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Field statistics in nonlinear composites.
I. Theory

By MarTin I. IptarTh? AND PEDRO PONTE CAsTANEDADZ™

' Department of Mechanical Engineering and Applied Mechanics, University of
Pennsylvania, Philadelphia, PA 19104-6315, USA
2Laboratoire de Mécanique des Solides, C.N.R.S. UMR 7649, Département de
Mécanique, Ecole Polytechnique, 91128 Palaiseau Cedex, France

This work presents a means for extracting the statistics of the local fields in nonlinear
composites from the effective potential of suitably perturbed composites. The idea is to
introduce a parameter in the local potentials, generally a tensor, such that differentiation
of the corresponding effective potential with respect to the parameter yields the volume
average of the desired quantity. In particular, this provides a generalization to the
nonlinear case of well-known formulas in the context of linear composites, which express
phase averages and second moments of the local fields in terms of derivatives of the
effective potential. Such expressions are useful since they allow the generation of
estimates for the field statistics in nonlinear composites, directly from homogenization
estimates for appropriately defined effective potentials. Here, use is made of these
expressions in the context of the ‘variational’, ‘tangent second-order’ and ‘second-order’
homogenization methods, to obtain rigorous estimates for the first and second moments
of the fields in nonlinear composites. While the variational estimates for these quantities
are found to be identical to those proposed in previous works, the tangent second-order
and second-order estimates are found be different. In particular, the new estimates for
the first moments given in this work are found to be entirely consistent with the
corresponding estimates for the macroscopic behaviour. Sample results for two-phase,
power-law composites are provided in part II of this work.

Keywords: nonlinear homogenization; variational methods; field fluctuations

1. Introduction

The main objective of homogenization is to predict the macroscopic behaviour of
composite materials in terms of the behaviour of their constituents and
prescribed statistical information about their microstructure. Recent work in
this area include bounds on the overall stress—strain relation for composites by
Talbot & Willis (2004). However, in many circumstances, it is also of interest to
estimate the statistics of the spatial distribution of the local fields within the
composite. For instance, in viscoplastic composites and polycrystals undergoing
finite deformations, a certain knowledge about the distribution (e.g. the phase
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averages) of the strain-rate field is necessary to be able to account for the
evolution of the microstructure, which, in turn, can strongly affect the
macroscopic behaviour. Also, information on the stress distribution can be
useful for developing theories of damage nucleation and evolution in
heterogeneous material systems. In the context of linear composites, there are
already well-known exact formulas expressing the first and second moments of
the local fields in the phases, in terms of the effective potentials (e.g. Bobeth &
Diener 1986; Kreher 1990; Parton & Buryachenko 1990; Ponte Castafieda &
Suquet 1998; Lipton 2005). Such formulas are useful as they allow the extraction
of estimates for the statistics of the local fields from homogenization estimates for
the effective potentials. In this work, we present a means for generalizing those
formulas to the case of monlinear composites, and we make use of them in the
context of nonlinear homogenization methods based on linear comparison
composites (LCCs; Ponte Castafieda 1991, 1996, 2002a). Some illustrative results
for two-phase, power-law composites are provided in part II of this work.

2. Effective behaviour

We consider composite materials made of N different homogeneous constituents,
or phases, which are assumed to be randomly distributed in a specimen occupying
a volume Q, at a length scale that is much smaller than the size of Q and the scale
of variation of the loading conditions. The constitutive behaviour of each phase is
characterized by conver potential functions w'” (r=1, ..., N), such that the
stress o and strain & tensors are related by

o=0w(ze), w(xe) = ZX(T)(:B)’U)(T)(S), (2.1)

r=1

where d, denotes differentiation with respect to &, and the characteristic
functions x (" serve to describe the microstructure, being 1 if the position vector x
is in phase r, and 0 otherwise. This constitutive relation can be used within the
context of the deformation theory of plasticity, where ¢ and & represent the
infinitesimal stress and strain, respectively. Equation (2.1) applies equally well to
viscoplastic materials, in which case o and & are the Cauchy stress and Eulerian
strain rate, respectively.

Let (-) and (-)(” denote the volume averages over the composite () and over
phase r (Q(")), respectively. The effective behaviour of the composite, which is
defined as the relation between the average stress & = (o) and the average strain
&€= (&), can be characterized by an effective strain potential W, such that

N

=0W (), W) = inf (wze))= inf > (w ()", (2.2)
e (¢) e€K(¢) p

where ¢” denotes the volume fraction of phase 7, and (&) = {e| there is u such
that e=(1/2)[Vu+(Vu)?'] in Q, u=&x on 0Q} is the set of kinematically
admissible strain fields consistent with an average strain &.



Alternatively, the behaviour of the phases can be characterlzed by convex
stress potentials u(” , which are the Legendre transforms of w ), in other words

u(r)(d) = (w")"(e) = suplo- — w'(e)]. (2.3)

Then, the local stress and strain are related by &= d,u") (o), and the effective
behaviour can be described in terms of the effective stress potential U, such that
N
§=0,0(a), U(6)= inf (u(z,0)) = inf N ul(a)) ", (2.4)
o€S(a) o€S(a) =
where S(@) is the set of divergence-free stresses such that & = (o). The variational
formulations (2.2) and (2.4) can be shown to be completely equivalent, in the sense
that the functions W and U are Legendre duals of each other, i.e. U= W
In §3, use will be made of the following lemma. Its proof has been given by
Ponte Castaneda & Suquet (1998) (see appendix B) for a scalar parameter ¢, but
the proof applies mutatis mutandis when ¢ is a tensor. It is a simple consequence
of the chain rule, plus the fact that the effective potentials W, and U, are
stationary with respect to &; and @, respectively.

Lemma 2.1. Consider convex local potentials w; and u; depending on a parameter
t. Then, the corresponding effective potentials W, and U, also depend on t, and their
derivatives with respect to this parameter are given by

where the local fields €, and & are the solutions to the minimization problems (2.2),

and (2.4)s, respectively, with w and u given by w; and u,. (The derivatives are taken
with & and & held fized.)

3. Exact relations for the statistics of the local fields

In this section, a methodology is provided for extracting, at least theoretically,
the statistics of the strain and stress fields, from the knowledge of the effective
potentials of suitably perturbed problems. In general, the statistical information
of interest corresponds to the first, second and higher moments of the fields in
each phase. This is accomplished through the following propositions.

Proposition 3.1. Consider a composite with local potential (2.1). The first
moment, or phase average, of the strain in phase r is given by

. . 1 ~
1) — e\ =
&= <8> - C(T) a-r(") WT 7=’
where 77 is a constant, symmetric, second-order tensor, and W_ denotes the
effective potential of a composite with (perturbed) local potential

(3.1)

Zx &) +x" ()7 e. (32)

Proof. The local potential (3.2) is convex for any value of the parameter 7,
and so the corresponding effective potential W ., which depends on T(T), is well



defined. It then follows from lemma 2.1 that
3 Wo(8) = (00w (m,&,)) = (X (@)e,) = " (e), (3.3)

where ¢, is the solution to the minimization problem (2.2), with a local potential
given by equation (3.2), and the subscript 7 has been used to emphasize that it
depends on the parameter 7. In particular, for 77=0, &, reduces to the strain
field in a composite with local potential (2.1),, and so relation (3.1) follows. W

Proposition 3.2. Consider a composite with local potential (2.1). The even
moments of order 2K (K=1,2,3, ...) of the strain field in phase T are given by

(t®e®...®e)") = (
— —— c
2K times

LW o

0 (3.4)

where 17 is a constant, completely symmetric, positive semi-definite tensor of
order 4K (from the space of 2Kth tensors to the space of 2Kth tensors), and W, is
the effective strain potential of a composite with (perturbed) local potential

1

(r) (r)

§ o &) +x7(@) 5 . (Egen--- ) (3.5)
2K times

Proof. Since ¢ is a positive semi-definite tensor, the local potential (3.5) is
convex, and so the corresponding effective potential W, is well defined. Then, it
follows from lemma 2.1 that

9y Wt(é) = (at(7')wt($a &) = 2—<X(T)($)8t®8t®---®3t>
| S

2K times )

(3.6

§®e®... ®st>(r),
—————

2K times

2K<

where ¢, is the solution to the minimization problem (2.2), with a local potential
given by equation (3.5). For t7=0, & reduces to the strain field in a composite
with local potential (2.1),, and so relation (3.4) follows. [ |

Thus, we have obtained identities expressing the phase averages and even
moments of the strain field in terms of suitably perturbed effective potentials. It
is noted that analogous relations for the odd moments (higher than one) of the
strain could be obtained in a similar manner, but this is mathematically more
involved, since the perturbed potentials would be non-convex and unbounded
from below.

In §4, the focus will be on moments up to second order, and it is then useful to
consider the following corollary of proposition 3.2 (K=1).

Corollary 3.3. Consider a composite with local potential (2.1). The second
moments of the strain in phase r are given by

" 2
<£®8>(’) =—0,0
0

N =g (3.7)



wherej(") s a constant, symmetric, positive semi-definite, fourth-order tensor,
and W, denotes the effective potential of a composite with (perturbed) local
potential

ZX &) +x"(x )—e-AWe. (3.8)

It is noted that the phase covariance tensors Cgr), which provide a measure of
the intraphase field fluctuations, can be written in terms of (3.1) and (3.7),

CI = ((e—e")®(e—&")N" = (e@e)") —& @& (3.9)

When the potentials w'” are quadratic, expressions (3.1) and (3.7) reduce to
the well-known formulas for linear composites (Kreher 1990; Parton &
Buryachenko 1990; Ponte Castafieda & Suquet 1998). Of course, it is possible
to obtain, by completely analogous means, corresponding expressions for the
statistics of the stress field o in terms of suitably perturbed stress potentials. For
brevity, such analogous expressions will not be spelled out here. Instead, it is
shown next how the statistics of the stress field may be obtained in terms of
suitably perturbed strain potentials, which may be more useful in some cases.

Proposition 3.4. Consider a composite with local potential (2.1). The first
moment, or phase average, of the stress in phase 7 is given by

. 1 =

C(r) n nin

where n(r) is a constant, symmetric, second-order tensor, and VNV,] denotes the
effective potential of a composite with (perturbed) local potential w, given by the
Legendre transform of u,, w,=u,, where

N
Zx ) +x" (@) (3.11)
s=1

Remark 3.5. It is noted (van Tiel 1984) that w, can be written in terms of the

(unperturbed) potentials " as

Zx &) +x" (@) (e —n"). (3.12)

Proof. The local potential (3 12) is convex for any value of the parameter ",
and so the corresponding effective potential W »» Which depends on n( ), is Well
defined. Then, it follows from lemma 2.1 that
d. V~V,7(§) = <a

n nan(w’ 3n)>

= (@30 (g, —n'")) == (a,)", (3.13)

where ¢, is the solution to the minimization problem (2.2), with a local potential
given by (3.12), and o, =20, w'” )(s —n") is the corresponding stress. Relation

(3.13) is valid for any Value of . In particular, for n(r) =0, ¢, and o, reduce to
the strain and stress fields in a composite with local potential (2.1)s, and so
relation (3.10) follows. |



Proposition 3.6. Consider a composite with local potential (2.1). The even
moments of order 2K (K=1,2,3, ...) of the stress field in phase r are given by

2K ~
<0'®0'®...®0'><T> Z_Wat(r) Wt ) —p’ (314)
2K times
where £ is a constant, completely symmetric, positive semi-definite tensor of
order 4K, and W, is the effective strain potential of a composite with a local

potential w; given by the Legendre transform of w;, w,=u;, where

N
1
=Y (@) u (o) + X" (x )QKtEJT;C)lm(aljakl...). (3.15)

Proof. Let U, denote the effective stress potential of a composite with local
potential (3.15). Since ") is positive semi-definite, the potential (3.15) is convex,
and so U, is well defined. Let the strain potential w; be the Legendre dual of
(3.15), i.e. wy = u, and let W, be the corresponding effective strain potential.
Then, W,= U, or

W,(g) = sqp[&-g— U,(a)). (3.16)

Assuming the supremum over a' in (3.16) is attained at a stationary point, and
differentiating with respect to " we obtain
~ ~ C(T) (7)
at(,-) Wt‘t(7>)=0 = _at(,) Ut = — <0'®0'® ®0’> y (317)

=0 2K —_————
2K times

where the last identity follows from the dual version of proposition 3.2. Relation
(3.14) follows immediately. [

In §4, use is made of the following corollary of proposition 3.6 (K=1), for the
second moments of the stress.

Corollary 3.7. Consider a composite with local potential (2.1). The second
moments of the stress in phase r are given by
2 ~

(6®@a)") =———9 W

3.18

Klun=g’

whereJL(r) is a constant, symmetric, positive semi-definite, fourth-order tensor,
and W, denotes the effective potential of a composite with (perturbed) local

potential w, given by the Legendre transform of w,, w, = u,, where
1
ZX o)+ x"(x )20-,;(7“).1. (3.19)

It is straightforward to verify that relations (3.1) and (3.10) for the phase
averages are consistent with the macroscopic averages (2.2); and (2.4);, so that

N
=3 6, g =3 g, (3.20)

il
-
<
Il
—

Once again, exactly analogous arguments can be used to derive expressions
relating the statistics of the local strain field and the effective stress potential U,



but are not given here for brevity. In §4, we make use of these identities in the
context of nonlinear homogenization methods based on LCCs, to obtain
estimates for the first and second moments of the strain and stress fields.

4. Homogenization estimates based on linear composites

The relations derived in §3 allow us to extract statistics of the local fields from
perturbed effective potentials. In general, these potentials are very difficult to
compute exactly, and so we need to resort to approximate homogenization
methods to estimate them. A fairly general class of nonlinear homogenization
methods has been introduced by Ponte Castafieda (1991, 1996, 2002a).
These methods make use of a LCC with the same microstructure as the
nonlinear composite, but with phase potentials that correspond to appropriate
linearizations of the nonlinear ones, as determined by suitably designed
variational principles. Use can then be made of the various estimates available
for linear composites to estimate the effective behaviour of the LCC, to generate
corresponding estimates for the effective behaviour of the nonlinear composites.

These LCC-based homogenization methods deliver estimates that are rigorous
only for the effective potentials of nonlinear composites. However, in the
context of the so-called ‘variational’ method (Ponte Castaneda 1991), Ponte
Castaneda & Zaidman (1994) conjectured that the first moment of the local field
in the LCC constitutes a reasonable approximation for the corresponding first
moment in the nonlinear composite. Later, Kailasam & Ponte Castaiieda (1998)
demonstrated that this approximation was indeed consistent with the exact
version of the variational method (Ponte Castafieda 1992). The conjecture was
also used in the context of the ‘tangent second-order’ (Ponte Castaneda 1996)
and ‘second-order’ methods (Ponte Castafieda 2002a), as well as extended to
consider higher-order moments. The relations derived in §4 make it possible to
assess the validity of these approximations. In this section, use is made of those
relations to obtain rigorous estimates for the first and second moments of the
nonlinear fields in terms of the corresponding quantities in the LCC, for the
variational, tangent second-order and second-order methods.

In the following, for simplicity, we restrict the analysis to composites made of
isotropic phases, characterized by potentials of the form

W(e) = S0 +90(e), ue) = ok +We), (A1)

2

where &, and o, denote the hydrostatic components of the strain and stress
tensors, and the von Mises equivalent strain and stress are given in terms of the
deviatoric strain and stress tensors by e, = 1/(2/3)eq-€q and g, = /(3/2)64-04.

(a) ‘Variational’ estimates

The variational method is based on the identity (Ponte Castafieda 1992)

wW@=m{ﬁ%%%+Wm%} (4.2)

ME)T>>0



which assumes that the isotropic potentials (4.1); are concave in &2. Also in this
relation, w(Lr) denotes the phase potential of an isotropic linear material given by

T T 1
(M g,y = L.

wy (&) = 5 Lér)e, L((Jﬂ = 3« +2,u,ér)K, (4.3)

and the function V" is defined by

V) = sup {“’“’@“w — (e uS’)}' (44)

)

In expression (4.3), J and K denote the standard fourth-order, isotropic,
hydrostatic and shear projection tensors, and k") are the same as those appearing
n (4.1). The optimality condition in (4.4) is given by the ‘secant’ condition

w1y = L, (4.5)

where é7) denotes the optimal value of ¢ in (4.4). Then, an estimate for the
effective potential W may be obtained by introducing (4.2) into (2.2),

interchanging the optimization conditions over &(x) and u((f), and restricting the
latter to be constant per phase. The estimate is a rigorous upper bound for W,

N
W(e)< inf { W& ug”) + > VO () } (4.6)

l’-f)s)>0 r=1

where W= (1/2)&-Ly¢ is the effective strain potential of an LCC with phase
potentials (4.3). Thus, a linear homogenization estimate is required for the
effective elastic tensor L, of the LCC to compute W;. Then, the optimality
conditions in (4.6) generate a system of algebraic nonlinear equations for the

optimal values /i(()r) of the variables ,u(()r) , which can be written as

1 aEO () = J V(T') ()
& — Ay JE+—=fy ) =0. (4.7)
2¢(r) a#é) ( ) au(()) ( )

The variational estimate for the effective behaviour of a nonlinear composite is
obtained by differentiation of (4.6) with respect to & This is made more explicit
in the following result, due to deBotton & Ponte Castaneda (1993).

Result 4.1. Since the estimate (4.6) is stationary with respect to the variables
,uém, it follows that the variational estimate for the effective behaviour is given by

7 =0, W) =0, W, (:a) = Lo(a)e = s, (4.8)

where I:Q 1s evaluated at the optimal values ,&(()T) from equation (4.7), and the
notation &; has been used to emphasize that it corresponds to the macroscopic
stress in the LCC.

Thus, the variational estimate for the macroscopic stress in the nonlinear
composite coincides with that in the LCC evaluated at the ,aér). It is emphasized,
however, that the stress—strain relation (4.8) is nonlinear, as it should be, since

the moduli ﬂér), and therefore Ly, depend on &. Suquet (1995) remarked that the



first term in expression (4.7) is nothing more than the second moment of the

equivalent strain <s§>(’“> over phase rin the LCC, while it can be deduced from

(4.4) that the second term is precisely (égr))2 in the secant condition (4.5), and so
it follows that (ét(f))2 = () and that the variables ,Ll((f) in the effective
stress—strain relation (4.8) for the nonlinear composite can be given the
interpretation of secant moduli evaluated at the second moments of the strain
field. This provides a ‘modified secant’ interpretation of the variational estimate
(4.8) for the effective stress—strain relation of the nonlinear composite. It also
follows that the estimate (4.6) for the effective potential can be written as

W (s) = iv: Mg @), (4.9)

In order to obtain corresponding variational estimates for the phase averages
of the strain, we consider a composite with (perturbed) phase potentials wy)
given by (3.2), where w'” is given by (4.1);, and we evaluate the derivative (3.1)
with W, given by the variational procedure described above. Similarly,
variational estimates for the second moments of the strain, as well as the first
and second moments of the stress, can be obtained by considering (perturbed)
potentials (3.8), (3.12) and (3.19), and differentiating the variational estimates
for the corresponding effective potentials with respect to the perturbation
parameters. These estimates are spelled out in the following result.

Result 4.2. The variational estimates for the first and second moments of the
local fields are given by

eV =g, (@) = (,0e,)", (4.10)
¢ =a), (¢®0)") =(0;®a,)". (4.11)

where again, the subscript L has been used to denote quantities in the LCC
associated with the variational estimate (4.6).

Proof. We begin by proving the identity (4.10); for the phase averages of the
strain. In order to make use of proposition 3.1, we consider a composite with
perturbed local potential (3.2), where the unperturbed phase potentials w'® are
given by (4.1);. Thus, phase r in this composite is characterized by

w(e) = w'(e) + 7" e (4.12)
Making use of the identity (4.2) for w'", this potential can be written as
wi () = }}}fo {w(LT)(S;uéT)) + ) (uér))}? (4.13)

where w(LZ) denotes the phase potential of a perturbed (anisotropic) LCC, given in
terms of (4.3) by

wp (s ) = wi (s ) + 70, (4.14)

The variational estimate for the perturbed effective potential W, is then
obtained by following the procedure described in the context of expression (4.6).



The resulting expression for W, is in fact (4.6), but with W replaced by W,

the effective potential of the perturbed LCC with phase r characterized by (4.14).

Then, recalling that the variational estimate for W, is stationary with respect

to the variables ,u(() ), and that the functions V" do not depend explicitly on the

parameters 7 ) it follows from proposition 3.1 that the variational estimate for

the average of the strain in phase r is given by
1 ~ 1

5(”:—6“)WT = d

— 0
o O | oz T o O Wil o =8 (4.15)

where & L(T) denotes the average strain in phase rin the LCC associated with the
estimate (4.6) for the unperturbed effective potential W, and the last identity
follows also from proposition 3.1.

The remaining estimates in result 4.2 can be derived in a completely analogous
fashion, by making use of proposition 3.4 and corollaries 3.3 and 3.7, and
identities for the relevant perturbed phase potentials analogous to (4.13) with
perturbed (anisotropic) LCC phase potentials given in terms of (4.3) by

1,
w(La)(s ,u(() )) =\ )(8 Iu((]?)) +§8-/1< e, (4.16)
of) (&) = wf (e =0 ), (4.17)
, 1 o
w(LM)(s ,u(()r)) = 81}&1“:8 [w(L)(Sh,uér)) +§€2‘(ﬂ( Ney|. (4.18)
|

Thus, the variational estimates for the first and second moments of the local
fields coincide with those in the LCC. This result is in exact agreement with the
conjecture of Ponte Castafieda & Zaidman (1994). It is also worth noting that the
nonlinear estimates for the phase averages are consistent with the corresponding
estimates for the macroscopic behaviour (4.8), in the sense that they satisfy
relation (3.20). (This is so provided the linear estimates used in the context of the
LCC are themselves consistent.) It is useful to recall here that the phase averages
and second moments of the strain and stress fields in the LCC can be computed
from (e.g. Willis 1981, Parton & Buryachenko 1990)

: 2 ~
Eér) _ A(()r)é—,’ <8L®8L>(7) - WaLm Wi, (4.19)
c 0
o) =LED, (o000 =Ll @e) 0L, (420)
where the A(()T) are the strain concentration tensors, which are related to the

- N
effective modulus tensor by Ly= )" ) L((]T)A((]T), and which depend on the linear

=1
homogenization method utilized. ”

‘Variational” estimates for the dual potential U follow from exactly analogous
expressions in terms of stress potentials «*’ and wu;’. Such estimates can be
shown to be exactly equivalent to the variational estimates (4.6) for W, in the

10



sense that they are Legendre duals of each other. In addition, the LCCs
associated with each of these estimates are also equivalent to each other, i.e.
u;” = (w;”)*. In other words, the variational estimates exhibit no duality gap.
Following exactly similar arguments, it can be shown that the field statistics
arising from the variational estimates for the stress potential U coincide with
those in the associated LCC. Thus, the identities (4.10) and (4.11) also hold for
the dual version of the method, and are, of course, entirely consistent with those
resulting from the potential W.

Finally, it is noted that a similar procedure can be used with proposition 3.2 to
generalize the above results for higher-order moments.

Remark 4.3. The variational estimates for the 2K moments of the local fields
in the nonlinear composite are given by

(£®e®...0e)") = (£, ®6,®...®)"), (4.21)
—— —_————
2K times 2K times
(600®...80)") = (6,00,0...00,)". (4.22)
—— —
2K times 2K times

Unfortunately, these results are not very useful, because there are no simple
formulas to extract the moments of the order higher than 2 in linear composites.
This suggests making use of the variational method itself to estimate these higher
order moments, which can be shown to yield estimates for the higher-order
moments of the nonlinear composite depending only on the second-order
moments of the field in the LCC. While such estimates would be easily
computed, it is unlikely that they would be very accurate.

(b) ‘Tangent second-order’ estimates

The variational method considered in §4b delivers estimates for the effective
potentials that are exact only to first order in the heterogeneity contrast. In this
section we consider the so-called tangent second-order method introduced by
Ponte Castafieda (1996), which delivers estimates for the effective potentials that
are exact to second order in the heterogeneity contrast, and are therefore
expected to be more accurate in general. In this case, the following identity
(Ponte Castafieda & Willis 1999) is used for the phase potentials w!":

w'(e) = sjc(gx)t {w(Lr) (8; &, pr) }, (4.23)

where the stationary operation consists in setting the partial derivative of the
argument with respect to the variable equal to zero, and w(Lr) is the potential of a
linear thermoelastic comparison composite defined in terms of a reference strain
tensor ) and a tensor of moduli Lg) by

T T T ~\T T ~(T ~x\T 1 ~x\T T ~\ T
W (6560, L) = 0 (60) + 9,0 @) (e — &) +§(8_£< N)-LO (e — &),

(4.24)

11



Note that the identity (4.23) is valid for any Lér). The tangent second-order
estimates for the effective potential W are then obtained by introducing (4.23) into
(2.2), interchanging the optimization operations over &(x) and ", and restricting
the latter to be constant per phase. The result of this calculation is
the approximation

W (&) = sta {WL(E;E(S),L(()S))}, (4.25)

HO)

where W is the effective strain potential of the thermoelastic LCC with phase
potentials (4.24). The stationary operation in (4.25) leads to the conditions

& =&l (4.26)

where the & ér) denote the averages of the strain in phase r of the associated LCC,
which depends on the ¥ and L(()s according to the homogenization procedure
utilized. Given this choice for the variables £, it is not possible to make the
resulting estimate stationary with respect to the tensor LOT . For this reason, the
following physically motivated choice was proposed (Ponte Castafieda 1996) for
these tensors:

L) =L () = 0l ), (1.27

The relations (4.26) and (4.27) thus serve to specify the variables ") and L(()T>
defining the phase potentials (4.24) of the LCC in terms of the phase averages of
the strain field in the phases of the LCC, itself.

The stationarity condition (4.26) for the reference strains ") can be used to
simplify the expression for the effective potential (4.25) to

N

W(e) =Y [w<r><§y>) + % 9, w™ (EY)) : (5 - 52”)] : (4.28)

r=1

On the other hand, because of the lack of stationarity of the estimates (4.25) with

respect to the moduli tensors Lg‘), the corresponding estimates for the effective
stress—strain relation are given (Ponte Castafieda & Suquet 1998) by those in the
LCC, plus some ‘correction’ terms, as described next.

Result 4.4. The tangent second-order estimate for the effective stress—strain
relation is given by

G=0,WE =d,+Y c"p"-0", (4.29)

where & denotes the macroscopic stress in the LCC, and the tensors p(") are
defined in terms of the phase covariance tensors Cg) of the strain in the LCC via

r 1 T Tr)=z\r
" =2 C-a.L (6. (4.30)
In expressions (4.29) and (4.30), the notation a-d.b and A-9.B has been used

to denote second-order tensors with 4jth components aydby/dc; and
AklmnaBklmn/acij'
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Thus, it is seen that the determination of the effective potential and effective
stress—strain relation for the nonlinear composite requires the computation of the
phase averages of the strain and stress fields, as well as the phase covariance
tensors in the ‘thermoelastic’ LCC defined by the phase potentials (4.24). These
phase potentials may be rewritten in the form

w? (g8 L) = 2e L7e 4+ 707 + £, (4.31)

where the ‘thermal stress’ Té ") and ‘specific heat’ fo are defined in terms of &)

and L via

ry) = 8,0 () — L6, 7 = 0~ 60 2L, (432)

1
2

The effective potential of this LCC can thus be written as (Willis 1981)

W, (e) = %5 Loe + fo, (4.33)

where I:O, 7y and fo depend on the linear homogenization estimates utilized. The

phase averages and second moments of the local fields in the LCC can then be
extracted from the relations

E‘ér) _ Aéﬂé‘-l-aér), <8L®8 > T — C ) +8£)®€£ , (4.34)

=L +7 (e,00,)") =6V @a)) +L'CLY, (4.35)

where the A(()r) and aff) are strain concentration tensors, and C‘(g:) denotes the
phase covariance tensors of the strain in the LCC, as given by

Cl) = (e =)@ (e, =) = 50,0 W (4.36)

&L C(T)

In this last relation, the derivatives should be taken with the ") held fixed.
As in the context of the variational estimates, tangent second-order estimates
for the first and second moments of the local fields are obtained by considering
composites with perturbed phase potentials (3.2), (3.8), (3.12) and (3.19), and
evaluating the derivatives (3.1), (3.7), (3.10) and (3.18), with W., W,, W, and
W, glven by the tangent second-order procedure. The latter are glven by
expression (4.25), with W replaced by the effective potential of the relevant
perturbed LCC, respectively, W, W“, WL,? and WL# The potentials in
phase r of these perturbed LCCs are given by expressions analogous to (4.14),
(4.16), (4 17) and (4.18), with wy) given by (4.24). In addition, the modulus
tensors L ") are still given by (4.27), and the reference tensors (") follow from the
approprlate stationarity condition (with L held fixed). In the results below, the
symbols & LT , sén), sél\) and 8&2 denote the phase averages in the perturbed LCCs.

13



Result 4.5. The tangent second-order estimates for the first and second
moments of the local fields are given by

—(r —(r c s —(s

g" 8[(4) + o p( )'ar(m I(n') (=g’ (4.37)
=1 C T
(e®e)") = (g, ®@e;)") + 22 su) REN. (4.38)
N 5)
6’ (r) — (T) _|_p C (9) (4 39)
7L s=1 clr In |pn=0’ ’

(080)") = (3,80;)" +25, /0" —2 Z e el a0

where the symbol ® ; denotes symmetrized tensor product, and the subscript L has
been used to denote, once again, quantities in the LCC.

Proof. We begin by proving the identity (4.37) for the phase averages of the
strain. In order to make use of proposition 3.1, we consider a composite with
perturbed local potential (3.2). Thus, phase r in this composite is characterlzed
by (4.12). Making use of the identity (4 23) for the unperturbed potential w'"”, we
can write the perturbed potential as

wl"(e) =st(a)t{ w (&; 8" L(T))} (4.41)
é T

where w(L:) denotes the phase potential of the perturbed LCC, given in terms

of (4.24) by (4.14). The tangent second-order estimate for the perturbed effective

potential W, is thus given by (4.25), with W replaced by W ., the effective

potential of the perturbed LCC with phase r characterized by w(L) The optimal

tensors ") and L( " in the perturbed problem are given by (4.26) and (4.27),

with 85:) replaced by s(LT) , the phase averages of the strain in the perturbed LCC.

Then, recalling that the tangent second-order estimate for W is stationary with
respect to the variables "), but not with respect to the variables L( ") , and noting
that the latter depends on T( ) only through the tensors &), we have

(')T(T) WT F=g = (91.(7-) WL,. =g + z (aé@) L(()S) ,GLBS) WL) '(')T(T)é(s)h.(r)zo

g +Zce> ST

where the derivative of W, is taken with the L(()T> held fixed. In the last equality,
use has been made of proposition 3.1 in the first term, and (4.27), (4.30) and
(4.36) in the second term. Finally, the identity (4.37) follows from proposition 3.1
with (4.42). The identity (4.38) can be derived in an analogous manner, making
use of corollary 3.3.

Do (4.42)
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Next, we prove the identity (4.39). In order to make use of proposition 3.4, we
consider a composite with perturbed local potential (3.11). Thus, phase r in this
composite is characterized by wy”’ = (uy’)*, where

u(a) = u" (o) + ") a, (4.43)

with «(” = (w")*. Making use of the dual version of the identity (4.23) for u"
we can write (4.43) as

UW(>—%%{(”<7()M“) <>ﬂ} (4.44)

Performing the change of variables (see Ponte Castafieda 2002q)

_ (r)
0 — (MOY g0 =9 Lo
L) = (M), & =S ), (4.45)
the Legendre transform of (4.44) can be written as
w,(f) (¢) = s;t(%t { 2)( & L(T )} (4.46)

where w(LCI) is given by (4.17) with w(Lr) given by (4.24). The tangent second-
order estimate for the perturbed effective potential W, is thus given by (4.25)
with W, replaced by Wiy, the effective potential of a perturbed LCC with
phase r characterized by (4.26). The optimal tensors &) in the perturbed

problem are then
g =) -, (4.47)

and the tensors Lff) are related to & by (4.27). Then, recalling that the
tangent second-order estimate for W,, is stationary with respect to the variables
(r) but not with respect to the variables L((J ), and noting that the latter depend

on 1) only through the tensors & (") we have

N
3yr Walyor—o = 0o Wiyl g + Z ( '3L[<]-s> WL) 0,08 2

s=1

N
— G —dp 43" pt).g 2
s=1

where the derivative of W, is taken with the L(()T) held fixed. In the last
equality, use has been made of proposition 3.4 in the first term, and (4.27),
(4.30), (4.36) and (4.47) in the second term. Finally, the identity (4.39) follows
from proposition 3.4 with (4.48). The identity (4.40) can be derived in an
analogous manner, making use of corollary 3.7. [ |

(=0 (4.48)

Several observations are relevant in the context of result 4.5. First, it can be
shown that the estimates (4.37) and (4.39) for the phase averages are consistent
with the corresponding estimates (4.29) for the effective behaviour, in the sense
that they satisfy relations (3.20). This implies that the derivatives appearing in
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(4.37) and (4.39) satisfy the constraints

N N
S0 ) e =0, (4.49)

r=1 s=1

N
YDECIIRNTE

s=1

Mz

N
p=0 = " [p(r) —p\" 0,8 _(r . (4.50)

r=1

Il
-

T

It can also be shown that the estimates (4.37)-(4.40) are exact to first order in
the heterogeneity contrast, which follows from the fact that the estimate (4.25)
for W is exact to second order. Third, it is interesting to note that the terms
‘correcting’ the LCC quantities (effectlve behaviour and field statlstlcs) depend
explicitly on the intraphase field fluctuations, through the tensors C and on the

degree of nonlinearity of the local potential, through the tensors GSLY') (which
vanish in the linear case). It is also interesting to note that the ‘correction’ of a
nonlinear quantity in phase r depends explicitly, in general, on the properties of
all other phases. Finally, it is worth mentioning that the derivatives appearing in
expressions (4.37)—(4.40) can be expressed in terms of the unperturbed phase
averages &; , by differentiating the perturbed system of nonlinear equations
(4.34); with respect to the perturbation parameter, setting the parameter equal
to zero, and inverting the resulting system of linear equations for the derivatives.
A dual formulation of this method is also available, but it is not given here for
brevity. Of course, analogous expressions can also be derived from this
formulation for the macroscopic stress—strain relation, and the first and second
moments of the local fields. It should be mentioned, however, that, unlike the
variational method, this method exhibits a duality gap, and consequently, such
estimates will not be equivalent to those arising from the strain formulation.

(¢) ‘Second-order’ estimates

An improved version of the tangent second-order method has been introduced
by Ponte Castafieda (2002a), which incorporates information about the field
fluctuations in the linearization scheme, and has been found to deliver estimates
that are, in general, more accurate than the ones given in §4b (e.g. Ponte
Castafieda 2002b). These so-called second-order estimates also make use of a
thermoelastlc LCC with phase potentials w(L) given in terms of reference tensors

") and tensors of moduli L % by (4.24). However, unlike for the tangent second-
Order method, in this case the tensors Ly~ are not identified with the tangent
tensors of moduli (4.27). For composites with isotropic constituents charac-
terized by potentials of the form (4.1), Ponte Castafieda (2002a) proposed the use
of anisotropic tensors of the form

L)) = 3c"J + 22 E") + 20 1, (4.51)
with
<(r)  «(r)
EN =28 gf R0 K_gO), (4.52)
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Then, the following identity for the local potentials holds:

w(e) = stat {w (67, L7 + VO, L, (4.53)
T

where the function V" is defined as
v En, Lér)) = sf(%t {w(r)(e(r)) — wg) (e &), L(()r))}. (4.54)
The stationary operation here leads to the ‘generalized-secant’ conditions
deuw” (&) —a,w (M) = L7 (@ —&"). (4.55)

Note that the identity (4.53) is valid for any ). The second-order estimates for
the effective strain potential are obtained by 1nsert1ng (4.53) into (2.2), interchan-

ging the optimization operations over &(x) and the moduli /\OT and ,uér, and
restricting the latter to be constant per phase. The result is the approximation

(5 — Y (5 5 ( (GRve vr’) (r)
W (&) J\I(]S}.,ai[(}){WL g & L +Z "Ly )}, (4.56)

where W is the effective potential of the LCC. The stationary operation in this
expression leads to the following conditions for the phase moduli Ag') and ,u((f :

) 2 oW 2 P (P (r
0 |2 L 0WL 2
& == 3 o0 6,u8") =+ 3<£L Fer)™, (4.58)

where é?lr)— {(2/3) EM&") and e(r)— \/(2/3)§(">~F(T)é(7') denote the com-
ponents of the tensors &) that are ‘parallel’ and ‘perpendicular’ to the
correspondlng reference tensor &), respectively. For a given set of reference
tensors &), the stat10nar1ty conditions (4.55), (4.57) and (4.58) completely
specify the tensors & and Ly”. Unfortunately, the optimal choice of reference
strains &) is still an open questlon. While they should depend on & and reduce to
it to zeroth order in the weak-heterogeneity expansion, in general, they could
depend on other parameters in the problem. Ponte Castaneda (2002a) initially
proposed enforcing stationarity of (4.56) with respect to the &), but it has not
been possible to find a satisfactory solution to the resulting equations. In what
follows, expressions for the effective behaviour and field statistics will first be
given for general "), and then specialized further below. In any case, the
expression (4.56) can be shown to simplify to

W () = EN: o) [w(r)(é(’")) —9,u (&) (§<T> —59)} , (4.59)

r=1
where E(LT) and &) have been defined above in terms of the averages and second
moments of the strain field in phase r of the thermoelastic LCC.
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Since, unlike the variational estimates, the second-order estimates are not
fully stationary, the corresponding estimates for the effective stress—strain
relation and field statistics are given by those in the LCC plus certain ‘correction’
terms. In fact, their form is similar to that of the tangent second-order estimates
given in §4b, as can be seen in the following results. The derivation of these
results is analogous to that given in the context of result 4.5, and will be omitted
here for brevity.

Result 4.6. The second-order estimates for the eﬁective behaviour are given by
6=0,W( —o'L—I-Zc (4.60)

where &; denotes the macroscopic stress in the LCC, and the tensors p” are

(r)
r T T ~(r ~(r —r 4 A _/,L
p) = [Ly_,_g (& >)] <8< >_£(L)) = (é(r))go

X [{(ea, &) ®(es, —e N — (&)~ @) )] el. (s

In (4.61), the subscript L denotes quantities in the LCC assocmted with the
estimate (4.56), the subscript d denotes deviatoric parts, and L( 1s the tangent
modulus tensor defined by expression (4.27).

Result 4.7. The second-order estimates for the first and second moments of the
local fields are given by

N_ )
—(r —| & S ~<(s
) = g +ch pt-a &l oy (4.62)
s=1
ool ()
~|S
<£®£>(r) = <£L®£L> +221 o) p(S) a/l(’)el A=o’ (463)
o
20 o N~
e’ =" +p —;C(r)p 0,0 &y o (4.64)
N (9)
(0®0)") = (0,80,)") + 268" ~23 " 5 p 0,08 oy, (4.65)

where ¢ = =d,w )(s( )), the symbol ® , denotes symmetrized tensor product, the
subscript L denotes quantities in the LCC, and é(TS), éﬁs), éﬁf) and é,(f) denote the

relevant perturbed reference strains.

An important observation in the context of this result is that, like the tangent
second-order estimates, the second-order estimates (4.62) and (4.64) for the
phase averages can be shown to be consistent with the corresponding estimates
for the effective stress—strain relation (4.60). Thus, this implies that the terms
involving derivatives of the reference tensors in (4.62) and (4.64) satisfy
constraints analogous to (4.49) and (4.50).
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The results given above are valid for general reference tensors &). The
simplest prescription for these tensors, which has been shown to be fully
consistent in the sense described in the previous paragraph, and to give results
that are physically reasonable at least in the context of two-phase composites
with isotropic phases (see part II of this work), is given by

& =g, forallr, (4.66)
where &; denotes the deviatoric part of the macroscopic strain. Thus,
prescription (4.66) together with the stationarity conditions mentioned above,
constitute a system of algebraic nonlinear equations for the variables "), A(()T) and
g . When the simple prescription (4.66) is used for the reference tensors, the
derivatives in expressions (4.60)—(4.65) become trivial. Thus, in the expression
for the effective behaviour we have that 9,6") =K, and all derivatives of the
perturbed reference tensors with respect to the various perturbation parameters
in (4.62)—(4.64) become zero, since they are taken with & held fixed. The
simplified expressions are provided in the following result.

Result 4.8. The second-order estimates for the effective behaviour, with
prescription (4.66), are given by

N
e=0,W(E) =a,+y "p", (4.67)
r=1
and the corresponding estimates for the field statistics are given by
g = E(Lr), (s®s>m = (¢g ®£L>(r), (4.68)
" =" +p", (600)") = (a,00,)" +25"0p" (4.69)

where 6" = 3,w'")(€), and the tensors p'” are defined by (4.61) with (4.66).

In this case, the second-order estimates for the phase averages and second
moments of the strain (arising from the strain version) coincide with those in the
LCC, while the corresponding estimates for the stress quantities still exhibit
certain ‘correction’ terms. It is easy to see for prescription (4.66) that the
constraints (4.49) and (4.50) are indeed satisfied.

Analogous expressions can be derived from the stress formulation of the
second-order method, but are not given here for brevity. In general, the second-
order estimates arising from the strain and stress formulations are not
equivalent, i.e. they exhibit a duality gap, which depends on the prescriptions
used for the reference tensors in both versions. It is worth mentioning, though,
that the observations of the previous paragraph are also valid for the stress
version if the reference stresses ¢ are set equal to the macroscopic stress &.

5. Concluding remarks

Exact relations for nonlinear composites have been given which express the first and
even moments of the spatial distribution of the local fields in terms of the effective
potentials of suitably perturbed composites. Similar relations could also be
obtained for other kinds of averaged quantities, following similar arguments. These
relations were used in the context of the variational, tangent second-order and
second-order nonlinear homogenization methods, to obtain rigorous estimates for
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the first and second moments of the fields. Thus, it was shown that, while the
variational estimates for these quantities coincide with those in the associated LCC,
as had been previously conjectured, the tangent second-order and second-order
estimates were found to incorporate certain ‘correction’ terms which depend
explicitly on the nonlinearity of the local potentials and on the fluctuations of the
fields in the LCC. These ‘correction’ terms are such that the estimates for the first
moments (phase averages) of the fields are entirely consistent with the
corresponding estimates for the macroscopic constitutive relation.

This material is based upon work supported by the National Science Foundation under Grants
CMS-02-01454 and OISE-02-31867. We would like to thank O. Lopez-Pamies and K. Danas for
fruitful discussions.
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