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This work presents a means for extracting the statistics of the local fields in nonlinear composites from the effective potential of suitably perturbed composites. The idea is to introduce a parameter in the local potentials, generally a tensor, such that differentiation of the corresponding effective potential with respect to the parameter yields the volume average of the desired quantity. In particular, this provides a generalization to the nonlinear case of well-known formulas in the context of linear composites, which express phase averages and second moments of the local fields in terms of derivatives of the effective potential. Such expressions are useful since they allow the generation of estimates for the field statistics in nonlinear composites, directly from homogenization estimates for appropriately defined effective potentials. Here, use is made of these expressions in the context of the 'variational', 'tangent second-order' and 'second-order' homogenization methods, to obtain rigorous estimates for the first and second moments of the fields in nonlinear composites. While the variational estimates for these quantities are found to be identical to those proposed in previous works, the tangent second-order and second-order estimates are found be different. In particular, the new estimates for the first moments given in this work are found to be entirely consistent with the corresponding estimates for the macroscopic behaviour. Sample results for two-phase, power-law composites are provided in part II of this work.

Introduction

The main objective of homogenization is to predict the macroscopic behaviour of composite materials in terms of the behaviour of their constituents and prescribed statistical information about their microstructure. Recent work in this area include bounds on the overall stress-strain relation for composites by [START_REF] Talbot | Bounds for the effective constitutive relation of a nonlinear composite[END_REF]. However, in many circumstances, it is also of interest to estimate the statistics of the spatial distribution of the local fields within the composite. For instance, in viscoplastic composites and polycrystals undergoing finite deformations, a certain knowledge about the distribution (e.g. the phase averages) of the strain-rate field is necessary to be able to account for the evolution of the microstructure, which, in turn, can strongly affect the macroscopic behaviour. Also, information on the stress distribution can be useful for developing theories of damage nucleation and evolution in heterogeneous material systems. In the context of linear composites, there are already well-known exact formulas expressing the first and second moments of the local fields in the phases, in terms of the effective potentials (e.g. [START_REF] Bobeth | Field fluctuations in multicomponent mixtures[END_REF][START_REF] Kreher | Residual stresses and stored elastic energy of composites and polycrystals[END_REF][START_REF] Parton | Stress fluctuations in elastic composites[END_REF][START_REF] Ponte Castan ˜eda | Nonlinear composites[END_REF][START_REF] Lipton | Optimal lower bounds on the hydrostatic stress amplification inside random twophase elastic composites[END_REF]. Such formulas are useful as they allow the extraction of estimates for the statistics of the local fields from homogenization estimates for the effective potentials. In this work, we present a means for generalizing those formulas to the case of nonlinear composites, and we make use of them in the context of nonlinear homogenization methods based on linear comparison composites (LCCs;[START_REF] Ponte Castan ˜eda | The effective mechanical properties of nonlinear isotropic composites[END_REF][START_REF] Ponte Castan ˜eda | Exact second-order estimates for the effective mechanical properties of nonlinear composite materials[END_REF], 2002a). Some illustrative results for two-phase, power-law composites are provided in part II of this work.

Effective behaviour

We consider composite materials made of N different homogeneous constituents, or phases, which are assumed to be randomly distributed in a specimen occupying a volume U, at a length scale that is much smaller than the size of U and the scale of variation of the loading conditions. The constitutive behaviour of each phase is characterized by convex potential functions w (r) (rZ1, ., N ), such that the stress s and strain 3 tensors are related by s Z v 3 wðx; 3Þ; wðx; 3Þ Z X N rZ1 c ðrÞ ðxÞw ðrÞ ð3Þ; ð2:1Þ

where v 3 denotes differentiation with respect to 3, and the characteristic functions c (r) serve to describe the microstructure, being 1 if the position vector x is in phase r, and 0 otherwise. This constitutive relation can be used within the context of the deformation theory of plasticity, where s and 3 represent the infinitesimal stress and strain, respectively. Equation (2.1) applies equally well to viscoplastic materials, in which case s and 3 are the Cauchy stress and Eulerian strain rate, respectively. Let h$i and h$i (r) denote the volume averages over the composite (U) and over phase r (U (r) ), respectively. The effective behaviour of the composite, which is defined as the relation between the average stress sZ hsi and the average strain 3Z h3i, can be characterized by an effective strain potential W , such that

s Z v 3 W ð 3Þ; W ð 3Þ Z inf 32Kð 3Þ 
hwðx; 3Þi Z inf 32Kð 3Þ

X N rZ1 c ðrÞ hw ðrÞ ð3Þi ðrÞ ; ð2:2Þ

where c (r) denotes the volume fraction of phase r, and Kð 3ÞZ f3j there is u such that 3Z(1/2)[PuC(Pu) T ] in U, uZ 3x on vU} is the set of kinematically admissible strain fields consistent with an average strain 3.

Alternatively, the behaviour of the phases can be characterized by convex stress potentials u (r) , which are the Legendre transforms of w (r) , in other words u ðrÞ ðsÞ Z ðw ðrÞ Þ Ã ðsÞ Z sup 3 ½s$3Kw ðrÞ ð3Þ: ð2:3Þ

Then, the local stress and strain are related by 3Z v s u ðrÞ ðsÞ, and the effective behaviour can be described in terms of the effective stress potential Ũ , such that 3 Z v s Ũ ð sÞ; Ũ ð sÞ Z inf where Sð sÞ is the set of divergence-free stresses such that sZ hsi. The variational formulations (2.2) and (2.4) can be shown to be completely equivalent, in the sense that the functions W and Ũ are Legendre duals of each other, i.e. Ũ Z W Ã . In §3, use will be made of the following lemma. Its proof has been given by Ponte Castan ˜eda & Suquet (1998) (see appendix B) for a scalar parameter t, but the proof applies mutatis mutandis when t is a tensor. It is a simple consequence of the chain rule, plus the fact that the effective potentials W t and Ũ t are stationary with respect to 3 t and s t , respectively.

Lemma 2.1. Consider convex local potentials w t and u t depending on a parameter t. Then, the corresponding effective potentials W t and Ũ t also depend on t, and their derivatives with respect to this parameter are given by

v W t vt ð 3Þ Z vw t vt ðx; 3 t Þ ; v Ũ t vt ð sÞ Z vu t vt ðx; s t Þ ; ð2:5Þ
where the local fields 3 t and s t are the solutions to the minimization problems (2.2) 2 and (2.4) 2 , respectively, with w and u given by w t and u t . (The derivatives are taken with 3 and s held fixed.)

Exact relations for the statistics of the local fields

In this section, a methodology is provided for extracting, at least theoretically, the statistics of the strain and stress fields, from the knowledge of the effective potentials of suitably perturbed problems. In general, the statistical information of interest corresponds to the first, second and higher moments of the fields in each phase. This is accomplished through the following propositions. where 3 t is the solution to the minimization problem (2.2) 2 with a local potential given by equation (3.5). For t (r) Z0, 3 t reduces to the strain field in a composite with local potential (2.1) 2 , and so relation (3.4) follows. & Thus, we have obtained identities expressing the phase averages and even moments of the strain field in terms of suitably perturbed effective potentials. It is noted that analogous relations for the odd moments (higher than one) of the strain could be obtained in a similar manner, but this is mathematically more involved, since the perturbed potentials would be non-convex and unbounded from below.

In §4, the focus will be on moments up to second order, and it is then useful to consider the following corollary of proposition 3.2 (KZ1).

Corollary 3.3. Consider a composite with local potential (2.1). The second moments of the strain in phase r are given by h353i ðrÞ Z 2 c ðrÞ v l ðrÞ W l j l ðrÞ Z0 ; ð3:7Þ where l (r) is a constant, symmetric, positive semi-definite, fourth-order tensor, and W l denotes the effective potential of a composite with (perturbed) local potential w l ð3Þ Z X N sZ1 c ðsÞ ðxÞw ðsÞ ð3Þ C c ðrÞ ðxÞ 1 2 3$l ðrÞ 3: ð3:8Þ

It is noted that the phase covariance tensors C ðrÞ 3 , which provide a measure of the intraphase field fluctuations, can be written in terms of (3.1) and (3.7), C ðrÞ 3 ^hð3K 3 ðrÞ Þ5ð3K 3 ðrÞ Þi ðrÞ Z h353i ðrÞ K 3 ðrÞ 5 3 ðrÞ : ð3:9Þ

When the potentials w (r) are quadratic, expressions (3.1) and (3.7) reduce to the well-known formulas for linear composites [START_REF] Kreher | Residual stresses and stored elastic energy of composites and polycrystals[END_REF][START_REF] Parton | Stress fluctuations in elastic composites[END_REF][START_REF] Ponte Castan ˜eda | Nonlinear composites[END_REF]. Of course, it is possible to obtain, by completely analogous means, corresponding expressions for the statistics of the stress field s in terms of suitably perturbed stress potentials. For brevity, such analogous expressions will not be spelled out here. Instead, it is shown next how the statistics of the stress field may be obtained in terms of suitably perturbed strain potentials, which may be more useful in some cases. Proof. The local potential (3.12) is convex for any value of the parameter h (r) , and so the corresponding effective potential W h , which depends on h (r) , is well defined. Then, it follows from lemma 2.1 that v h ðrÞ W h ð 3Þ Z hv h ðrÞ w h ðx; 3 h Þi ZKhc ðrÞ ðxÞv 3 w ðrÞ ð3 h Kh ðrÞ Þi ZKc ðrÞ hs h i ðrÞ ; ð3:13Þ

where 3 h is the solution to the minimization problem (2.2) 2 with a local potential given by (3.12), and s h Z v 3 w ðrÞ ð3 h Kh ðrÞ Þ is the corresponding stress. Relation (3.13) is valid for any value of h (r) . In particular, for h (r) Once again, exactly analogous arguments can be used to derive expressions relating the statistics of the local strain field and the effective stress potential e U , but are not given here for brevity. In §4, we make use of these identities in the context of nonlinear homogenization methods based on LCCs, to obtain estimates for the first and second moments of the strain and stress fields.

Homogenization estimates based on linear composites

The relations derived in §3 allow us to extract statistics of the local fields from perturbed effective potentials. In general, these potentials are very difficult to compute exactly, and so we need to resort to approximate homogenization methods to estimate them. A fairly general class of nonlinear homogenization methods has been introduced by Ponte Castan ˜eda (1991, 1996, 2002a). These methods make use of a LCC with the same microstructure as the nonlinear composite, but with phase potentials that correspond to appropriate linearizations of the nonlinear ones, as determined by suitably designed variational principles. Use can then be made of the various estimates available for linear composites to estimate the effective behaviour of the LCC, to generate corresponding estimates for the effective behaviour of the nonlinear composites. These LCC-based homogenization methods deliver estimates that are rigorous only for the effective potentials of nonlinear composites. However, in the context of the so-called 'variational' method (Ponte Castan ˜eda 1991), Ponte Castan ˜eda & Zaidman (1994) conjectured that the first moment of the local field in the LCC constitutes a reasonable approximation for the corresponding first moment in the nonlinear composite. Later, [START_REF] Kailasam | A general constitutive theory for linear and nonlinear particulate media with microstructure evolution[END_REF] demonstrated that this approximation was indeed consistent with the exact version of the variational method (Ponte Castan ˜eda 1992). The conjecture was also used in the context of the 'tangent second-order' (Ponte Castan ˜eda 1996) and 'second-order' methods (Ponte Castan ˜eda 2002a), as well as extended to consider higher-order moments. The relations derived in §4 make it possible to assess the validity of these approximations. In this section, use is made of those relations to obtain rigorous estimates for the first and second moments of the nonlinear fields in terms of the corresponding quantities in the LCC, for the variational, tangent second-order and second-order methods.

In the following, for simplicity, we restrict the analysis to composites made of isotropic phases, characterized by potentials of the form In expression (4.3), J and K denote the standard fourth-order, isotropic, hydrostatic and shear projection tensors, and k (r) are the same as those appearing in (4.1). The optimality condition in (4.4) is given by the 'secant' condition

w ðrÞ ð3Þ Z 9 2 k ðrÞ 3 2 m C f ðrÞ ð3 e Þ; u ðrÞ ðsÞ Z 1 2k ðrÞ s 2 m C j ðrÞ ðs e Þ; ð4 
v 3 w ðrÞ ð3 ðrÞ Þ Z L ðrÞ 0 3ðrÞ ; ð4:5Þ
where 3ðrÞ denotes the optimal value of 3 (r) in (4.4). Then, an estimate for the effective potential W may be obtained by introducing (4.2) into (2.2), interchanging the optimization conditions over 3(x) and m ðrÞ 0 , and restricting the latter to be constant per phase. The estimate is a rigorous upper bound for W ,

W ð 3Þ% inf m ðsÞ 0 O0 W L ð 3; m ðsÞ 0 Þ C X N rZ1 c ðrÞ V ðrÞ ðm ðrÞ 0 Þ ( ) ; ð4:6Þ
where W L Z ð1=2Þ 3$ L0 3 is the effective strain potential of an LCC with phase potentials (4.3). Thus, a linear homogenization estimate is required for the effective elastic tensor L0 of the LCC to compute W L . Then, the optimality conditions in (4.6) generate a system of algebraic nonlinear equations for the optimal values mðrÞ 0 of the variables m ðrÞ 0 , which can be written as The variational estimate for the effective behaviour of a nonlinear composite is obtained by differentiation of (4.6) with respect to 3. This is made more explicit in the following result, due to deBotton & Ponte Castan ˜eda (1993).

1 2c ðrÞ 3$ v L0 vm ðrÞ 
Result 4.1. Since the estimate (4.6) is stationary with respect to the variables m ðrÞ 0 , it follows that the variational estimate for the effective behaviour is given by

s Z v 3 W ð 3Þ Z v 3 W L 3; mðsÞ 0 Z L0 mðsÞ 0 3 Z s L ; ð4:8Þ
where L0 is evaluated at the optimal values mðrÞ 0 from equation (4.7), and the notation s L has been used to emphasize that it corresponds to the macroscopic stress in the LCC.

Thus, the variational estimate for the macroscopic stress in the nonlinear composite coincides with that in the LCC evaluated at the mðrÞ 0 . It is emphasized, however, that the stress-strain relation (4.8) is nonlinear, as it should be, since the moduli mðrÞ 0 , and therefore L0 , depend on 3. [START_REF] Suquet | Overall properties of nonlinear composites: a modified secant moduli theory and its link with Ponte Castan ˜eda's nonlinear variational procedure[END_REF] remarked that the first term in expression (4.7) is nothing more than the second moment of the equivalent strain h3 2 e i ðrÞ over phase r in the LCC, while it can be deduced from (4.4) that the second term is precisely ð3 ðrÞ e Þ 2 in the secant condition (4.5), and so it follows that ð3 ðrÞ e Þ 2 Z h3 2 e i ðrÞ , and that the variables mðsÞ 0 in the effective stress-strain relation (4.8) for the nonlinear composite can be given the interpretation of secant moduli evaluated at the second moments of the strain field. This provides a 'modified secant' interpretation of the variational estimate (4.8) for the effective stress-strain relation of the nonlinear composite. It also follows that the estimate (4.6) for the effective potential can be written as

W ð 3Þ Z X N rZ1
c ðrÞ f ðrÞ ð3 ðrÞ Þ: ð4:9Þ

In order to obtain corresponding variational estimates for the phase averages of the strain, we consider a composite with (perturbed) phase potentials w ðrÞ t

given by (3.2), where w (r) is given by (4.1) 1 , and we evaluate the derivative (3.1) with W t given by the variational procedure described above. Similarly, variational estimates for the second moments of the strain, as well as the first and second moments of the stress, can be obtained by considering (perturbed) potentials (3.8), (3.12) and (3.19), and differentiating the variational estimates for the corresponding effective potentials with respect to the perturbation parameters. These estimates are spelled out in the following result. where again, the subscript L has been used to denote quantities in the LCC associated with the variational estimate (4.6).

Proof. We begin by proving the identity (4.10) 1 for the phase averages of the strain. In order to make use of proposition 3.1, we consider a composite with perturbed local potential (3.2), where the unperturbed phase potentials w (s) are given by (4.1) 1 . Thus, phase r in this composite is characterized by w ðrÞ t ð3Þ Z w ðrÞ ð3Þ C t ðrÞ $3: ð4:12Þ

Making use of the identity (4.2) for w (r) , this potential can be written as The variational estimate for the perturbed effective potential W t is then obtained by following the procedure described in the context of expression (4.6).

w ðrÞ t ð3Þ 
The resulting expression for W t is in fact (4.6), but with W L replaced by W Lt , the effective potential of the perturbed LCC with phase r characterized by (4.14).

Then, recalling that the variational estimate for W t is stationary with respect to the variables m ðrÞ 0 , and that the functions V (r) do not depend explicitly on the parameters t (r) , it follows from proposition 3.1 that the variational estimate for the average of the strain in phase r is given by

3 ðrÞ Z 1 c ðrÞ v t ðrÞ W t t ðrÞ Z0 Z 1 c ðrÞ v t ðrÞ W Lt t ðrÞ Z0 Z 3 ðrÞ 
L ; ð4:15Þ
where 3 ðrÞ L denotes the average strain in phase r in the LCC associated with the estimate (4.6) for the unperturbed effective potential W , and the last identity follows also from proposition 3.1.

The remaining estimates in result 4.2 can be derived in a completely analogous fashion, by making use of proposition 3.4 and corollaries 3.3 and 3.7, and identities for the relevant perturbed phase potentials analogous to (4.13) with perturbed (anisotropic) LCC phase potentials given in terms of (4. 

0 Þ Z inf 3 1 C3 2 Z3 w ðrÞ L ð3 1 ; m ðrÞ 0 Þ C 1 2 3 2 $ðm ðrÞ Þ K1 3 2 : ð4:18Þ ðrÞ 
& Thus, the variational estimates for the first and second moments of the local fields coincide with those in the LCC. This result is in exact agreement with the conjecture of Ponte Castan ˜eda & Zaidman (1994). It is also worth noting that the nonlinear estimates for the phase averages are consistent with the corresponding estimates for the macroscopic behaviour (4.8), in the sense that they satisfy relation (3.20). (This is so provided the linear estimates used in the context of the LCC are themselves consistent.) It is useful to recall here that the phase averages and second moments of the strain and stress fields in the LCC can be computed from (e.g. [START_REF] Willis | Variational and related methods for the overall properties of composites[END_REF][START_REF] Parton | Stress fluctuations in elastic composites[END_REF] 3 'Variational' estimates for the dual potential Ũ follow from exactly analogous expressions in terms of stress potentials u (r) and u ðrÞ L . Such estimates can be shown to be exactly equivalent to the variational estimates (4.6) for W , in the sense that they are Legendre duals of each other. In addition, the LCCs associated with each of these estimates are also equivalent to each other, i.e. u ðrÞ L Z ðw ðrÞ L Þ Ã . In other words, the variational estimates exhibit no duality gap. Following exactly similar arguments, it can be shown that the field statistics arising from the variational estimates for the stress potential Ũ coincide with those in the associated LCC. Thus, the identities (4.10) and (4.11) also hold for the dual version of the method, and are, of course, entirely consistent with those resulting from the potential W .

ðrÞ L Z A ðrÞ 
0 3; h3 L 53 L i ðrÞ Z 2 c ðrÞ v L ðrÞ 
Finally, it is noted that a similar procedure can be used with proposition 3.2 to generalize the above results for higher-order moments.

Remark Unfortunately, these results are not very useful, because there are no simple formulas to extract the moments of the order higher than 2 in linear composites. This suggests making use of the variational method itself to estimate these higher order moments, which can be shown to yield estimates for the higher-order moments of the nonlinear composite depending only on the second-order moments of the field in the LCC. While such estimates would be easily computed, it is unlikely that they would be very accurate.

(b ) 'Tangent second-order' estimates

The variational method considered in §4b delivers estimates for the effective potentials that are exact only to first order in the heterogeneity contrast. In this section we consider the so-called tangent second-order method introduced by Ponte Castan ˜eda (1996), which delivers estimates for the effective potentials that are exact to second order in the heterogeneity contrast, and are therefore expected to be more accurate in general. In this case, the following identity (Ponte Castan ˜eda & Willis 1999) is used for the phase potentials w (r) :

w ðrÞ ð3Þ Z stat Note that the identity (4.23) is valid for any L ðrÞ 0 . The tangent second-order estimates for the effective potential W are then obtained by introducing (4.23) into (2.2), interchanging the optimization operations over 3(x) and 3 ðrÞ , and restricting the latter to be constant per phase. The result of this calculation is the approximation

W ð 3Þ Z stat 3 ðsÞ W L ð 3; 3 ðsÞ ; L ðsÞ 0 Þ n o ; ð4:25Þ
where W L is the effective strain potential of the thermoelastic LCC with phase potentials (4.24). The stationary operation in (4.25) leads to the conditions 3 ðrÞ Z 3 ðrÞ L ; ð4:26Þ

where the 3 ðrÞ L denote the averages of the strain in phase r of the associated LCC, which depends on the 3 ðsÞ and L ðsÞ 0 according to the homogenization procedure utilized. Given this choice for the variables 3 ðrÞ , it is not possible to make the resulting estimate stationary with respect to the tensor L ðrÞ 0 . For this reason, the following physically motivated choice was proposed (Ponte Castan ˜eda 1996) for these tensors: Result 4.4. The tangent second-order estimate for the effective stress-strain relation is given by Thus, it is seen that the determination of the effective potential and effective stress-strain relation for the nonlinear composite requires the computation of the phase averages of the strain and stress fields, as well as the phase covariance tensors in the 'thermoelastic' LCC defined by the phase potentials (4.24). These phase potentials may be rewritten in the form The effective potential of this LCC can thus be written as [START_REF] Willis | Variational and related methods for the overall properties of composites[END_REF]) In this last relation, the derivatives should be taken with the 3 ðrÞ held fixed. As in the context of the variational estimates, tangent second-order estimates for the first and second moments of the local fields are obtained by considering composites with perturbed phase potentials (3.2), (3.8), (3.12) and (3.19), and evaluating the derivatives (3.1), (3.7), (3.10) and (3.18), with W t , W l , W h and W m given by the tangent second-order procedure. The latter are given by expression (4.25), with W L replaced by the effective potential of the relevant perturbed LCC, respectively, W Lt , W Ll , W Lh and W Lm . The potentials in phase r of these perturbed LCCs are given by expressions analogous to (4.14), (4.16), (4.17) and (4.18), with w ðrÞ L given by (4.24). In addition, the modulus tensors L ðrÞ 0 are still given by (4.27), and the reference tensors 3 ðrÞ follow from the appropriate stationarity condition (with L ðrÞ 0 held fixed). In the results below, the symbols 3 where the symbol 5 s denotes symmetrized tensor product, and the subscript L has been used to denote, once again, quantities in the LCC.

s Z v 3 W ð 3Þ Z s L C X N rZ1 c ðrÞ r ðrÞ $v 3 3 ðrÞ 
w ðrÞ L ð3; 3 ðrÞ ; L ðrÞ 0 Þ Z 1 2 3$L ðrÞ 
0 3 C t ðrÞ 0 $3 C f ðrÞ 
W L ð 3Þ Z 1 2 3$ L0 3 C t0 $ 3 C f 0 ; ð4 
ðrÞ Lt , 3 ðrÞ 
Proof. We begin by proving the identity (4.37) for the phase averages of the strain. In order to make use of proposition 3.1, we consider a composite with perturbed local potential (3.2). Thus, phase r in this composite is characterized by (4.12). Making use of the identity (4.23) for the unperturbed potential w (r) , we can write the perturbed potential as 

w ðrÞ t ð3Þ 
Lt , the phase averages of the strain in the perturbed LCC. Then, recalling that the tangent second-order estimate for W t is stationary with respect to the variables 3 ðrÞ , but not with respect to the variables L ðrÞ 0 , and noting that the latter depends on t (r) only through the tensors 3 ðrÞ , we have where the derivative of W Lt is taken with the L ðrÞ 0 held fixed. In the last equality, use has been made of proposition 3.1 in the first term, and (4.27), (4.30) and (4.36) in the second term. Finally, the identity (4.37) follows from proposition 3.1 with (4.42). The identity (4.38) can be derived in an analogous manner, making use of corollary 3.3.

v t ðrÞ W t j t ðrÞ Z0 Z v t ðrÞ W Lt j t ðrÞ Z0 C X N sZ1 v 3 ðsÞ L ðsÞ 0 $v L ðsÞ 0 W L $v t
Next, we prove the identity (4.39). In order to make use of proposition 3.4, we consider a composite with perturbed local potential (3.11). Thus, phase r in this composite is characterized by w 

ðrÞ h Z ðu ðrÞ h Þ Ã ,
Lh is given by (4.17) with w ðrÞ L given by (4.24). The tangent secondorder estimate for the perturbed effective potential W h is thus given by (4.25) with W L replaced by W Lh , the effective potential of a perturbed LCC with phase r characterized by (4.26). The optimal tensors 3 ðrÞ in the perturbed problem are then 3 ðrÞ Z 3 ðrÞ Lh Kh ðrÞ ; ð4:47Þ and the tensors L ðrÞ 0 are related to 3 ðrÞ by (4.27). Then, recalling that the tangent second-order estimate for W h is stationary with respect to the variables 3 ðrÞ but not with respect to the variables L ðrÞ 0 , and noting that the latter depend on h (r) only through the tensors 3 ðrÞ , we have where the derivative of W Lh is taken with the L ðrÞ 0 held fixed. In the last equality, use has been made of proposition 3.4 in the first term, and (4.27), (4.30), (4.36) and (4.47) in the second term. Finally, the identity (4.39) follows from proposition 3.4 with (4.48). The identity (4.40) can be derived in an analogous manner, making use of corollary 3.7. &

v h ðrÞ W h j h ðrÞ Z0 Z v h ðrÞ W Lh j h ðrÞ Z0 C X N sZ1 v 3 ðsÞ L ðsÞ 0 $v L ðsÞ 0 W L $v
Several observations are relevant in the context of result 4.5. First, it can be shown that the estimates (4.37) and (4.39) for the phase averages are consistent with the corresponding estimates (4.29) for the effective behaviour, in the sense that they satisfy relations (3.20). This implies that the derivatives appearing in (which vanish in the linear case). It is also interesting to note that the 'correction' of a nonlinear quantity in phase r depends explicitly, in general, on the properties of all other phases. Finally, it is worth mentioning that the derivatives appearing in expressions (4.37)-(4.40) can be expressed in terms of the unperturbed phase averages 3 ðrÞ L , by differentiating the perturbed system of nonlinear equations (4.34) 1 with respect to the perturbation parameter, setting the parameter equal to zero, and inverting the resulting system of linear equations for the derivatives.

A dual formulation of this method is also available, but it is not given here for brevity. Of course, analogous expressions can also be derived from this formulation for the macroscopic stress-strain relation, and the first and second moments of the local fields. It should be mentioned, however, that, unlike the variational method, this method exhibits a duality gap, and consequently, such estimates will not be equivalent to those arising from the strain formulation.

(c ) 'Second-order' estimates An improved version of the tangent second-order method has been introduced by Ponte Castan ˜eda (2002a), which incorporates information about the field fluctuations in the linearization scheme, and has been found to deliver estimates that are, in general, more accurate than the ones given in §4b (e.g. Ponte Castan ˜eda 2002b). These so-called second-order estimates also make use of a thermoelastic LCC with phase potentials w ðrÞ L given in terms of reference tensors 3 ðrÞ and tensors of moduli L ðrÞ 0 by (4.24). However, unlike for the tangent secondorder method, in this case the tensors L q denote the components of the tensors 3ðrÞ that are 'parallel' and 'perpendicular' to the corresponding reference tensor 3ðrÞ , respectively. For a given set of reference tensors 3 ðrÞ , the stationarity conditions (4.55), (4.57) and (4.58) completely specify the tensors 3ðrÞ and L ðrÞ 0 . Unfortunately, the optimal choice of reference strains 3 ðrÞ is still an open question. While they should depend on 3 and reduce to it to zeroth order in the weak-heterogeneity expansion, in general, they could depend on other parameters in the problem. Ponte Castan ˜eda (2002a) initially proposed enforcing stationarity of (4.56) with respect to the 3 ðrÞ , but it has not been possible to find a satisfactory solution to the resulting equations. In what follows, expressions for the effective behaviour and field statistics will first be given for general 3 ðrÞ , and then specialized further below. In any case, the expression (4.56) can be shown to simplify to W ð 3Þ Z X N rZ1 c ðrÞ w ðrÞ ð3 ðrÞ ÞKv 3 w ðrÞ ð 3 ðrÞ Þ$ 3ðrÞ K 3 ðrÞ L h i ; ð4:59Þ where 3 ðrÞ L and 3ðrÞ have been defined above in terms of the averages and second moments of the strain field in phase r of the thermoelastic LCC.

3ðrÞ s K 3 ðrÞ e ZG ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 3 1 c ðrÞ v W L vl ðrÞ 0 v u u t ZG ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2 3 hð3 L K 3 ðrÞ Þ$E ðrÞ ð3 L K
Since, unlike the variational estimates, the second-order estimates are not fully stationary, the corresponding estimates for the effective stress-strain relation and field statistics are given by those in the LCC plus certain 'correction' terms. In fact, their form is similar to that of the tangent second-order estimates given in §4b, as can be seen in the following results. The derivation of these results is analogous to that given in the context of result 4.5, and will be omitted here for brevity.

Result 4.6. The second-order estimates for the effective behaviour are given by s An important observation in the context of this result is that, like the tangent second-order estimates, the second-order estimates (4.62) and (4.64) for the phase averages can be shown to be consistent with the corresponding estimates for the effective stress-strain relation (4.60). Thus, this implies that the terms involving derivatives of the reference tensors in (4.62) and (4.64) satisfy constraints analogous to (4.49) and (4.50).

Z v 3 W ð 3Þ Z s L C X N rZ1 c ðrÞ 
The results given above are valid for general reference tensors 3 ðrÞ . The simplest prescription for these tensors, which has been shown to be fully consistent in the sense described in the previous paragraph, and to give results that are physically reasonable at least in the context of two-phase composites with isotropic phases (see part II of this work), is given by 3 ðrÞ Z 3 d ; for all r; ð4:66Þ where 3 d denotes the deviatoric part of the macroscopic strain. Thus, prescription (4.66) together with the stationarity conditions mentioned above, constitute a system of algebraic nonlinear equations for the variables 3ðrÞ , l ðrÞ 0 and m ðrÞ 0 . When the simple prescription (4.66) is used for the reference tensors, the derivatives in expressions (4.60)-(4.65) become trivial. Thus, in the expression for the effective behaviour we have that v 3 3 ðrÞ Z K, and all derivatives of the perturbed reference tensors with respect to the various perturbation parameters in (4.62)-(4.64) become zero, since they are taken with 3 held fixed. The simplified expressions are provided in the following result. In this case, the second-order estimates for the phase averages and second moments of the strain (arising from the strain version) coincide with those in the LCC, while the corresponding estimates for the stress quantities still exhibit certain 'correction' terms. It is easy to see for prescription (4.66) that the constraints (4.49) and (4.50) are indeed satisfied.

Analogous expressions can be derived from the stress formulation of the second-order method, but are not given here for brevity. In general, the secondorder estimates arising from the strain and stress formulations are not equivalent, i.e. they exhibit a duality gap, which depends on the prescriptions used for the reference tensors in both versions. It is worth mentioning, though, that the observations of the previous paragraph are also valid for the stress version if the reference stresses s ðrÞ are set equal to the macroscopic stress s.

Concluding remarks

Exact relations for nonlinear composites have been given which express the first and even moments of the spatial distribution of the local fields in terms of the effective potentials of suitably perturbed composites. Similar relations could also be obtained for other kinds of averaged quantities, following similar arguments. These relations were used in the context of the variational, tangent second-order and second-order nonlinear homogenization methods, to obtain rigorous estimates for the first and second moments of the fields. Thus, it was shown that, while the variational estimates for these quantities coincide with those in the associated LCC, as had been previously conjectured, the tangent second-order and second-order estimates were found to incorporate certain 'correction' terms which depend explicitly on the nonlinearity of the local potentials and on the fluctuations of the fields in the LCC. These 'correction' terms are such that the estimates for the first moments (phase averages) of the fields are entirely consistent with the corresponding estimates for the macroscopic constitutive relation.

This material is based upon work supported by the National Science Foundation under Grants CMS-02-01454 and OISE-02-31867. We would like to thank O. Lopez-Pamies and K. Danas for fruitful discussions.

  identity follows from the dual version of proposition 3.2. Relation (3.14) follows immediately. & In §4, use is made of the following corollary of proposition 3.6 (KZ1), for the second moments of the stress. Corollary 3.7. Consider a composite with local potential (2.1). The second moments of the stress in phase r are given by hs5si ðrÞ ZK 2 c ðrÞ v m ðrÞ W m m ðrÞ Z0 ; ð3:18Þ where m (r) is a constant, symmetric, positive semi-definite, fourth-order tensor, and W m denotes the effective potential of a composite with (perturbed) local potential w m given by the Legendre transform of u m , w m Z u à m to verify that relations (3.1) and (3.10) for the phase averages are consistent with the macroscopic averages (2.2) 1 and (2

  :1Þwhere 3 m and s m denote the hydrostatic components of the strain and stress tensors, and the von Mises equivalent strain and stress are given in terms of the deviatoric strain and stress tensors by 3 e Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi ð2=3Þ3 d $3 d p and s e Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi ð3=2Þs d $s d p .(a ) 'Variational' estimatesThe variational method is based on the identity (Ponte Castan ˜eda 1992)w ðrÞ ð3Þ Z inf m which assumes that the isotropic potentials (4.1) 1 are concave in 3 2 e . Also in this relation, w ðrÞ L denotes the phase potential of an isotropic linear material given by

  Result 4.2. The variational estimates for the first and second moments of the local fields are given by 3 ðrÞ Z 3 ðrÞ L ; h353i ðrÞ Z h3 L 53 L i ðrÞ ; ð4:10Þ s ðrÞ Z s ðrÞ L ; hs5si ðrÞ Z hs L 5s L i ðrÞ : ð4:11Þ

ðrÞ

  Lt denotes the phase potential of a perturbed (anisotropic) LCC, given in terms of (4.3) by w ðrÞ Lt ð3; m ðrÞ 0 Þ Z w ðrÞ L ð3; m ðrÞ 0 Þ C t ðrÞ $3: ð4:14Þ

  which depend on the linear homogenization method utilized.

  where the stationary operation consists in setting the partial derivative of the argument with respect to the variable equal to zero, and w ðrÞ L is the potential of a linear thermoelastic comparison composite defined in terms of a reference strain tensor 3 ðrÞ and a tensor of moduli L ðrÞ 0 by w ðrÞ L ð3; 3 ðrÞ ; L ðrÞ 0 Þ Z w ðrÞ ð 3 ðrÞ Þ C v 3 w ðrÞ ð 3 ðrÞ Þ$ð3K 3 ðrÞ Þ C 1 2 ð3K 3 ðrÞ Þ$L ðrÞ 0 ð3K 3 ðrÞ Þ: ð4:24Þ

  ðrÞ Þ ^v2 33 w ðrÞ ð 3 ðrÞ Þ: ð4:27ÞThe relations (4.26) and (4.27) thus serve to specify the variables 3 ðrÞ and L ðrÞ 0 defining the phase potentials (4.24) of the LCC in terms of the phase averages of the strain field in the phases of the LCC, itself. The stationarity condition (4.26) for the reference strains 3 ðrÞ can be used to simplify the expression for the effective potential (4On the other hand, because of the lack of stationarity of the estimates (4.25) with respect to the moduli tensors L ðrÞ 0 , the corresponding estimates for the effective stress-strain relation are given (Ponte Castan ˜eda & Suquet 1998) by those in the LCC, plus some 'correction' terms, as described next.

  the macroscopic stress in the LCC, and the tensors r(r) are defined in terms of the phase covariance tensors C ðrÞ 3 L of the strain in the LCC viar ðrÞ Z 1 2 C ðrÞ 3 L $v 3 L ðrÞ t ð 3 ðrÞ L Þ: ð4:30ÞIn expressions (4.29) and (4.30), the notation a$v c b and A$v c B has been used to denote second-order tensors with ijth components a kl vb kl =vc ij and A klmn vB klmn =vc ij .

  :33Þwhere L0 , t0 and f 0 depend on the linear homogenization estimates utilized. The phase averages and second moments of the local fields in the LCC can then be extracted concentration tensors, and C ðrÞ 3 L denotes the phase covariance tensors of the strain in the LCC, as given by C ðrÞ 3 L ^hð3 L K 3

ðrÞ

  Lt denotes the phase potential of the perturbed LCC, given in terms of (4.24) by (4.14). The tangent second-order estimate for the perturbed effective potential W t is thus given by (4.25), with W L replaced by W Lt , the effective potential of the perturbed LCC with phase r characterized by w ðrÞ Lt . The optimal tensors 3 ðrÞ and L ðrÞ 0 in the perturbed problem are given by (4.26) and (4.27), with 3 ðrÞ L replaced by 3

  be shown that the estimates (4.37)-(4.40) are exact to first order in the heterogeneity contrast, which follows from the fact that the estimate (4.25) for W is exact to second order. Third, it is interesting to note that the terms 'correcting' the LCC quantities (effective behaviour and field statistics) depend explicitly on the intraphase field fluctuations, through the tensors C ðrÞ 3 L and on the degree of nonlinearity of the local potential, through the tensors v 3 L ðrÞ t

;

  ðrÞ 0 are not identified with the tangent tensors of moduli (4.27). For composites with isotropic constituents characterized by potentials of the form (4.1), Ponte Castan ˜eda (2002a) proposed the use of anisotropic tensors of the form F ðrÞ Z KKE ðrÞ : ð4:52ÞThen, the following identity for the local potentials holds: here leads to the 'generalized-secant' conditions v 3 w ðrÞ ð3 ðrÞ ÞKv 3 w ðrÞ ð 3 ðrÞ Þ Z L ðrÞ 0 ð3 ðrÞ K 3 ðrÞ Þ: ð4:55ÞNote that the identity (4.53) is valid for any 3 ðrÞ . The second-order estimates for the effective strain potential are obtained by inserting (4.53) into (2.2), interchanging the optimization operations over 3(x) and the moduli l restricting the latter to be constant per phase. The result is the approximationW ð 3Þ Z statwhere W L is the effective potential of the LCC. The stationary operation in this expression leads to the following conditions for the phase moduli l

  Result 4.8. The second-order estimates for the effective behaviour, with prescription (4.66), are given bys Z v 3 W ð 3Þ Z s L C X N rZ1 cðrÞr ðrÞ ; ð4:67Þ and the corresponding estimates for the field statistics are given by 3 ðrÞ Z 3 ðrÞ L ; h353i ðrÞ Z h3 L 53 L i ðrÞ ; ð4:68Þ s ðrÞ Z s ðrÞ L C r ðrÞ ; hs5si ðrÞ Z hs L 5s L i ðrÞ C 2 s ðrÞ 5 s r ðrÞ ; ð4:69Þ where s ðrÞ Z v 3 w ðrÞ ð 3Þ, and the tensors r (r) are defined by (4.61) with (4.66).

  It then follows from lemma 2.1 that v t ðrÞ W t ð 3Þ Z hv t ðrÞ w t ðx; 3 t Þi Z hc ðrÞ ðxÞ3 t i Z c ðrÞ h3 t i ðrÞ ; ð3:3Þ where 3 t is the solution to the minimization problem (2.2) 2 with a local potential given by equation (3.2), and the subscript t has been used to emphasize that it depends on the parameter t(r) . In particular, for t (r) Z0, 3 t reduces to the strain field in a composite with local potential (2.1) 2 , and so relation (3.1) follows. & convex, and so the corresponding effective potential W t is well defined. Then, it follows from lemma 2.1 that v t ðrÞ W t ð 3Þ Z hv t ðrÞ w t ðx; 3 t Þi Z
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Lm denote the phase averages in the perturbed LCCs.
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