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In this work, the recently developed bsecond-orderQ self-consistent method [Liu, Y., Ponte Castan˜eda, P., 2004a. Second-
order estimates for the effective behavior and field fluctuations in viscoplastic polycrystals. J. Mech. Phys. Solids 52 467–495] is 
used to simulate texture evolution in halite polycrystals. This method makes use of a suitably optimized linear comparison 
polycrystal and has the distinguishing property of being exact to second order in the heterogeneity contrast. The second-order 
model takes into consideration the effects of hardening and of the evolution of both crystallographic and morphological 
texture to yield reliable predictions for the macroscopic behavior of the polycrystal. Comparisons of these predictions with full-
field numerical simulations [Lebensohn, R.A., Dawson, P.R., Kern, H.M., Wenk, H.R., 2003. Heterogeneous deformation and 
texture development in halite polycrystals: comparison of different modeling approaches and experimental data. 
Tectonophysics 370 287–311], as well as with predictions resulting from the earlier bvariationalQ and btangentQ self-
consistent models, included here for comparison purposes, provide insight into how the underlying assumptions of the various 
models affect slip in the grains, and therefore the texture predictions in highly anisotropic and nonlinear polycrystalline 
materials. The bsecond-orderQ self-consistent method, while giving a softer stress-strain response than the corresponding full-
field results, predicts a pattern of texture evolution that is not captured by the other homogenization models and that agrees 
reasonably well with the full-field predictions and with the experimental measures.
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1. Introduction

Salt domes have been recognized as potential sto-

rage sites for nuclear waste since the middle of last

century (e.g., Carter and Hansen, 1983; Hunsche and

Hampel, 1999; Peach and Spiers, 1996; Aubertin and

Hardy, 1998). This fact has motivated numerous stu-

dies for halite both for single crystals (Carter and



Heard, 1970; Guillopé and Poirier, 1979) and polycrys-

tals (Heard, 1972;Wawersik and Zeuch, 1986; Carter et

al., 1993; Franssen, 1994; Wenk, 1999; Ter Heege et

al., in press). Evidence from single-crystal experiments

suggests that halite crystals exhibit strong degrees of

nonlinearity and anisotropy at room temperature. Since

the deformation mechanism of the single-crystal grains

is fairly well understood, the question arises as to how

to average the response of the huge numbers of single-

crystal grains in a typical macroscopic sample (Kocks

et al., 1998). This question becomes particularly diffi-

cult when the polycrystalline samples are subjected to

deformations where the relevant mechanisms (mostly

dislocation motion and interaction) become strongly

nonlinear, at least as manifested at the continuum level.

It is known that the effective or overall response of a

macroscopic polycrystalline sample depends not only

on the single-crystal properties, but also on the micro-

structure (e.g., crystallographic texture and average

grain shape) and its evolution during the deformation

process. The role of homogenization is to establish this

relation between the single-crystal properties, the

microstructure and its evolution, and the overall

response.

The simplest and still most commonly used homo-

genization procedure in polycrystalline plasticity is

the uniform strain-rate approximation of Taylor

(1938). There is also the corresponding uniform-stress

approximation of Reuss (1929). For viscoplastic poly-

crystals, these approximations are known to provide

rigorous upper and lower bounds, respectively, for the

effective flow stress of the polycrystal. Improved

methods, based on various types of ad hoc approx-

imations, include several extensions of the self-con-

sistent model, such as the bincrementalQ method of

Hill (1965) and Hutchinson (1976), and the btangentQ
procedure of Molinari et al. (1987) and Lebensohn

and Tomé (1993). While these various approxima-

tions generally provide improvements on the Taylor

and Reuss bounds, and reduce to the linear self-con-

sistent estimate, on which they are all based, for

linearly viscous behavior, they give widely diverging

predictions for low rate-sensitivity materials. In parti-

cular, in the rate-insensitive limit, some of these

estimates tend to the Taylor upper bound, while others

tend to the Reuss lower bound. More recently, Neboz-

hyn et al. (2001) proposed the use of the self-consis-

tent approximation within the context of the blinear
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comparison methodQ of deBotton and Ponte Casta-

ñeda (1995) to generate bvariationalQ self-consistent

estimates for various types of polycrystals. These

estimates were found to be much softer than the

Taylor bound, especially at low strain-rate sensitiv-

ities and for large grain anisotropy, and have the

additional advantage that they can be interpreted as

upper bounds for all other nonlinear estimates based

on the linear self-consistent approximation. This clari-

fied some issues associated with the rate-insensitive

limit and allowed the elimination of some of the self-

consistent schemes, such as the bincrementalQ and

bsecantQ schemes, because they were found to violate

the variational bound for self-consistent estimates.

However, precisely because of their upper bound

property, the variational self-consistent estimates are

also expected to be overestimates for the effective

behavior and it is of interest to develop more accurate

estimates of the self-consistent type, which will neces-

sarily have to be softer than the variational self-con-

sistent estimates. This was accomplished very recently

(Liu and Ponte Castañeda, 2004a,b) by means of the

bsecond-orderQ method (Ponte Castañeda, 2002),

which derives its name from the distinguishing feature

that it leads to estimates that are exact to second-order

in the heterogeneity contrast. In other words, these

estimates have the unique property of recovering exact

perturbation expansion estimates based on a small

parameter measuring the difference of the properties

in the different phases of a heterogeneous material,

such as a polycrystal.

The Taylor model was first applied to simulate

deformation textures in halite by Wenk et al. (1989)

(also reported in Wenk, 1999). For polycrystals whose

highly symmetric constituent crystals have plenty of

slip systems to accommodate arbitrary deformation,

such as face-centered cubic metals, the Taylor model

yields fairly good estimates for both the macroscopic

stress-strain relation and texture development (e.g.,

Kocks et al., 1998). However, because of the physi-

cally incorrect hypothesis of uniform strain-rate fields

in the polycrystal, as the crystal behavior becomes

highly nonlinear and/or anisotropic, the Taylor model

predicts overly stiff material properties and in some

cases leads to incorrect texture deformation patterns

(Siemes, 1974). Recent studies on halite deformed at

room temperature (Wenk et al., 1989; Lebensohn et al.,

2003; Liu, 2003) have shown that the Taylor model



predicts a pure [111] extension texture when an axially

symmetric extension is applied, which is in disagree-

ment with the corresponding experimental results

where both [111] and [001] components are observed.

The tangent, or viscoplastic self-consistent, model

was first introduced by Molinari et al. (1987) and

further developed by Lebensohn and Tomé (1993,

1994) who used an anisotropic medium as the refer-

ence linear comparison material. For highly nonlinear

and/or anisotropic polycrystals, it has been observed to

significantly underestimate the effective flow stress

(e.g., Lebensohn and Tomé, 1993; Nebozhyn et al.,

2001). On the other hand, the more recent variational

self-consistent model of deBotton and Ponte Casta-

ñeda (1995) has been shown to be robust for highly

nonlinear and/or anisotropic cases (Nebozhyn et al.,

2001) and yields promising predictions for the defor-

mation textures in commercially pure titanium (Liu et

al., 2003). However, it was found to lead to texture

predictions that are very similar to those resulting from

the Taylor model for halite at high temperatures (Liu et

al., 2003). A further weakness of the Taylor, tangent

and variational self-consistent models, that has also

been observed in our previous simulations for halite

and titanium, is the overly sharp texture they predict in

some cases. For instance, an excessive [111] intensity

has been predicted by these models that is not observed

in the corresponding extrusion experiments for halite

at high temperature (Liu, 2003). Recent studies show

that the second-order self-consistent model (Ponte

Castañeda, 2002; Liu and Ponte Castañeda, 2004a,b)

is in excellent agreement with full-field numerical

results for both the effective behavior and field quan-

tities in polycrystals (Lebensohn et al., 2004a,b). In the

latter references, the full-field simulations make use of

fast Fourier transforms (Michel et al., 2000) instead of

the finite element method, as used, for example, by

Balasubramanian and Anand (2002). A full-field

numerical simulation, known as the bhybrid element

polycrystalQ (HEP) approach (Beaudoin et al., 1995),

has also been employed to model various polycrystal-

line aggregates, including metals (Barton and Dawson,

2001) and halite (Lebensohn et al., 2003). Based on a

hybrid variational principle for the heterogeneous

fields in each element, it allows more flexible defor-

mation than the standard finite element formulation.

Consequently, the HEP simulations are believed to be

more accurate in simulating the deformation of poly-
3

crystalline materials than other types of numerical

simulations.

In the present work, the second-order self-consis-

tent method for polycrystals is extended to account

for microstructure evolution during finite deformation

processes, and is applied to halite deformed at room

temperature. Expressions for the macroscopic stress-

strain relation of the polycrystal, the average slip rate,

strain rate and spins in the constituent crystals are

derived consistently with the second-order theory.

The evolution equations for the texture variables are

then derived, with use of standard kinematical argu-

ments. An application is then carried out for extru-

sion of initially isotropic halite at room temperature

(20 8C), and comparisons are made with the experi-

mental measurements reported by Lebensohn et al.

(2003), and with the corresponding predictions of the

Taylor, tangent and variational self-consistent models

and of the HEP numerical approach. The initial

instantaneous response of the material is first inves-

tigated. This is followed by a simulation of a 30%-

strain test in uniaxial tension, where both the macro-

scopic stress-strain relation and the final deformation

texture are addressed.
2. Theory

2.1. Second-order self-consistent estimates

In this work, a polycrystal will be taken to be an

aggregate of randomly orientated and distributed,

perfectly bonded single-crystal grains with prescribed

orientation distribution function (ODF) and associated

two-point correlation function (see, for example,

Adams and Olson, 1998). The ODF determines the

distribution of the lattice orientation in crystals, i.e.

the crystallographic texture, and the corresponding

two-point statistics correlate with grain shape, so

that the two-point correlation function serves to char-

acterize (in an approximate way) the morphological

texture, as determined by the average shape of the

grain. For simplicity, it will be assumed here that the

lattice orientations take on a set of discrete values,

characterized by rotation tensors Q
(r) (r =1, . . . ,N).

The polycrystal is assumed to occupy a region X,

while all the grains of a given orientation Q(r) occupy

subregion X(r) (r =1, . . . ,N). The characteristic func-



tions v(r) describing the location of the various orien-

tations are equal to 1 if the position vector x is in X(r),

and zero otherwise. Volume averages over X are

denoted by h.i, so that the scalars c(r)=hv(r)i character-
ize the crystallographic texture of the polycrystal. The

corresponding two-point correlation functions p(rs)=

hv(r)v(s)i are assumed to exhibit bellipsoidalQ symme-

try (Willis, 1977) with the same shape for all crystal

orientations, characterized by a symmetric tensor Z

(i.e., on the average, all grains are ellipsoidal in

shape with identical aspect ratios and orientation).

For a given stress S acting on a crystal with

orientation Q(r), the slip rate c(r)(k) on the k-th system

(k=1, . . . ,K) is assumed to be determined by the

resolved shear stress s(r)(k) =S d M(r)
(k) via:

c rð Þ
kð Þ ¼

B/ rð Þ
kð Þ

Bs
s rð Þ

kð Þ

�
;

�
ð1Þ

where the convex function /(r)
(k) characterizes the res-

ponse of the slip system, and M
(r)
(k) =1 /2(m

(r)
(k)�

n(r)(k) +n
(r)
(k)�m(r)

(k)) is the corresponding Schmid tensor,

with n(r)(k) and m(r)
(k) denoting the unit vectors normal to

the slip plane and along the slip direction of the system,

respectively. Note that M(r)
(k) is related to the correspond-

ing tensor M(k) for a reference crystal via M(r)
(k) =Q

(r)T

M(k)Q
(r). The slip potential /(r)

(k) depends on the slip

mechanism and on slip history, which may vary with

crystal orientation if strain hardening is orientation-

dependent. The Eulerian strain rate e(r) in the crystal

is obtained by summing up all slips, and the local

constitutive response in the polycrystal is then defined:

e rð Þ ¼
XK
k¼1

c rð Þ
kð ÞM

rð Þ
kð Þ and e xð Þ ¼

XN
r¼1

v rð Þ xð Þe rð Þ ¼ Bu

BS
;

ð2Þ

where e denotes the field of Eulerian strain rate. The

stress potential u equals u(r) when x is in a single crystal

with orientation Q(r):

u x;Sð Þ ¼
XN
r¼1

v rð Þ xð Þu rð Þ Sð Þ

with

u rð Þ Sð Þ ¼
XK
k¼1

/ rð Þ
kð Þ s rð Þ

kð Þ

� �
: ð3Þ
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It is known (e.g., Hutchinson, 1976; Ponte Casta-

ñeda and Suquet, 1998) that the effective viscous

response for the polycrystal may be written in the

form:

ē¼ BŨ

BS̄
; ŨU S̄ð Þ ¼ min

S�S S̄ð Þ
hu x;Sð Þi

¼ min
S�S r̄ð Þ

XN
r¼1

c rð Þhu x;Sð Þi rð Þ; ð4Þ

where Ũ is the effective stress potential for the poly-

crystal. In this relation, ē= hei is the average strain

rate, and S(S̄) is the set of statically admissible stress

fields such that divS=0 in X and hhSi= S̄. In general,

the exact effective stress potential Ũ(S̄) for nonlinear

heterogeneous materials cannot be obtained unless

both the response of the slip systems and the micro-

structure are very simple. An alternative approach is

to evaluate bounds for Ũ, for instance the Reuss uni-

form-stress lower bound, the Taylor uniform-strain-

rate upper bound and the more recent variational self-

consistent upper bound. Estimates for Ũ(S̄) can also

be defined, such as the incremental, tangent, varia-

tional and, more recently, second-order self-consistent

estimates. Since the latter has been described thor-

oughly by Liu and Ponte Castañeda (2004a), only the

essential formulae are recalled, adding some relations

that are required to compute texture evolution.

The second-order estimate of the effective stress

potential for a polycrystal loaded with a macroscopic

stress S̄ is given by:

ŨU S̄ð Þ ¼
XN
r¼1

XK
k¼1

c rð Þ
n
/ rð Þ

kð Þ

�
ŝs rð Þ

kð Þ

�

þ / rð ÞV
kð Þ s̄s rð Þ

kð Þ

�
s̄s rð Þ

kð Þ � ŝs rð Þ
kð Þ

�� o
; ð5Þ

�

where /(k)
(r)V denotes the derivative of /(r)

(k), s̄
(r)
(k) and ŝ (r)

(k)

are computed from the averages and second moments

of stress in the linear comparison composite (see Liu,

2003, for details), and are required to satisfy the

bgeneralized secantQ condition:

/ rð ÞV
kð Þ ŝs rð Þ

kð Þ

�
� / rð ÞV

kð Þ s̄s rð Þ
kð Þ

�
¼ a rð Þ

kð Þ ŝs rð Þ
kð Þ � s̄s rð Þ

kð Þ

�
;

���
ð6Þ

where the a(r)(k) variables define the compliances in the

grains of the linear comparison polycrystal. The latter

has the same microstructure as the associated non-



linear polycrystal, but differs from the latter by a local

linear thermoviscous behavior.

As discussed by Liu and Ponte Castañeda (2004a),

the benergyQ estimate (5) has the advantage of being

exact to the second-order in the heterogeneity con-

trast, but it does not provide an explicit constitutive

relation connecting the average stress S̄ and strain rate

ē. In other words, the effective stress-strain-rate rela-

tion for the polycrystal must be computed by differ-

entiating numerically the relation (5), according to Eq.

(4). A simpler bconstitutiveQ (or generalized baffineQ)
alternative, which is unfortunately not exact to sec-

ond-order in the contrast, but still reasonably close to

the just described estimate, is to make use of the

effective stress-strain-rate relations for the linear com-

parison polycrystal. Such an estimate can be shown to

reduce to the following expression:

ēe ¼
XN
r¼1

XK
k¼1

c rð Þc̄c rð Þ
kð ÞM

rð Þ
kð Þ: ð7Þ

where

c̄c rð Þ
kð Þ ¼ / rð ÞV

kð Þ s̄s rð Þ
kð Þ

��
ð8Þ

are the average slip rates in grains with orientation r.

Correspondingly, the average strain rate in the

crystals of orientation r can be shown to be given

by expressions:

ēe rð Þ ¼
XK
k¼1

c̄c rð Þ
kð ÞM

rð Þ
kð Þ: ð9Þ

Finally, the average continuum spin W̄(r) in grains

with orientation r is related to the mean spin W̄ and the

strain rate ē of the polycrystal through:

W̄W rð Þ ¼ W̄W � RP�1 ēe � ēe rð Þ
�
;

�
ð10Þ

where R and P are microstructural tensors (see Liu,

2003, for details). It is emphasized that tensors in (10),

i.e. R, P and the strain rate ē(r), refer to the linear

comparison composite and depend on the homogeni-

zation model utilized. For the Taylor model, for

instance, where assumption ē(r)= ē is taken, the aver-

age continuum spin is uniform throughout the poly-

crystal and equal to W̄.
5

2.2. Microstructure evolution

The evolution of the granular microstructure of

polycrystals will be assumed to be controlled by the

mean flow (Ponte Castañeda, 1997). In other words,

the shape and orientation of the grains are assumed to

be controlled by the average strain rate ē and spin W̄ in

the polycrystal, which is the simplest hypothesis that

is consistent with preservation of the polycrystal

integrity. More complete descriptions incorporating

local grain effects are certainly possible, but at the

expense of having to introduce and keep track of a

much larger set of two-point statistical variables. In

addition, it is also necessary to keep track of the

orientation of the atomic lattice within each grain,

which will be assumed here to be controlled by the

average spin W̄(r) of the material within the grains. It is

emphasized that the orientation of the grains (the

morphological texture) and that of the atomic lattice

of the material inside the grains (the crystallographic

texture) are different in general (Lipinski et al., 1990).

For the evolution of the morphological texture, it is

reasonable to assume that the average shape of all

grains deforms from and to ellipsoidal shapes, as con-

trolled by the average strain rate ē and spin W̄. Thus,

the aspect ratios w1
(g) and w2

(g) (keeping w3
(g)=1 as a

reference) are governed by the kinematical relations:

ẇw
gð Þ
1 ¼ w

gð Þ
1 ēeV33 � ēeV11ð Þ

and

ẇw
gð Þ
2 ¼ w

gð Þ
2 ēeV33 � ēeV22ð Þ; ð11Þ

where the primes in this subsection denote tensor

components relative to coordinates that are instanta-

neously aligned with the principal axes of the ellipsoi-

dal grains. The principal axes of the morphological

texture are related to the sample (polycrystal) coordi-

nates by an orientation tensor G(g), which is a function

of three Euler angles (u1
(g), /(g), u2

(g)), where Bunge’s

convention for Euler angles is utilized. The expression

for G(g) is standard and has the following matrix form

(see Bunge and Esling, 1982; Nebozhyn, 2000):

G gð Þ ¼
C1C2 � S1S2C S1C2 þ C1S2C S2S

� C1S2 � S1C2C � S1S2 þ C1C2C C2S

S1S � C1S C

3
5;

2
4

ð12Þ



with C1=cos u1
(g), C =cos /(g), C2= cos u2

(g), S1=sin

u1
(g), S =sin /(g), S2=sin u2

(g). The orientation change

of the morphological texture is thus described by the

evolution of the orientation tensor G(g):

ĠG gð Þ ¼ �G gð ÞW̄W gð Þ; ð13Þ

where the spin tensor W̄(g) is due to the average

strain rate ē and spin W̄ in the polycrystal, and its non-

zero components are calculated from the following

relations:

ð1� w
gð Þ
l

� �2

w
gð Þ
k

� �2 Þx̄xg
klV ¼ ð1� w

gð Þ
l

� �2

w
gð Þ
k

� �2 Þx̄xVkl

þð1þ w
gð Þ
l

� �2

w
gð Þ
k

� �2 ÞēeVkl; ð14Þ

with k p l, and wk
(g) denoting the current value of the

aspect ratios. Eq. (14) is identical to well-known kine-

matical relations given by Ogden (1984):

x̄x gð Þ
kl V ¼ x̄xVkl þ

w
gð Þ
k

� �2

þ w
gð Þ
l

� �2

w
gð Þ
k

� �2

� w
gð Þ
l

� �2
ēeVkl ð15Þ

when none of the w(g) is equal. In the case when a pair

of w(g) are equal, for example when w(g)
k =wl

(g) (kp l),
relation (14) has a clearer interpretation, i.e. the princi-

pal axes should be well selected so that ēVkl =0, and
x̄kl
(g)V= x̄ Vkl. This treatment is consistent with the

remarks by Kocks et al. (1998) on the bEulerian
spinQ. Note that when the grains are equiaxed,

w(g)
1 =w(g)

2 =w(g)
3 , it follows that W̄(g)= W̄.

Similarly, the crystallographic orientation of the

lattice inside the r-th grain is described by an orienta-

tion tensor Q(r), whose expression is the same as for

the grain orientation G(g) but with the morphological

angles (u(g)
1 , /(g), u(g)

2 ) replaced by the crystallo-

graphic angles (u(r)
1 , /(r), u(r)

2 ). The evolution of

Q(r) is governed by the bmicrostructuralQ spin,

which is given by the difference between the average

continuum spin W̄
(r) and the average plastic spin

W̄pl
(r) in the grain (see Mandel, 1972):

Q̇Q rð Þ ¼ Q rð Þ W̄W rð Þ � W̄W
rð Þ
pl

� �
; ð16Þ
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where W̄
(r) is given by (10), and W̄pl

(r) results from the

intragrain lattice slips:

W̄W
rð Þ
pl ¼ 1

2

XK
k¼1

c rð Þ
kð Þ m

rð Þ
kð Þ � n

rð Þ
kð Þ � n

rð Þ
kð Þ �m

rð Þ
kð Þ

�
:

�

ð17Þ

Here the c̄(k)
(r) are the average slip rates estimated

consistently from (8) for the second-order self-consis-

tent model.

It is emphasized that the orthogonality of the orien-

tation tensors G(g) and Q(r) must be preserved. This

requires a properly selected numerical scheme for the

time integration of differential Eqs. (13) and (16).

Here, we make use of the following relation for a

skew-symmetric tensor A (i.e. AT=�A),

exp A ¼ Iþ sin a

a
Aþ 1� cos a

a2
A2

with

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
A : A

2

r
; ð18Þ

which is known as Rodrigues’ formula, such that the

grain orientation G(g) at time t+dt is calculated with

G gð Þ t þ dtð Þ ¼ G gð Þ tð Þexp � W̄W gð Þdt
� �

; ð19Þ

and a similar equation applies for the evolution of the

crystallographic orientation tensors Q(r).
3. Single-crystal constitutive behavior and initial

texture

3.1. Slip behavior and hardening law for halite

Halite is an aggregate of ionic crystals with a cubic

structure and is assumed to deform, at room tempera-

ture, by crystallographic slip on three families of sys-

tems: six A ({110}h110i) systems, six B ({100}h110i)
systems and twelve C ({111}h110i, the same as in face-

centered cubic crystals) systems. Their constitutive

behavior is governed by a power-law slip potential:

/ rð Þ
kð Þ sð Þ ¼ 1

1þ n
s rð Þ
0 kð Þc0

jsj
s rð Þ
0 kð Þ

1
A

1þn

:

0
@ ð20Þ



The parameter n (=1 /m) defines the nonlinearity

and depends on temperature (Carter and Heard, 1970).

At room temperature (20 8C), an exponent of n =10 has
been suggested and used in the HEP simulations of

Lebensohn et al. (2003). This value is close to the value

of 10.5 suggested by Carter and Heard (1970) for the A

systems, which are the most active. Here, the value of

10 will be used in the calculations to follow in order to

be able to compare with the HEP simulations. The

reference slip rate c0 is set equal to 10-5 s- 1. The

reference resolved shear stresses (RRSS), s0(k)
(r) , are

different in general for the three families of slip sys-

tems. In this work, the A systems are assumed to be

bsoftQ and the B and C systems are bhardQ. At the
undeformed state, the RRSS are assumed to be 4.8

MPa for A systems and 19.2 MPa, i.e. four times

harder, for B and C systems. These values are very

different from the material parameters employed in our

previous simulations for halite (Liu, 2003), and corre-

spond to a more anisotropic slip behavior, since the A

family has only 2 linearly independent slip systems.

Furthermore, a phenomenological Voce-type hard-

ening law (see Balasubramanian and Anand, 2002)

was adopted in Lebensohn et al. (2003) and will be

employed in this work without modification:

ṡs rð Þ
0 kð Þ tð Þ ¼ H

ssat
kð Þ � s rð Þ

0 kð Þ tð Þ

ssat
kð Þ � s rð Þ

0 kð Þ 0ð Þ

X24
l¼1

����
c rð Þ

lð Þ
c0

����; ð21Þ

where H =105 MPa is the initial hardening parameter,

s(k)
sat are saturation stresses and are set equal to 9.1,

36.4 and 36.4 MPa for the families A, B and C,

respectively. Note that the summation above is taken

over all slip systems in a grain. It should further be

noted that all material parameters above, that are listed

in Table 1, were selected for the best agreement

between the HEP prediction of the stress-strain
Table 1

Halite single crystal parameters at 20 8C

A({110}h110i) B({100}h110i) C({111}h110i)
m =1 /n 0.1 0.1 0.1

c0 0.00001 0.00001 0.00001

H 105 105 105

s0 4.8 19.2 19.2

ssat 9.1 36.4 36.4

Data taken from Lebensohn et al. (2003). s’s and H are in MPa, c0
is in s-1.
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response and the experimental results (Lebensohn et

al., 2003), and they are possibly not optimized for

other simulations. Nevertheless, use will be made of

these parameters, as the main purpose in this work is

to investigate the model predictions for texture evolu-

tion, which should not be too sensitive to the hard-

ening parameters for high-contrast polycrystals (Liu et

al., 2003).

3.2. Experiments and initial texture

Recent experiments were performed by loading

polycrystalline halite samples in a triaxial multi-

anvil pressure apparatus (see Kern, 1979, for details).

The applied stress was of the following type (Leben-

sohn et al., 2003):

S̄S ¼ r1 e1 � e1 þ e2 � e2ð Þ þ r3e3 � e3; ð22Þ

where e3 refers to the extension direction, and both r1

and r3 have negative values. The samples were pre-

loaded with r1=r3=�50 MPa, and then deformed by

increasing the magnitude of the lateral stress r1 and

adjusting the latter value such that a constant axial

strain rate of 10-5 s-1 was obtained. The polycrystal-

line halite specimens were prepared from rocksalt

powder by compaction, without annealing. In this

work, the polycrystalline samples are assumed to be

fully isotropic initially, i.e. the grains are statistically

equiaxed (w1
(g)(0)=w2

(g)(0)=1) and the ODF for the

crystallographic texture is uniform. Because of the

available computer power and the numerical effi-

ciency of the yet-to-be-optimized program for the

second-order method, a minimum set of discrete crys-

tal orientations is desired. Since the material is initi-

ally isotropic and deforms in an axially symmetric

manner, use has been made of 45 equally weighted

and uniformly distributed discrete orientations in a

stereographic triangle, as shown in Fig. 1a, where

equal-area projections are used, as in all pole figures

shown in this paper. Contributions from the orienta-

tions outside the triangle are obtained by proper sym-

metrization of the averages over the triangle

(Nebozhyn, 2000), and it has been checked that a

sufficient accuracy was obtained for the effective

flow stress and field quantities in undeformed FCC

cubic crystals (Lebensohn et al., 2004b). It should be

pointed out, however, that this is a much smaller set of

representative orientations than in the HEP numerical
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Fig. 1. (a) Inverse pole figure of the initial texture of the isotropic halite polycrystal, using 45 equally weighted and uniformly distributed

orientations in a stereographic triangle. (b) Effective flow stress r̃0 for untextured, power-law halite-type polycrystals with equiaxed grains

loaded in uniaxial tension, as function of the strain-rate sensitivity m and normalized by the reference resolved shear stress for systems A.
simulation of Lebensohn et al. (2003), where 4096

randomly distributed orientations were used, and thus

is not appropriate for a very accurate description of

deformation texture. Nevertheless, the choice is a

compromise between accuracy and efficiency, which

will allow comparisons between different estimates.

It should be emphasized at this stage that halite poly-

crystals can behave very differently depending on water

content and confining pressure, i.e. with or without fluid-

assisted grain boundary migration (cf. Watanabe and

Peach, 2002; Ter Heege et al., in press). Obviously,

these effects can have a major influence on the micro-

structural evolution including texture patterns, as well

as on the macroscopic response of the polycrystal.

In this work, again consistent with the work of Leben-

sohn et al. (2003), the assumption is made that the

halite polycrystal is under bdryQ conditions, so that

dynamic recrystallization can be neglected.
4. Initial response of the polycrystal and texture

evolution

4.1. The effective flow stress of untextured

polycrystals

Comparisons are first carried out between the Tay-

lor, tangent, variational, and second-order self-consis-
8

tent estimates for the effective flow stress in

untextured halite-type polycrystals under axisym-

metric loading, taking the same reference resolved

shear stresses as in Table 1, but different rate-sensi-

tivity exponents m ranging from 1 (linear slip) to 0

(rate-insensitive limit). For isotropic power-law poly-

crystals, the effective flow stress r̃0 is defined from

the effective stress potential Ũ(S̄) (4) via

ŨU S̄Sð Þ ¼ 1

1þ n
r̃r0c0

�
r̄re

r̃r0

�1þn

; ð23Þ

where r̄re ¼
ffiffiffiffiffiffiffiffiffi
3
2
s̄sds̄s

q
is the effective von Mises equiva-

lent stress, and s̄= S̄�1 /3(trS̄) I. The second-order

predictions for the effective flow stress are given with

two versions, namely the benergyQ estimate, associated

with (5) and denoted SOE(U) in Fig. 1b, and the

bconstitutiveQ estimate, which is calculated from the

stress-strain rate relation (7) with an effective strain rate

ē =�1 /2c0(e1�e1+e2�e2)+c0 e3�e3, and denoted

SOE(A). In this work, the short-hand notations VSC,

SOE and TGT denote variational, second-order and

tangent self-consistent results, respectively. For refer-

ence, the incremental self-consistent (INC) (Hill, 1965;

Hutchinson, 1976) and Reuss (Reuss, 1929) estimates

are also shown in Fig. 1b. The effective flow stresses

are plotted as functions ofm, and are normalized by the

initial reference resolved shear stress of the A systems,



sA. The various self-consistent estimates start from the

same value for the linear case (m =1), and diverge as

the slip nonlinearity increases. The incremental esti-

mate, which is much lower than the Taylor upper bound

at m =1, tends to the latter in the rate-insensitive limit

(mY0). The variational self-consistent estimate is

lower than the Taylor upper bound by about 0.4 sA
for all rate-sensitivity exponents m. The second-order

estimates are softer than the VSC result, as they should,

since the latter sets a rigorous upper bound for all self-

consistent estimates. There is a bduality gapQ (Liu and

Ponte Castañeda, 2004a) between the second-order

estimates, with the bconstitutiveQ estimate being some-

what higher than the corresponding benergyQ version
form b1. However, the gap seems to vanish in the rate-

insensitive limit, as was found for other polycrystals

(Liu and Ponte Castañeda, 2004a,b). At the rate-insen-

sitive limit, the second-order estimates tend to about

5.85 sA, which is 1.4 sA softer than the VSC result and

is considerably stiffer than the Reuss lower bound. On

the other hand, the tangent self-consistent estimate

agrees with the SOE results for weakly nonlinear

cases when mz0.3, and falls quickly to the Reuss

lower bound as m Y 0. At the rate sensitivity that

applies for halite, i.e. m =0.1, the TGT result is drop-

ping and is below the bconstitutiveQ version of the SOE
estimate by about 0.9 sA or 4.3 MPa. In comparison

with the HEP result (Lebensohn et al., 2003) at zero

axial strain, which is about 28MPa, the SOE(A) (~29.2

MPa) stands out as the most accurate one. It should be

noted that the HEP computation referred to here

employed a one-element-per-grain discretization (Beau-

doin et al., 1995), and thus necessarily leads to an overly

stiff stress-strain response (because the discretization is

not sufficient in the context of the relevant variational

principle). In other words, the energy version of the

SOE, denoted SOE(U) in the plots, could be more ac-

curate. However, as already mentioned, the stress-strain

relation associated with the second-order benergy’’ esti-
mate (5) has to be computed by means of numerical

differentiations, and, for this reason, the bconstitutiveQ
version will be employed in the simulation of texture

evolution below, and denoted as bplainQ SOE.

4.2. Texture evolution

The simulation of texture evolution in polycrys-

tals is achieved incrementally. At each increment,
9

the instantaneous response in the polycrystal

induced by an increment of external loading is

evaluated first, with fixed material parameters

and microstructural variables. In this step, the

macroscopic stress-strain relation and the average

slip rates are estimated by applying the homoge-

nization models. The increment ends with the

updating of the reference resolved shear stresses,

sA, sB and sC, and the microstructural variables,

w1
(g),w2

(g) and Q(r) by using the hardening law (21)

and the kinematics relations (11) and (16), respec-

tively. For symmetry reasons, in the simulation of

the experimental tests considered, we applied either

an axisymmetric stress, S̄ =�1 /2r(e1 � e1 + e2 �
e2)+r e3 � e3, which is actually equivalent to the

loading (22) applied in the experiments, since a

hydrostatic pressure does not affect viscoplastic poly-

crystals, or an axisymmetric strain. The use of a strain

condition is more convenient for most homogeniza-

tion models, but the version of the second-order

method that we use requires applying a stress, as

mentioned in the previous section. Consequently,

r increments were adjusted during the SOE simula-

tions in order to achieve a constant axial strain rate

of 10-5 s-1.

All homogenization simulations, except for those

arising from the second-order method, used similar

increments in the axial strain, which correspond to

60 equal steps for the extension test up to 30%

axial strain. Finer incremental steps have been

tested, but did not yield significant effects on the

stress-strain relation and the texture. The second-

order method, which involves solving a large set of

highly nonlinear equations, needs much finer strain

increments in order to ensure convergence. Axial

strain steps of 10 �4 are required in the early stage

of deformation, when the material properties evolve

rapidly. After that, the RRSS are closer to their

saturation values, and larger steps are possible, yet

still finer than those for the other models. As a

result, the time required for a second-order simula-

tion using 45 representative orientations is about

three days on a computer equipped with a 2.8 GHz

Pentium IV processor. Simulations were also

attempted with a set of 135 orientations showing

that much finer steps were needed, with each step

requiring at least 9 times longer than with 45

orientations.



4.3. Macroscopic stress-strain relations and relative

activities in tension

Fig. 2a presents the macroscopic stress-strain

responses predicted by the Taylor, variational (VSC),

second-order (SOE) and tangent (TGT) self-consistent

methods, together with the corresponding bhybrid ele-

ment polycrystalQ (HEP) results and experimental mea-

surements of Lebensohn et al. (2003). As expected, the

Taylor model predicts the highest stress-strain curve,

followed by the VSC, HEP and SOE models in order,

and with the TGT estimate being the lowest. The TGT

estimate increases rapidly for small strain, like the

others, and reaches a plateau for axial strains larger

than 15%. The other models all capture the general

shape of the stress-strain curve given by the HEP

simulation, with different magnitudes. The general

shape of these curves can be compared with what

was obtained by Wenk et al. (1989) for the Taylor

and TGT models: without strain hardening, the effec-

tive stress was found almost constant, while a linear

strain hardening induced an almost linearly increasing

effective stress. This suggests that the stress-strain

response of halite in axisymmetric extension reflects

directly the strain hardening law and is uncoupled from

the texture evolution, which is a remarkable feature. In

the present case of a saturating hardening, a decreasing

slope of the stress-strain curve is observed, with the
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SOE model giving the largest slope after 30% exten-

sion. It is thus speculated that all these homogenization

models, with the possible exception of the tangent

model, could predict stress-strain curves that agree

with the HEP and experimental results, by suitably

choosing the crystal parameters. On the other hand,

the upper-bound nature of the variational self-consis-

tent estimate implies that its closest but lower neigh-

bor, the HEP result, could also be too stiff for the

polycrystal. Consequently, the material parameters

used in the simulations (Table 1) could be underesti-

mates for the actual values. In other words, the second-

order estimates would be expected to possibly provide

an even better agreement with the experimental results

if more accurate value for the material parameters were

available.

The various models that are applied here predict

different slip rates on the slip systems that are avail-

able in the polycrystal, and one method for comparing

the results consists in computing the relative activities

of the families of slip systems. The relative activity is

defined as the sum of the slip rates obtained on all the

systems that belong to a given family, whatever the

grain orientation they belong to, divided by the sum

over all the available systems. Fig. 2b shows the

development of the relative activity of A systems

during deformation (the HEP data was provided by

R.A. Lebensohn). For all models, the C systems yield
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such little slip that the relative activity of the B

systems is just slightly lower than one minus that of

the A systems. It may first be observed that the order

of the curves in Fig. 2a reflects exactly the order of the

activity of the B (hard) systems, even when strain

hardening develops and texture evolves. It may also

be noted that SOE shows a distinctive feature: the

activity of the A systems is much closer to the TGT

value than to the HEP results, although the opposite

applies to the stress-strain curves. For the TGT and

SOE models, as well as for the HEP simulations, the

total activity on A systems drops during the early

stage of deformation, then flips up smoothly after

about 2.5% axial strain, and starts decreasing slowly

after 15% (10%) strain for SOE (HEP), but not for

TGT. At the other extreme, the Taylor model gives a

steadily and slowly decreasing activity. The initial

reduction may be explained by the hardening behavior

at the grain level and the sensitivity of the model to

the contrast, namely the ratio between the reference

resolved shear stresses (RRSS) for the hard (B and C)

and soft (A) systems. At the early stage of deforma-

tion, the hardening law (21) increases the RRSS

quickly for all slip systems in a grain by approxi-

mately the same amount, and hence reduces the con-

trast. For instance, the contrast for most grains, that

starts from a value of 4 (Table 1), is found in the VSC

and SOE simulations to reach the lowest value, about

3.0, at approximately 2% axial strain, and turns back

to 3.8 and more after 15% strain (recall the contrast

for saturation values is 4, Table 1). Thus the tangent

model, that favors the soft A systems, starts activating

some additional B systems. Moreover, the hardening

is rapidly saturated by the intense activity associated

with the small number of active systems in the TGT

model, which may explain the plateau shown in Fig.

2a. The Taylor model, on the other hand, requires

most A and B systems to be activated simultaneously

in order to accommodate an arbitrary strain rate, and

consequently predicts very stable relative activity for

all systems and a slower saturation of strain harden-

ing, as has been found in previous simulations on

titanium (Liu et al., 2003).

4.4. Texture evolution in axial extension

In order to interpret properly the texture-evolution

predictions in halite, it is important to recall that the
11
rotation of the crystallographic axes is controlled by

Eq. (16), where the average continuum spin is given

by Eq. (10) and the plastic spin by Eq. (17). In the

present simulation, the overall spin W̄ is 0, and thus

the average continuum spin W̄ (r) is determined by the

second term of Eq. (10) only (except for the Taylor

model, where it is zero), where R and P vary when

both the morphological and the crystallographic tex-

tures evolve. It should be noted that the version of the

tangent model that we use in this paper assumes all

grains have the same shape, for consistency with the

theory presented above, whereas different grain

shapes develop for different crystallographic orienta-

tions in the simulations of Wenk et al. (1989) and

Lebensohn et al. (2003). This should not lead to

significant differences in the moderate range of strain

considered in this paper. It may also be recalled that

the A systems do not contribute to the plastic spin: as

stressed by Wenk et al. (1989) and Lebensohn et al.

(2003), each system in the {110}h110i family can be

paired with another, by permuting n(k)
(r) andm(k)

(r), where

the slip rate is equal and the plastic spin is exactly

opposite. As a result, the contribution to texture evo-

lution due to plastic spin is limited to slip on the B

systems essentially, since the computed activity on the

C systems has been found very small.

Fig. 3 shows the texture history of halite in axial

extension as predicted by the Taylor, VSC, SOE and

TGT models, when the 45 initially uniformly-distrib-

uted orientations shown in Fig. 1a are used. In con-

trast with the similitude of the macroscopic stress-

strain curves, the models now distinguish themselves

by giving different patterns for the texture develop-

ment. In the Taylor model, all poles move towards the

[111] direction, with those initially in the center region

of the triangle moving the fastest, and those near the

lower [001]-[110] edge the slowest. The VSC model

predicts almost the same pattern of texture evolution,

except for some poles near the [001] corner that are

heading to [001] slowly. The differences in the texture

development can be interpreted, at least partly, in

terms of the relative activities that these models pre-

dict (e.g., Wenk, 1999). Obviously, the dominant B

slip and small amount of C slip for the Taylor model

lead to a strong [111] texture. For the VSC model, the

B systems are relatively less active, and some weak

[001] texture is predicted. Similarly, the tangent model

gives the least amount of B slip and produces a
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bimodal texture: about 1/4 of the poles shift to [111]

and give a peak with moderate density; the rest of the

poles move towards [001] and form the main peak.

The texture predicted by the second-order method

develops a pattern that combines some characteristics

of the Taylor and TGT estimates, i.e. the number of

poles that move towards the [111] direction is much

less than that in the Taylor estimate, but it is larger

than with the TGT prediction. Other poles, especially

those initially near the [001] corner, remain almost

static during deformation. The resulting texture should

thus be also bimodal, like the TGT prediction, but the

primary peak should now be on the [111] corner, with

a density of poles near the [001] almost unchanged

from its initial value, and thus smoother than the TGT

prediction.

The patterns shown in Fig. 3 are a perfect illustra-

tion of the large differences that are produced when a
12
given homogenization model for linear materials,

namely the self-consistent model, is extended by dif-

ferent methods (TGT, VSC, SOE) to nonlinear beha-

viors. Moreover, they also show that the global

activity on a family of slip systems, the B-type in

the present case, is not sufficient for interpreting the

texture evolution.

4.5. Texture predicted by the SOE method

As has been mentioned previously, a set of 45

representative orientations reaches the limit of the

computational power that was available for the sec-

ond-order simulations. On the other hand, the set of

45 discrete orientations is inadequate for plotting

contour lines. Therefore, 20 sets of 45 randomly dis-

tributed orientations were generated in the stereo-

graphic triangle, and were utilized individually for



simulations with the second-order method. When

combined with the result given by the set of 45

uniformly distributed orientations, this leads to a

total of 945 final orientations that are used to produce

a single pole figure where contour lines can be

plotted. In concept, such a treatment is similar to the

ensemble averaging that has been applied in the FFT

simulations of Lebensohn et al. (2004a). However,

since 21 independent simulations have been per-

formed, the interactions between grains in different

sets have been ignored, and the resulting deformation

texture is not expected to be very accurate. Fig. 2a

shows also the highest and lowest stress-strain rela-

tions that were obtained from the SOE simulations
Fig. 4. Deformation texture of halite after 30% axial strain at room tempera

second-order (SOE) self-consistent models, and (d) the bhybrid element p

R.A. Lebensohn). All figures use the same gray scale, and extremal value
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when using the 20 sets of 45 random orientation. The

stress averaged over the 20 SOE simulations is

slightly higher than the SOE curve that uses 45 uni-

form orientations, by a maximum of 2.5 MPa for a

strain around 5%. It can be observed that the highest

SOE result almost overlaps with the HEP stress-strain

curve, while the lowest one is still significantly higher

than the TGT prediction.

It is nevertheless interesting to compare this ensem-

ble-averaged result for the second-order model with

other simulations, as in Fig. 4, where the 945 orienta-

tions were considered simultaneously for the Taylor

and TGT models, and 4096 were used in the HEP

simulations. Fig. 4d uses data provided by R.A. Leben-
ture, according to (a) the Taylor model, (b) the tangent (TGT) and (c)

olycrystalQ (HEP) model (replotted from original data provided by

s reached on each pole figure are also indicated.



sohn, so that the same plotting program could be

employed in order to reduce possible biases associated

with the plotting routines. The predictions of the VSC

method are of limited interest because of their simili-

tude with the Taylor results, and are not shown. As

already discussed in the previous subsection, the tex-

ture given by the SOE method is bimodal, but the

intensity at [111] is found higher than with all other

models. Even the Taylor model leads to a slightly

lower value, probably because of the shoulder that

forms along the [001]–[111] edge. The [001] area

has an intensity that is comparable to what the HEP

model gives, but the latter induces the lowest [111]

peak among all models. This is again a distinguishing

feature of the second-order estimates, as was the slope

of the stress-strain curve and the level of the activity of

the type-A systems, and it is important to test this
Fig. 5. Deformation texture of halite after 15% axial strain at room tempera

Lebensohn et al. (2003) and the predictions of the second-order method.

same scale as the experiments, or (c) the same scale of in Fig. 4.
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result against the experimental measurements. In this

connection, it is relevant to mention that Lebensohn et

al. (2003) found that the peak intensities predicted by

the TGT and HEP models were lower than the experi-

mental observations, since the opposite is generally

found when models are compared to experiments with

other materials. Fig. 5 shows the pole figure obtained

experimentally by Lebensohn et al. (2003) for a 15%

axial strain in extension, and the corresponding results

given by the second-order method (combining 21

independent calculations, as explained above). (In

this figure, the SOE predictions are shown in part b

using the same gray scale as in the experiments, and in

part c using the same gray scale as in Fig. 4.) It should

first be noted that the SOE texture shown in Fig. 5c is

less sharp than that shown in Fig. 4c, with the same

contour levels, which means that the texture continues
ture. Comparison between (a) the experimental measures taken from

The latter results are plotted using two different gray scales: (b) the



to evolve significantly between 15% and 30% axial

strain. Moreover, the measured [111] peak is higher

than the simulation (compare Fig. 4a and b, with the

same contour levels), and thus the predicted [111] peak

does not seem excessively large, as might have been

erroneously deduced when the SOE texture was found

sharper than the Taylor one in Fig. 4. The [001] peak is

even slightly lower than the experimental measure, but

still higher than with the Taylor, TGT, and HEP results

(second line of Fig. 14 of Lebensohn et al., 2003). In

summary, the SOE prediction shows the best agree-

ment with the experimental pole figure at 15% axial

strain, amongst all models.
5. Concluding remarks

In this work, the second-order self-consistent

method has been used, for the first time, to simu-

late texture evolution in viscoplastic polycrystals.

Halite at room temperature has been chosen as the

relevant material system because of its strongly

nonlinear and anisotropic constitutive behavior. It

should be mentioned in this context that a study

of halite at high-temperature conditions was carried

out by Gilormini et al. (2003) making use of the

earlier bvariationalQ method. At high temperature

the halite crystals exhibit fairly isotropic behavior,

leading to nearly uniform fields in the polycrystal,

and so the Taylor model is quite sufficient for

predicting the effective behavior and texture evolu-

tion in halite at such temperatures. On the other

hand, at room temperature, where the fields in the

polycrystal are strongly heterogeneous, the differ-

ences between the Taylor and various self-consis-

tent models are much more significant. In this

study, it has been found that the overall perfor-

mance of the bsecond-orderQ method, as measured

by comparisons with the corresponding bhybrid
element polycrystalQ simulations, appears to be

better than the Taylor, variational self-consistent

and tangent self-consistent models. It also gives

patterns for the stress-strain relation and texture

development that are more consistent with the

experimental observations. It is conjectured that

the texture development patterns predicted by

these models provide more reliable measures of

overall accuracy than the macroscopic stress-strain
15
relations. This is because the latter can be more

easily adjusted by choosing the crystal parameters

within physically meaningful ranges, at least for a

specific type of loading condition, while the for-

mer are less sensitive to the crystal parameters,

and more sensitive to the particular model used in

the simulation.

In all the simulations of texture evolution carried

out in this work, as well as in most numerical works

found in the literature, the basic hypothesis is made

that all crystals with the same initial orientation

rotate as one unit, or phase, whose movement is

assumed to be controlled by the baverageQ quantities
over all grains in that phase. Consequently, the

orientations of the grains in any phase remain the

same throughout the evolution process. However,

recent work (Lebensohn et al., 2004a,b) has shown

that the strain-rate (and stress) fields inside the

grains can exhibit significant fluctuations, especially

for highly nonlinear and anisotropic constituent

grains, which suggests that the above evolution

hypothesis may be too simplistic. In fact, this

hypothesis is similar, in some sense, to the bone-
element-per-orientationQ scheme employed in stan-

dard FEM simulations of polycrystals (e.g., Balasu-

bramanian and Anand, 2002), which should be less

accurate than more sophisticated numerical methods,

such as the FFT full-field simulation (e.g., Michel et

al., 2000; Lebensohn, 2001). Moreover, given that

the new second-order self-consistent method also

yields estimates for the fluctuations of the strain-

rate field in the grains (Liu and Ponte Castañeda,

2004a,b), it is natural to suggest that improved

schemes for the texture evolution in polycrystals

may be possible making use of the additional fluc-

tuation information. Of course, such improved

schemes would require a more complete kinematical

description of the texture development process,

which is yet to be elucidated.
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Ponte Castañeda, P., 2002. Second-order homogenization estimates

for nonlinear composites incorporating field fluctuations. I—

Theory. J. Mech. Phys. Solids 50, 737–757.
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