ω k g • v k , b 0k (v 0 , µ k ) = Γ 0k v 0 • µ k and b k (v k , µ k ) = Γ 0k v k • µ k .
3 Two-scale preconditioners

In matrix notation, after elimination of the Lagrange multipliers λ k in the first equation of (1), the system becomes

     S 0 U 0 = L 0 , K k U k Λ k = L k -B 0k U 0 , 1 ≤ k ≤ K, (2) 
where

S 0 = A 0 - K k=1 B t 0k R k K -1 k R t k B 0k is the Schur complement matrix,
and

L 0 = L 0 - K k=1 B t 0k R k K -1 k L k 0
the corresponding right hand side. In these definitions, the local stiffness matrix K k and restriction operator R k are given by

K k = A k -B t k -B k 0 , R k U k Λ k = Λ k .
An iterative solver can be efficiently used to solve [START_REF] Bernardi | Domain decomposition by the mortar element method[END_REF] if one is able to define a preconditioner S0 of the exact Schur complement S 0 which is spectrally equivalent to S 0 , with constants independent of the number and the size of the small subdomains. When L 0 , .., L K are given, the application of such a preconditioner consists in the following operations:

1. Compute L 0 by solving Dirichlet problems on the small subdomains prescribing zero displacements on the interfaces (Γ 0k ) 1≤k≤K , 2. Solve the extended Neumann problem S0 Ũ0 = L 0 , 3. Compute ( Ũk , Λk ) over each Ω k by solving the Dirichlet problem:

K k Ũk Λk = L k -B 0k Ũ0
.

The most natural -and rather efficient-preconditioner consists in simply using S0 = A 0 . This is a standard Dirichlet-Neumann preconditioner for which we prove [START_REF] Hauret | Dirichlet-neumann preconditioners for elliptic problems with small disjoint geometric refinements on the boundary[END_REF]:

Proposition 1.
Assuming that A 0 is invertible, i.e. Γ D ∩ ∂Ω 0 has a positive measure, the following spectral equivalence holds for all U 0 :

W 1,h S 0 U 0 , U 0 ≤ A 0 U 0 , U 0 ≤ S 0 U 0 , U 0 , with: 1 W 1,h = 1 + C max k∈I1 C k c 0 + max k∈I2 C k L 0 α 0 L k ,
where I 1 (resp. I 2 ) is the set of indices k ≥ 1 such that Ω k is not fixed on its boundary (resp. is fixed on a part of its boundary), the positive constants

c k and C k are such that c k |ξ| 2 ≤ E ijmn ξ mn ξ ij ≤ C k |ξ| 2
over Ω k for every symmetric matrix ξ ∈ R d×d , α 0 is the coercivity constant of the bilinear form a 0 and L k = diam(Ω k ). The constant C > 0 is independent of the number K and the size of the subdomains.

This simple choice will lack of efficiency in two simple situations:

1. a fine subdomain Ω k (k ≥ 1) has a small size L k << L 0 and is fixed on a part of its boundary (k ∈ I 2 ); in this situation, because of its size, the substructure will have a rather large stiffness to interface rigid body displacements, 2. a fine subdomain Ω k (k ≥ 1) has several stiff modes involving interface motions (rigid links, incompressibility).

Assuming that these directions of localized interface stiffness be in very small number N k (this is indeed the case for interface rigid body motions), we then propose a modification of the previous preconditioner enabling to correct such a lack of efficiency.

For all k ≥ 1 such that Ω k is fixed on a part of its boundary, we denote by (e i k ) 1≤i≤N k (with N k = 6 in general) the interface rigid motions of Γ 0k or rigid links and introduce Wk = span{e i k , i = 1, .., N k }. To each interface rigid body motion e i k , we associate its local a k -harmonic extension (u

i k , λ i k ) ∈ X k;h k × M k;δ k solution of        a k (v, u i k ) - Γ 0k v • λ i k = 0, ∀v ∈ X k;h k , - Γ 0k u i k • µ = - Γ 0k e i k • µ, ∀µ ∈ M k;δ k . (3) 
These solutions span two small local spaces

Xk = span{u i k , i = 1, .., N k } ⊂ X k;h k , Mk = span{λ i k , i = 1, .., N k } ⊂ M k;δ k . If k ≥ 1 is such that Ω k is not fixed on its boundary, we adopt Wk = Mk = {0}.
Then, instead of finding U 0 such that S 0 U 0 = L 0 , we propose to compute

u 0 ∈ X 0;h0 , (u k ) ∈ ( Xk ) 1≤k≤K , (λ k ) ∈ ( Mk ) 1≤k≤K solution of the coupled problem                  a 0 (u 0 , v 0 ) + K k=1 Γ 0k v 0 • λ k = l 0 (v 0 ), ∀v 0 ∈ X 0;h0 , a k (u k , v k ) - Γ 0k v k • λ k = 0, ∀v k ∈ Xk , 1 ≤ k ≤ K, - Γ 0k u k • µ k = - Γ 0k u 0 • µ k , ∀µ k ∈ Mk , 1 ≤ k ≤ K. (4) 
This amounts to reduce the local substructure response to the harmonic extension of its stiff interface modes, which belongs to Xk . We introduce the matrix

I 0k = Λ t k B 0k where Λ t k = Λ 1 k , .., Λ N k k t
is the matrix built with the multipliers computed in (3), and the restriction Åk of the displacement stiffness matrix A k to the local space Xk

Åk ij = (U i k ) t A k U j k = a k (u j k , u i k ) = Γ 0k u j k • λ i k , (5) 
where (3) has been used. Exploiting [START_REF] Hauret | Dirichlet-neumann preconditioners for elliptic problems with small disjoint geometric refinements on the boundary[END_REF] to reformulate (4)-2,(4)-3, the system (4) can be rewritten after some algebraic elimination as

S0 U 0 = L 0 , (6) 
with a new approximate Schur complement given by

S0 = A 0 + K k=1 I t 0k Å-t k I 0k (7) = A 0 + K k=1 B t 0k Λ k Å-t k Λ t k B 0k .
The complexity of its inversion is much smaller than solving S 0 U 0 = L 0 because each local problem (3) used in the construction of S0 only involves a subspace of displacements of dimension N k . Moreover, we prove in [START_REF] Hauret | Dirichlet-neumann preconditioners for elliptic problems with small disjoint geometric refinements on the boundary[END_REF] that:

Proposition 2. For all U 0 , the following spectral equivalence holds

W 1,h S 0 U 0 , U 0 ≤ S0 U 0 , U 0 ≤ S 0 U 0 , U 0 , with 1 W 1,h = C 1 + max 1≤k≤K C k c 0 .
The constant C > 0 is independent of the number K and the size of the subdomains.

Numerical illustration

Let us consider here a two-scale beam (as represented on figure 1) whose both tips are clamped. The material is elastic, isotropic, homogeneous in each substructure, and the displacements under loading are computed by a preconditioned conjugate gradient method. Figure 2 illustrates the advantage of the enhanced Dirichlet-Neumann preconditioner when two small substructures are clamped. In conformity with the announced results, the gain in efficiency is independent of the ratio of Young moduli between the fine and coarse zones. Moreover, a factor 3 improvement is achieved in the number of iterations, and roughly speaking in the time of computation. Finally, it is shown in [START_REF] Hauret | Dirichlet-neumann preconditioners for elliptic problems with small disjoint geometric refinements on the boundary[END_REF] that such a preconditioner can be used as an efficient quasi-tangent operator in the nonlinear framework as soon as boundary geometrical details are sufficiently soft.

Conclusion

The domain-decomposition based preconditioners proposed here achieve scaleindependent performances. They should be extended to cases where the details overlap the coarse region in the line of the fictitious domains approach, and also to cases where the details are not disjoint but constitute a continuous belt along the boundary. 

Fig. 1 .Fig. 2 .

 12 Fig. 1. Maximal stress distribution on a deformed configuration of our two-scale model problem where two of the details are clamped on their lower face.
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