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The present work is an in-depth study of the connections between microstructural instabilities and
their macroscopic manifestations—as captured through the effective properties—in finitely strained
porous elastomers. The powerful second-order homogenization (SOH) technique initially developed
for random media, is used for the first time here to study the onset of failure in periodic porous
elastomers and the results are compared to more accurate finite element method (FEM) calculations.
The influence of different microgeometries (random and periodic), initial porosity, matrix

constitutive law and macroscopic load orientation on the microscopic buckling (for periodic
microgeometries) and macroscopic loss of ellipticity (for all microgeometries) is investigated in detail.
In addition to the above-described stability-based onset-of-failure mechanisms, constraints on the
principal solution are also addressed, thus giving a complete picture of the different possible failure
mechanisms present in finitely strained porous elastomers.
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1. Introduction and motivation

Failure in composite materials is a fundamental as well as an extremely diverse issue in

solid mechanics. Questions about what constitutes failure, when does failure start and

whether it is possible to predict the onset of failure by investigating the effective

(homogenized) properties of the solid, are problems of fundamental interest for all

composites. The infinite variety of matrix materials and microstructures, which result in a

multitude of possible failure mechanisms, is the reason for the problem’s extraordinary

diversity.

In the interest of (relative) simplicity, and motivated by considerable recent advances in

calculating the effective properties of finitely strained non-linear solids, attention is focused

here on porous elastomers. This particular class of composites is of considerable

technological interest and enjoys a wide range of applications as foams (random

microstructure) or honeycombs (periodic microstructure). A brief review of the relevant

literature in finitely strained porous elastomers is presented here, with particular emphasis

on the associated stability issues for the case of random as well as periodic

microgeometries.

An important early contribution to the field, which is credited with starting the stability

discussions in porous elastomers, is the experimental work of Blatz and Ko (1962). These

researchers performed experiments on polyurethane rubber with a random distribution of

voids of about 40 mm in diameter and an approximate volume fraction of about 50%. The

failure mechanism associated with this elastomer was first pointed by Knowles and

Sternberg (1975) who showed that the incremental equilibrium equations of this material

lose ellipticity at adequately large strain levels. These works were within the framework of

continuum mechanics and did not address the connections between the existence of a

microstructure and the macroscopic loss of rank-one convexity of the continuum energy

density.

Independently, considerable effort has been devoted to predict the effective properties of

hyperelastic composites with random microstructures, starting with the work of Hill

(1972). The homogenization of these solids presents serious technical challenges which

were addressed in a series of papers by P. Ponte Castañeda and co-workers, starting with

Ponte Castañeda (1989). From the increasingly accurate homogenization schemes which

have been subsequently devised, of particular interest here is the second-order

homogenization (SOH) method (Ponte Castañeda, 1996, 2002). This method has been

applied recently to particle-reinforced elastomers by Lopez-Pamies and Ponte Castaneda

(2003, 2004a), as well as to porous elastomers by Lopez-Pamies and Ponte Castañeda

(2004b). These models are sophisticated enough as to allow for modeling of the evolving

microstructure and are thus successful in predicting the loss of rank-one convexity in

homogenized porous elastomers.

Motivated by the work of Knowles and Sternberg (1975) and in parallel with the

homogenization studies for finite strain elastomers, the connection between porosity at the

microscopic level and loss of ellipticity at the macroscopic scale became the object of

considerable attention. The work of Abeyaratne and Triantafyllidis (1984) first showed

how by homogenizing the tangent moduli of a finitely strained periodic porous elastomer

with a strictly rank-one convex matrix, one can obtain at finite strain a macroscopically

non-elliptic material with the same tendencies exhibited by the Blatz–Ko solid. Moreover,

an intimate connection was discovered between the onset of microscopic buckling and the

2



corresponding loss of ellipticity of the incremental moduli in the homogenized solid. This

was first shown by Triantafyllidis and Maker (1985) for an incompressible, hyperelastic

layered composite in plane strain. Subsequent work by Geymonat et al. (1993) established

a rigorous connection between bifurcation instability at the microscopic level and loss of

rank-one convexity of the homogenized moduli in finitely strained periodic elastomers of

infinite extent. More specifically, it was shown that if the wavelength of the bifurcation

eigenmode is infinite (compared to the unit cell size), the corresponding instability of the

periodic principal solution can be detected as a loss of ellipticity of the corresponding one-

cell homogenized tangent moduli of the solid.

Based on these general results, Triantafyllidis and Bardenhagen (1996) defined the onset-

of-failure surfaces in stress and strain space for periodic solids of infinite extent, a concept

which was subsequently applied among other solids to the case of trusses by Schraad and

Triantafyllidis (1997), biaxially compressed aluminum honeycomb by Triantafyllidis and

Schraad (1998), fiber-reinforced composites under combined normal and shear strains by

Nestorović and Triantafyllidis (2004), to three-dimensional Kelvin foams (Gong et al.,

2005) and more recently to periodic porous and particulate elastomers by Triantafyllidis

et al. (2006).

The present paper, a logical continuation and merger of the above-described parallel

efforts, is an in-depth study of the connections between microstructure and macroscopic

failure in random as well as in periodic porous elastomers. More specifically, the powerful

SOH technique previously applied to study random media, is hereby applied for the first

time to study the onset of failure in periodic porous elastomers and the results are

compared to more accurate finite element calculations. The influence of different

microgeometries (random and periodic), initial porosity and matrix constitutive law on

the microscopic buckling (for periodic microstructures) and macroscopic loss of ellipticity

(for arbitrary microstructures) is investigated in detail. In addition to the above-described

stability-based onset-of-failure mechanisms, a number of additional constraints in the

effective response of porous media are also addressed, thus giving a complete picture of the

different possible failure mechanisms present in finitely strained porous elastomers.

The presentation of the work is organized as follows: Section 2 deals with the general,

three-dimensional theoretical considerations for the effective properties of porous

elastomers, the relation between microscopic instabilities and macroscopic loss of

ellipticity (for periodic microstructures) as well as the definition of the onset-of-failure

surfaces. The description of the loading path in plane strain and the presentation of the

different (two-dimensional) calculation methods (the SOH method with associated linear

comparison solid, as well as the finite element method (FEM)) are given in Section 3. The

specific matrix constitutive choices and the results of the calculations are presented and

discussed in Section 4 followed by the conclusion in Section 5. Finally, the additional

constraints on the effective response of porous elastomers (void surface instability,

percolation, strain lock-up and pore closure/self-contact) are addressed in Appendix A

while the expressions for the microstructural tensor P, which is required for the

homogenization calculations, are given for different microgeometries in Appendix B.

2. Theoretical considerations

As stated in the Introduction, the goal of this work is to study the instabilities of porous,

elastic solids subjected to finite-strain loading conditions. Of particular interest is the
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microscopic (local) instability information that can be extracted by investigating the

macroscopic (homogenized) properties of porous elastomers. Also of interest is the

influence of microgeometry on the stability of these solids. The concepts introduced in this

Section are general and apply to two- or three-dimensional porous elastomers with point-

wise rank-one convex matrix constitutive laws.

The first subsection deals with the macroscopic properties of porous elastomers and the

related concept of macroscopic stability, which is based on the fact that the equilibrium

solution of a representative volume element (RVE) under Dirichlet boundary conditions is

a local minimizer of the RVE’s energy. This criterion leads to the strong ellipticity of the

homogenized solid’s incremental moduli or, equivalently, to the strict rank-one convexity

of the homogenized stored-energy function.

The second subsection pertains to the stability of periodic porous elastomers. For solids

with periodic microstructures, a simple unit cell can be easily identified and more accurate

numerical homogenization calculations can be accomplished based on this unit cell. The

question that naturally arises is whether for a given macroscopic load, the energy

minimizing solution is periodic with period the chosen unit cell, or whether a different

energy minimizer exists which is periodic on a larger cell. To this end, the concept of

microscopic stability is introduced in the second subsection, which is based on the

examination of all bounded perturbations in the infinite solid about the periodic

equilibrium solution under consideration. The microscopic stability investigation makes

use of the chosen small unit cell in conjunction with a Bloch-wave technique.

Following the above stability definitions, the concept of a microscopic and a

macroscopic onset-of-failure surface in macroscopic load space is introduced in the third

subsection. For random microgeometries only the macroscopic onset-of-instability surface

can be defined. For periodic microstructures, both onset-of-failure surfaces (i.e., the

microscopic and the macroscopic surfaces) can be found and the former surface lies by

definition inside the latter. The microscopic onset-of-failure surfaces can also be used to

characterize the domain in macroscopic load space where the homogenized properties

based on calculations using the chosen unit cell are valid and coincide with the

homogenized properties calculated using an infinite number of cells.

2.1. Macroscopic properties and stability of porous elastomers

Consider a porous elastomer made up of voids that are distributed, either with periodic

or random microstructure, in an elastomeric matrix phase. A specimen of this porous

material is assumed to occupy a volume O0 in the reference configuration, in such a way

that the typical size of the voids is much smaller than the size of the specimen and the scale

of variation of the applied loading. Thus, in the homogenization limit (i.e., in the limit as

the size of the pores goes to zero), O0 can be identified with a RVE of the porous elastomer.

Some useful notation is in order at this point; the average of a field quantity f, denoted

by hfi is defined by

hfi � 1

O0

Z

O0

fðXÞ dX. (2.1)

Material points in the solid are identified by their initial position vector X, while the

current position vector of the same point is denoted by x. The displacement of each

material point X is denoted by u, such that u � x� X. The deformation gradient F at X, a
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quantity that measures the deformation in the neighborhood of X, is defined as

F � xr ¼ Iþ ur ðF ij � qxi=qX j ¼ dij þ qui=qX jÞ. (2.2)

The constitutive behavior of the hyperelastic matrix phase, which occupies the subdomain

O
ð1Þ
0 , is characterized by a stored-energy function W ð1Þ that is a non-convex function of the

deformation gradient F. The constitutive behavior of the vacuous phase, which occupies

the subdomain O
ð2Þ
0 , is described by the stored-energy function W ð2Þ ¼ 0. Thus, the local

energy function of this two-phase system may be written as

W ðX;FÞ ¼
X2

r¼1

w
ðrÞ
0 ðXÞ W ðrÞðFÞ. (2.3)

Here the functions w
ð1Þ
0 , equal to 1 if the position vector X 2 O

ð1Þ
0 and zero otherwise, and

w
ð2Þ
0 , equal to 1 if the position vector X 2 O

ð2Þ
0 and zero otherwise, describe the distribution

of the two phases in the reference configuration of the hyperelastic porous solid. Since

there is really only one phase in this system, and w
ð2Þ
0 ¼ 1� w

ð1Þ
0 , one can alternatively write

W ðX;FÞ ¼ w0ðXÞW ðFÞ, (2.4)

where w0 and W are used instead of w
ð1Þ
0 and W ð1Þ, for simplicity.

The characteristic function w0 may be periodic or random. In the first case, the

dependence of w0 on the position vector X is completely determined once a unit cell D has

been specified. In the second case, the dependence of w0 on X is not known precisely, and

the microstructure is only partially defined in terms of the n-point statistics of the system.

Here, use will be made of information up to only two-point statistics in order to be able to

take advantage of linear homogenization estimates that are available from the literature. It

is noted that the initial volume fraction of the matrix phase is given by hw0i, in such a way

that the initial value of the porosity will be determined by f 0 ¼ 1� hw0i.
The stored-energy function of the matrix phase will, of course, be assumed to be

objective in the sense that W ðQikFkjÞ ¼ W ðF ijÞ for all proper orthogonal Q and arbitrary

deformation gradients F. Making use of the polar decomposition F ij ¼ RikUkj , where U is

the right stretch tensor and R is the rotation tensor, it follows, in particular, that

W ðFÞ ¼ W ðUÞ. The constitutive relation of the matrix material is

S ¼ qW

qF
ðFÞ Sij ¼

qW

qF ij

ðFÞ
� �

, (2.5)

where S denotes the nominal stress tensor (the transpose of the first Piola–Kirchhoff stress

tensor).1 Note that sufficient smoothness is assumed for W on F. It is also useful to define

the local elasticity, or tangent modulus tensor of the matrix material via

LðFÞ � q2W

qFqF
ðFÞ LijklðFÞ �

q2W

qF ijqFkl

ðFÞ
� �

. (2.6)

1The definitions of stress measures adopted follow Malvern (1969).
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It is further assumed that the matrix material is strongly elliptic, or strictly rank-one

convex, namely2:

BLðFÞ � min
kak¼knk¼1

fainjLijklðFÞaknlg40. (2.7)

The physical meaning of the above requirement is that the material never admits solutions

with discontinuous deformation gradients within the given phase.

Following Hill (1972), under the above-mentioned separation of length scales hypothesis,

the effective stored-energy function eW of the porous elastomer is defined by3

eW ðFÞ � min
F2KðFÞ

hW ðX;FÞi, (2.8)

where K denotes the set of admissible deformation gradients:

KðFÞ ¼ fFjF ij ¼ qxiðXÞ=qX j for X 2 O0; xi ¼ F ijX j for X 2 qO0g.

Note that eW represents the minimum elastic energy stored in the entire RVE when

subjected to an affine displacement boundary condition that is consistent with the average

deformation condition hFi ¼ F. Moreover, from definition (2.8) and the objectivity ofW , it

can be shown that eW is objective but in general eWaW . It is also noted for later reference

that eW is quasi-convex, and therefore, rank-one convex, but not necessarily strictly so, as

discussed later.

Consequently, the global or macroscopic constitutive relation for the porous solid can

be shown to be

S ¼ q eW
qF

� eS, (2.9)

where S ¼ hSi is the average stress in the porous elastomer and eS is defined to be the

effective stress. From here on, both hfi and f notations for the average of a field quantity f

are employed interchangeably according to convenience. In analogy with the local

elasticity tensor defined in (2.6), the macroscopic (or effective) elasticity tensor is defined:

eLðFÞ � q2 eW
qFqF

ðFÞ, (2.10)

where unlike the stress case in (2.9), eLaL.

The macroscopic stability of the solid at F is measured by the effective coercivity

constant eBðFÞ, which is defined, in terms of eLðFÞ, in an analogous way to its local

counterpart (2.7), by

eBðFÞ � min
kak¼knk¼1

fainj eLijklðFÞaknlg. (2.11)

According to (2.11), the porous solid is defined to be macroscopically stable if eBðFÞ40, i.e.,

if it is strictly rank-one convex. One of the issues of interest in this work is under what

conditions it can lose strict rank-one convexity.

2Einstein’s summation convention is adopted with repeated Latin indices summed from 1 to 3 in this section

which deals with three-dimensional solids.
3Here and subsequently the symbol (ef) implies effective properties associated with the field quantity f, as

opposed to the symbol (f) which implies average properties associated with the same field.
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2.2. Microscopic instabilities in periodic porous elastomers

Consider a porous elastomer whose periodic, stress-free state is used as the undeformed

reference configuration. Without loss of generality, the porous solid can be thought as

resulting by periodic repetition along each coordinate direction of a fundamental building

block D (with boundary qD), which is termed the unit cell. Without loss of generality D is

assumed to be a parallelepiped of dimension Li along the direction X i. Then, the

distribution of the material is characterized by a D-periodic characteristic function:

w0ðX 1;X 2;X 3Þ ¼ w0ðX 1 þ k1L1;X 2 þ k2L2;X 3 þ k3L3Þ, (2.12)

where k1; k2; k3 are arbitrary integers, and L1;L2;L3, the unit cell dimensions.

The primary objective of this work is to determine the macroscopic properties of the

porous solid and the stability information they carry. For hyperelastic porous solids with

periodic microstructure, it is known (Braides, 1985; Müller, 1987) that the computation of

the effective stored-energy function eW , as determined by relation (2.8), cannot be

simplified further, as a consequence of the lack of convexity of the local stored-energy

function W . Recall that, for a periodic medium, the computation of the effective stored-

energy function eW , as determined by relation (2.8), can be reduced to a computation on

the unit cell, provided that the local stored-energy function W be convex (Marcellini,

1978). Unfortunately, actual elastomers do not have convex energy functions. However, as

will be discussed in further detail below, it is still useful in this context to define the one-cell

effective energy function bW via the expression:

bW ðFÞ � min
u02D#

1

j D j

Z

D

W ðX;Fþ u0rÞdX
� �

, (2.13)

where by D# is denoted the set of all D-periodic fluctuation functions u0, i.e., zero-average
displacement functions that have the same values on opposite faces of the unit cell D. Since

the macroscopic deformation gradient is given by F, the local fluctuation field is

u0i ¼ ui þ X i � F ijX j. Attention is focused only on macroscopic deformations F for which

such a fluctuation field, denoted by u0
F
, exists and corresponds to a stable equilibrium

solution of the unit-cell deformation problem:

Z

D

qW

qF ij

ðX;Fþ u0
F
rÞdui;j dX ¼ 0, (2.14)

b
D
� min

u02D#

Z

D

q2W

qF ijqFkl

ðX;Fþ u0
F
rÞu0i;ju0k;l dX

�Z

D

u0i;ju
0
i;j dX

� �
40, (2.15)

where du is any arbitrary D-periodic fluctuation field. The first of the above equations

indicates that u0
F
is an extremum of the unit-cell energy bW ðFÞ, and the second that it

corresponds to a local minimum of this energy.

Although according to (2.7) the material is at each point strictly rank-one convex, this

property does not usually hold for the homogenized porous solid (see Abeyaratne and

Triantafyllidis, 1984). The search for the macroscopic deformations F for which the

homogenized solid characterized by bW ðFÞ loses its strict rank-one convexity is addressed

next. To this end, one needs to investigate the one-cell homogenized moduli tensor bLðFÞ,
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defined by

bLðFÞ � q2 bW
qFqF

ðFÞ; bW ðFÞ ¼ 1

j D j

Z

D

W ðX;Fþ u0
F
rÞdX. (2.16)

When an explicit expression for bW exists, the homogenized moduli are calculated by

taking the second derivative with respect to F of bW given in (2.16). For the case of regular

microgeometries where the unit-cell problem—as defined in (2.14)—is solved numerically

using an FEM technique, a different calculation strategy, which is based on the

interchange between the homogenization and linearization steps, is employed.

Thus, for a solid with a linearized response characterized by its tangent moduli LðXÞ,
where L is a D-periodic function of X, the homogenized tangent modulus tensor LH is

uniquely defined by (see Geymonat et al., 1993)

GijL
H
ijklGkl � min

u02D#

1

j D j

Z

D

LijklðXÞðGij þ u0i;jÞðGkl þ u0k;lÞdX
� �

, (2.17)

where G is an arbitrary second-order tensor. A formal calculation based on (2.17) shows

that the components of the homogenized tangent moduli are given by

LH
pqrs ¼

1

j D j

Z

D

LijklðXÞðdipdjq þ w
pq

i;jÞðdkrdls þ w
rs

k;lÞdX, (2.18)

where the characteristic functions v
pq
2 D# are D-periodic fluctuations defined by

Z

D

LijklðXÞðdipdjq þ w
pq

i;jÞduk;l dX ¼ 0, (2.19)

for arbitrary fluctuations du 2 D#. A formal calculation of bL based on (2.16), which makes

use of (2.14), shows that (see Geymonat et al., 1993) the above-defined linearization and

homogenization operations commute, and therefore

bL ¼ LH. (2.20)

It also follows from the same calculations that the characteristic functions v
pq

(defined in

(2.19)) involved in the determination of LH are the F derivatives of the fluctuation

functions u0
F
, namely:

v
pq
¼

qu0
F

qF pq

. (2.21)

By definition, the one-cell homogenized energy bW requires minimization of the energy

over a single unit cell. However, it is possible that, by minimizing the energy over larger

domains containing several unit cells, a lower value can be found for the energy per volume

of these larger samples. The corresponding fluctuation fields are periodic over much larger

(possibly infinite) domains kD, where kD denotes a super-cell of dimensions kiLi in each

direction. Hence, a fully consistent definition (see Müller, 1987) of the homogenized energy
eW requires the consideration of fluctuations u0 that are kD-periodic. Thus, for a periodic

hyperelastic medium, the general expression (2.8) specializes to

eW ðFÞ � inf
k2N3

min
u02kD#

1

j kD j

Z

kD

W ðX;Fþ u0rÞdX
� �� �

. (2.22)
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From the definitions in (2.13) and (2.22), one can easily conclude that eW ðFÞp bW ðFÞ. The
equality holds when the infimum is a minimum occurring at k ¼ ð1; 1; 1Þ, i.e., when the one-

cell minimizing fluctuation displacement u0
F
is also the minimizing fluctuation displacement

for any super-cell kD.

For small strains (near F ¼ I), one expects that eW ðFÞ ¼ bW ðFÞ, but as the macroscopic

strain increases, eventually, eW ðFÞo bW ðFÞ. It is always possible to calculate, exactly as well

as approximately, the one-cell homogenized energy bW ðFÞ and the corresponding

macroscopic moduli bLðFÞ. However, it is practically impossible to calculate the correct

homogenized energy eW ðFÞ, in view of the infinity of the required domain of its definition

(kD with kkk ! 1). Therefore, it is important to establish the region of macroscopic

strain space where the one-cell homogenized energy is the correct one ( bW ðFÞ ¼ eW ðFÞ). To
this end, and in an analogous way to (2.15), one can define the coercivity constant bðFÞ for
the infinite domain (O0 ¼ R3):

bðFÞ � inf
k2N3

bkDðFÞ, (2.23)

bkDðFÞ � min
u02kD#

Z

kD

q2W

qF ijqFkl

ðX;Fþ u0
F
rÞu0i;ju0k;l dX

�Z

kD

u0i;ju
0
i;j dX

� �
. (2.24)

As shown by Geymonat et al. (1993), a necessary condition for eW ðFÞ ¼ bW ðFÞ is that

bðFÞ40. Fortunately, unlike the computation of eW ðFÞ, the determination of the coercivity

constant bðFÞ requires only calculations on the unit cell D, as will be seen next. Thus, using

the Bloch-wave representation theorem, it was proved by Geymonat et al. (1993) that the

eigenmode v corresponding to bðFÞ can always be put in the form

vðXÞ ¼ u0ðXÞ expðiokX kÞ; u0 2 D#; x � ðo1;o2;o3Þ; 0po1 L1;o2 L2;o3 L3o2p,

(2.25)

and hence that the coercivity constant bðFÞ is determined from

bðFÞ � inf
x

min
u02D#

Z

D

q2W

qF ijqFkl

ðX;Fþ u0
F
rÞv%

i;jvk;l dX

�Z

D

v%

i;jvi;j dX

� �� �
, (2.26)

with v given by (2.25)1. Here, v% is the complex conjugate of the field v.

The Euler–Lagrange equations and free-surface boundary conditions corresponding to

the above eigenvalue problem (2.26) are

ðLijklðX;Fþ u0
F
rÞvk;l � bðFÞvi;jÞ;j ¼ 0 ðLijklðX;Fþ u0

F
rÞvk;l � bðFÞvi;jÞN j ¼ 0,

(2.27)

where N is the outward normal to the free surface of the pores and the eigenmode v is given

in terms of the Bloch representation theorem (2.25). Of course, the same equations are

applicable for the eigenmode corresponding to bkD, defined in (2.24), and also for the

eigenmode corresponding to bD, defined in (2.15).

Of particular interest here is b0ðFÞ, the long-wavelength limit (x ! 0) of the above

expression (2.26), defined as

b0ðFÞ � lim inf
x!0

min
u02D#

Z

D

q2W

qF ijqFkl

ðX;Fþ u0
F
rÞv%

i;jvk;l dX

�Z

D

v%

i;jvi;j dX

� �� �
, (2.28)
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which, as will be subsequently discussed, when it vanishes, signals the loss of strict rank-

one convexity of the one-cell homogenized stored energy bW ðFÞ.
The use of lim infx!0 in the above expression merits further explanation. As seen from

(2.25) two different types of eigenmodes exist in the neighborhood of x ¼ 0; the strictly D-

periodic ones, for which x ¼ 0, and the long-wavelength modes, for which x ! 0.

Depending on the case, the lowest value of the ratio of the two quadratic functionals in

(2.28) can occur for long wavelength modes, in which case the limit x ! 0 is a singular one

depending on the ratio of the x components, thus justifying the use of the lim inf in (2.28).

Finally, and in analogy to the effective coercivity constant defined in (2.11), a

macroscopic one-cell coercivity constant bB is defined by

bBðFÞ � min
kak¼knk¼1

fainj bLijklðFÞaknlg. (2.29)

With the definition of the three coercivity constants (also, and equivalently, termed

stability constants), bBðFÞ, b0ðFÞ and bðFÞ, for the macroscopic loading F, the stage has been

set for discussing the stability of the periodic porous solid at that load level. It follows from

the definitions of these three coercivity constants (see Geymonat et al., 1993) that the

following relation holds for arbitrary vectors a and n:

ainj bLijklðFÞaknlXb0ðFÞkak2knk2XbðFÞkak2knk2 ¼) bBðFÞXb0ðFÞXbðFÞ. (2.30)

More specifically, the above relations indicate that when the one-cell based homogenized

energy is the correct one (i.e., bðFÞ40 in which case eW ðFÞ ¼ bW ðFÞ), the homogenized

energy function is strictly rank-one convex. Moreover, microscopic stability (bðFÞ40,

which means from (2.28), that the solid is stable to bounded perturbations of arbitrary

wavelength x) implies macroscopic stability (bBðFÞ40, which means that the corresponding

one-cell based homogenized moduli bL are also strongly elliptic).

Finding the domain in macroscopic strain ðFÞ space for which the material is

microscopically stable, i.e., bðFÞ40, although feasible thanks to (2.26), requires tedious and

time consuming calculations since one has to scan using a fine grid the ð0; 2pÞ � ð0; 2pÞ �
ð0; 2pÞ domain in Fourier (x) space. On the other hand, finding the larger domain in the same

macroscopic strain (F) space for which the one-cell homogenized solid bW ðFÞ is

macroscopically stable, i.e., bBðFÞ40, is a rather straightforward calculation since it only

requires the determination of the homogenized moduli bLðFÞ at each macroscopic deformation

F. Calculating these two (i.e., the microscopic and macroscopic) stability domains for certain

non-linear solids with different porous microstructures is the object of the present work.

An interesting observation about the loss of macroscopic stability is in order, before

ending this subsection. It has been shown by Geymonat et al. (1993) that bBðFÞ and b0ðFÞ
always vanish simultaneously, i.e., if b0ðFÞ ¼ 0, then it implies that bBðFÞ ¼ 0. This means

from (2.30) that the onset of a long-wavelength instability (x ! 0—the wavelength of the

eigenmode is much larger compared to the unit cell size) is always detectable as a loss of

strong ellipticity of the one-cell homogenized moduli. Therefore, the following remark can

be made about the first—in a monotonic loading process which will be defined

subsequently—loss of microscopic stability (bðFcÞ ¼ 0) in a microstructured elastic solid

at some critical macroscopic deformation Fc: if b0ðFcÞ ¼ bðFcÞ, the wavelength of the first

instability encountered is much larger than the unit cell size and hence the instability can be

detected as a loss of strong ellipticity of the one-cell homogenized moduli bL since
bBðFcÞ ¼ 0. For the case when b0ðFcÞ4bðFcÞ ¼ 0, the first instability encountered in the
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loading process has a finite wavelength, and from that point on the one-cell

homogenization is no longer physically meaningful and hence bW cannot provide any

useful information about the solid. Henceforth, a tedious numerical process that follows

the bifurcated equilibrium solutions is required to determine the response of the solid

under the macroscopic strains in the neighborhood of Fc and beyond.

2.3. Onset-of-failure surfaces

To summarize the discussion in the two previous subsections, the elastomer’s

macroscopic stability constant BðFÞ is defined for the different microgeometries as follows:

BðFÞ �
eBðFÞ random ðeLðFÞ ¼ q2 eW=qFqF SOH onlyÞ;
bBðFÞ periodic ðbLðFÞ ¼ LHðFÞ for FEM; bLðFÞ ¼ q2 bW=qFqF for SOHÞ:

(

(2.31)

The top definition (see (2.11)) is employed for random microgeometries where a SOH

approximation (explained in the next section) of the effective energy density eW ðFÞ is used.
The bottom definition (see (2.29)) is employed for periodic microgeometries, since a

calculation of eW ðFÞ is not feasible in this case. When an FEM approach (also explained in

the next section) is used, the one-cell homogenized moduli are calculated using LHðFÞ
defined in (2.18), while for the SOH approximation the one-cell homogenized moduli are

obtained by differentiating bW ðFÞ (see (2.16)1).

For the periodic microgeometry, the microscopic stability constant bðFÞ is also defined

according to (2.26). The stage has thus been set to introduce the corresponding (i)

macroscopic and (ii) microscopic onset-of-failure surfaces in macroscopic load space. These

surfaces are, respectively, defined as the regions in macroscopic load space where (i) B40,

outside which the solid is unstable since the homogenized energy density is no longer

strongly elliptic, and (ii) b40, inside which the infinite-cell periodic solid is stable and

where the one-cell homogenization procedure is valid bW ¼ eW .

The parameterization of the loading path in deformation space is needed for the

determination of the above-defined surfaces. A loading path FðlÞ is considered parameterized

by a scalar quantity lX0, termed load parameter, starting at l ¼ 0 for F ¼ I, that increases

monotonically with increasing applied macroscopic load. In a physically meaningful problem

the solid under investigation is stable in its undeformed, stress-free state, i.e., BðIÞXbðIÞ40

(initially F ¼ I). The macroscopic onset-of-failure surface is thus defined by

BðlcMÞ ¼ 0; BðlÞ40; 0plolcM; BðlÞ � BðFðlÞÞ. (2.32)

In other words lcM is the lowest root of BðlÞ, the macroscopic stability constant defined in

(2.11) and evaluated on the load path FðlÞ. Similarly to (2.32), the microscopic onset-of-

failure surface is given by

bðlcmÞ ¼ 0; bðlÞ40; 0plolcm; bðlÞ � bðFðlÞÞ. (2.33)

In other words lcm is the lowest root of bðlÞ, the microscopic stability constant defined in

(2.26) and evaluated on the load path FðlÞ.
The above general definition of the onset-of-failure surfaces requires the selection of a

loading path. For the plane strain problem of interest in this work, a proportional strain

path in macroscopic logarithmic strain space will be subsequently specified.
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3. Calculation methods for plane-strain loading of elastomers with cylindrical pores

The results presented thus far are valid for three-dimensional porous elastomers with

arbitrary microgeometry, macroscopic loading and matrix constitutive laws. From this

point on, attention is focused on plane-strain deformations (in the X 1–X 2 plane) of porous

elastomers consisting of cylindrical voids perpendicular to the plane of deformation and

aligned in the X 3 axis direction. The voids are taken to have initially circular cross section

and initial volume fraction f 0. Two types of pore distributions (in the reference

configuration) are considered: (a) statistically isotropic random and (b) periodic with (i)

square and (ii) hexagonal arrangements as depicted in Fig. 1.

This section pertains to the load path description and to the calculation methods

employed in this study. Following the description of the load paths adopted, the second

subsection presents the second-order variational estimates used in deriving approximations

for the effective properties of the porous elastomer. Within the same subsection are

presented the estimates for the linear comparison composite as well as information required

for the calculation of the microstructure evolution. Finally the third subsection presents

the main assumptions used in the FEM calculations.

3.1. Loading paths in plane strain

Note that the applied macroscopic deformation F in this context is entirely characterized

by the four in-plane components: F11;F 22;F 12;F21, since the out-of-plane components are

fixed: F 13 ¼ F31 ¼ F 23 ¼ F32 ¼ 0, and F33 ¼ 1. In this regard, it proves expedient to

exploit the objectivity of eW , by ignoring macroscopic rigid rotations (R ¼ I), and to make

use of the decomposition U ij ¼ QikDklQjl , in order to express the (in-plane) macroscopic

Fig. 1. Reference configuration depiction of the various microgeometries investigated: (a) random polydisperse

and (b) perfect periodic with (i) square and (ii) hexagonal arrangement of circular voids.
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deformation gradient F as4:

F ij ¼ U ij ¼
cos y � sin y

sin y cos y

� �
l1 0

0 l2

" #
cos y sin y

� sin y cos y

� �
. (3.1)

In the above expression, l1 and l2 denote the in-plane macroscopic principal stretches, and

y serves to characterize the orientation (in the anti-clockwise sense relative to the fixed

laboratory frame of reference) of the macroscopic, in-plane, Lagrangian principal axes

(i.e., the principal axes of U). For convenience, the coordinates X i defining the periodic

elastomer’s axes of orthotropy in the reference configuration are identified here with the

fixed laboratory frame of reference. For the initially isotropic random microgeometry, all

choices of the fixed laboratory frame of reference are equivalent. In the sequel, the

components of any tensorial quantity will be referred to X i.

Next, a load path needs to be selected and parameterized. Here, without loss of

generality, attention is restricted to proportional straining paths in principal logarithmic

strain space. More specifically, it is assumed that the ratio of the principal logarithmic

strains ei is fixed, namely:

lnðl1Þ � e1 ¼ l cosj; lnðl2Þ � e2 ¼ l sinj, (3.2)

where l is the monotonically increasing load parameter of the process and j is the load path

angle. The microscopic and macroscopic onset-of-failure surfaces to be computed here are

found by marching along (starting from l ¼ 0) all radial paths j 2 ½0; 2pÞ in principal

strain space for a fixed value of the principal axes orientation angle y.

3.2. Second-order variational estimates

As stated above, the determination via (2.8) of the effective stored-energy function eW is a

difficult problem, especially for porous elastomers with random microgeometry, where

numerical approaches based on detailed microstructural models become infeasible.

Here, use will be made of the SOH theory of Lopez-Pamies and Ponte Castañeda (2006b)

to generate estimates for eW and its derivatives for the porous elastomers considered in this

work.

The key concept behind the SOH theory is the construction of suitable variational

principles utilizing the idea of a linear comparison composite (LCC). This homogenization

technique, which is exact to second order in the heterogeneity contrast, has the capability

to incorporate statistical information about the microstructure beyond the volume fraction

and can be applied to large classes of hyperelastic composites including reinforced and

porous rubbers. A detailed derivation of the theory can be found in Lopez-Pamies and

Ponte Castañeda (2006a). For brevity, here only the main results specialized to porous

elastomers are presented. Thus, the second-order estimate for the effective stored-energy

function of a porous elastomer is given by

eW ðFÞ ¼ ð1� f 0Þ½W ðbFð1ÞÞ � SijðFÞðbF ð1Þ
ij � F

ð1Þ
ij Þ�, (3.3)

4Here and subsequently, Latin indices range from 1 to 2.
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where S is the nominal stress in the matrix, introduced in (2.5). The variable bFð1Þ is an

auxiliary deformation in the matrix (phase (1)) defined by the generalized secant condition:

SijðbFð1ÞÞ � SijðFÞ ¼ L0ijklðbF ð1Þ
kl � FklÞ, (3.4)

while Fð1Þ is the average deformation in the matrix, which will be made explicit

subsequently. Finally, L0 is a constant, fourth-order tensor with major symmetry (but with

no other symmetries) that is identified with the modulus tensor of a fictitious linear

thermoelastic material with a matrix stored-energy function:

WTðFÞ ¼ W ðFÞ þ SijðFÞðF ij � F ijÞ þ 1
2
ðF ij � F ijÞL0ijklðFkl � FklÞ. (3.5)

The relevant LCC is then defined as a two-phase material with a vacuous inclusion phase

and a linear thermoelastic matrix phase with stored-energy function (3.5), and precisely the

same microstructure as the actual non-linear porous material. The corresponding overall

stored-energy function of the LCC is given by (Laws, 1973)

eWTðFÞ ¼ ð1� f 0ÞW ðFÞ þ 1
2
SijðFÞL�1

0ijkl ½eL0klmn � ð1� f 0ÞL0klmn�L�1
0mnpq SpqðFÞ, (3.6)

where eL0 is the effective modulus tensor of the LCC, to be subsequently detailed.

Having characterized the local and overall behavior of the pertinent LCC, attention is

turned next to the prescriptions for the Fð1Þ and the LCC moduli L0 of the matrix phase,

introduced in (3.3) and (3.4). These quantities are determined using the phase average hFið1Þ
and the covariance tensor

C
ð1Þ
F ijkl � hðF ij � F

ð1Þ
ij ÞðFkl � F

ð1Þ
kl Þið1Þ, (3.7)

of the deformation fields in the matrix phase of the LCC. More specifically, Fð1Þ is given
explicitly in terms of the effective modulus tensor eL0 via

F
ð1Þ
ij ¼ F ij þ

1

1� f 0
L�1
0ijklðeL0klmn � ð1� f 0ÞL0klmnÞL�1

0mnpqSpqðFÞ. (3.8)

On the other hand, L0 is obtained from certain optimality conditions (given further below)

involving the field fluctuations in the LCC. For isotropic matrix phases, the tensor L0

should be taken of the form (see Lopez-Pamies and Ponte Castañeda, 2006b):

L0ijkl ¼ QrmQjnQspQlqRirRksL
�
mnpq, (3.9)

where L� is orthotropic with respect to the X i axes, with non-zero components L�
1111 ¼ ‘�1,

L�
2222 ¼ ‘�2, L

�
1212 ¼ ‘�3, and L�

1122 ¼ ‘�4 and where:

L�
2121 ¼ ‘�3 and L�

1221 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘�1 � ‘�3Þð‘�2 � ‘�3Þ

q
� ‘�4. (3.10)

Note that, since Q and R can be readily computed from the applied loading F, it is inferred

from condition (3.10) that the modulus tensor L0 of the matrix phase in the LCC contains

four independent unknowns: ‘�1, ‘
�
2, ‘

�
3, and ‘�4. The optimal value of these parameters is

determined by the relations:

ðbF ð1Þ
ij � F ijÞ

qL0ijkl

q‘�a
ð bF ð1Þ

kl � FklÞ ¼
2

1� f 0

q eWT

q‘�a
ða ¼ 1; 2; 3; 4Þ. (3.11)

Note that the RHS of this equation can be related to certain traces of the covariance tensor

C
ð1Þ
F defined in (3.7), thus providing a physical meaning to the auxiliary deformation bFð1Þ.
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In summary, Eqs. (3.4) and (3.11) constitute a closed system of eight coupled, non-

linear, algebraic equations for the eight unknowns formed by the four components of bFð1Þ

and the four independent components of L0 (denoted by ‘�a). It is possible (see Lopez-

Pamies and Ponte Castañeda, 2006b) to solve in closed-form Eqs. (3.11) for the four

components of bFð1Þ in terms of the parameters ‘�a. The resulting expressions can then be

substituted into Eq. (3.4) to obtain a system of four equations for the four unknowns ‘�a
(a ¼ 1; 2; 3; 4), which must be solved numerically.

Having computed all the values of ‘�a for a given porosity, material and loading, the

values of the components of Fð1Þ and bFð1Þ can be readily determined from (3.8) and (3.11),

respectively. In turn, the second-order estimate for the effective behavior of porous

elastomers can be computed, from relation (3.3), using these results. Finally, having

determined eW ðFÞ via (3.3), it is straightforward to compute its second derivative, i.e., the

macroscopic elasticity tensor eLðFÞ according to (2.10), in order to examine the macroscopic

stability of the solid via the coercivity constant eBðFÞ defined in (2.11).

3.2.1. Estimates for the linear comparison composite

At this stage, the only variable that remains to be specified is the effective modulus

tensor eL0 of the LCC. In view of the particulate type of microstructures of interest in this

work, it is appropriate to make use of the Hashin–Shtrikman (H–S) estimate (not to be

confused with the Hashin–Shtrikman bounds) for the effective modulus tensor, given by

the formula

eL0 ¼ L0 þ f 0½ð1� f 0ÞP� L�1
0 ��1. (3.12)

Here, P is a microstructural tensor that depends on the size, shape and orientation of the

pores, as well as on their spatial distribution in the reference configuration. In particular,

the tensor P depends on whether the distribution of the pores is periodic (Nemat-Nasser

et al., 1982; Suquet, 1990a, b), or random (Willis, 1977; Ponte Castañeda and Willis, 1995).

The explicit expressions for P for the three types of microstructures considered in this work

are given in Appendix B. It is important to recall that these estimates of the H–S-type are

known to be accurate for small to moderate initial porosities and that they become

inaccurate for large porosities, near the percolation limit. However, it should be

emphasized that the second-order estimates (3.3) can still be used beyond this range,

provided that a more sophisticated estimate is adopted for the LCC.

3.2.2. Microstructure evolution

Generally speaking, the problem of characterizing the evolution of the microstructure in

composites is exceedingly difficult, due to the large number of microstructural variables

involved. However, for the type of elastomers with particulate microstructures considered

here, it is possible (see Section 5 in Lopez-Pamies and Ponte Castañeda, 2006a) to identify

and characterize the evolution of suitable microstructural variables.

The evolution of the size, shape, and orientation of the pores are governed—on

average—by the average deformation gradient in the porous phase Fð2Þ. Thus, the relevant
microstructural variables characterizing the size, shape, and orientation of the pores,

identified here as the volume fraction, f, the average aspect ratio, a, and the average

orientation of the pores, a, are determined by Fð2Þ. It is important to note that within the

context of the second-order estimates (3.3), with the H–S-type approximation (3.12) for the

effective behavior of the associated LCC, the deformation gradient field inside the pores
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turns out to be constant, i.e., FðXÞ ¼ Fð2Þ for X 2 O
ð2Þ
0 . As a result, a circular pore of radius

Ri and centered at Xi in the undeformed configuration, defined by

Ei
0 ¼ fXjkX� xikpRig, (3.13)

will deform according to xk � xik ¼ F
ð2Þ
kl ðX l � X i

lÞ, with xi denoting the center of the pore

in the deformed configuration. Thus, the circular pore defined by (3.13) evolves into the

ellipse:

Ei ¼ fxjkðxk � xikÞZklkpRig, (3.14)

in the deformed configuration, where Z ¼ ðFð2ÞÞ�1. The eigenvalues 1=z21 and 1=z22 of the

symmetric second-order tensor ZkiZkj define the current aspect ratio a ¼ z2=z1 of the pore
in the deformed configuration. Hence, the principal directions of ZkiZkj , denoted here by

the rectangular Cartesian axes X 0
i, are the principal semi-axes of the elliptical pore in the

deformed configuration. Note that the orientation of X 0
i relative to X i is entirely described

by the angle a (measured counterclockwise). Moreover, by making use of the uniformity of

the deformation in the vacuous phase, the current volume fraction of the pores in the

deformed configuration may be simply obtained via

f ¼ det Fð2Þ

det F
f 0. (3.15)

In short, the evolution of the size, shape, and orientation of the pores is completely

characterized by Fð2Þ, via expressions (3.14) and (3.15), which can be readily computed by

making use of the overall condition F ¼ ð1� f 0ÞFð1Þ þ f 0F
ð2Þ, together with estimate (3.8)

for the average deformation gradient Fð1Þ in the matrix phase of the LCC.

Finally some comments are in order concerning the evolution of the distribution of the pores

(i.e., the relative motion of the center of the underlying vacuous inclusions) as a function of the

applied deformation F. For the simple periodic (square and hexagonal) microgeometries of

interest in this work (Fig. 1b), it can be shown rigorously that the relative motion of the centers

of the underlying pores are governed by the macroscopic deformation gradient F (and not by

the average field Fð2Þ in the vacuous phase), at least up to the onset of the first microscopic

instability. On the other hand, for porous elastomers with the random microgeometry

(Fig. 1a), the situation is less clear. Indeed, the authors are not aware of any rigorous result

regarding the evolution of the distribution of the underlying pores in elastomers with this type

of microstructure. However, it has been proposed (Lopez-Pamies and Ponte Castañeda,

2006a) as an approximation that in this case the voids also move, on the average, with the

macroscopic flow, as determined by F. Accordingly, for all three microgeometries studied in

this paper, the evolution of the distribution of the pores is taken to be controlled by the

macroscopic deformation gradient F. In particular, this implies that a pore centered at Xi in

the undeformed configuration will move according to xik ¼ FklX
i
l .

3.3. Finite element method

In addition to the above-described, approximate, SOH-based method, a more accurate

FEM approach is also employed to calculate the deformed configuration (i.e., to find u0
F
),

the one-cell homogenized moduli bL, as well as the microscopic lcm and macroscopic lcM
onset-of-failure loads for the periodic elastomers. The details of the corresponding FEM
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algorithm are given in Triantafyllidis et al. (2006). However, for reasons of completeness of

the presentation, a brief description of this algorithm is included here.

All FEM calculations use four node (8 d.o.f.) isoparametric, bilinear, quadrilateral

elements with a 2� 2 Gaussian integration scheme. For the one-cell square micro-

geometries (see Fig. 1b) the mesh has 1800 elements with 1920 nodes (3840 d.o.f). For the

one-cell hexagonal microgeometries (see Fig. 1b) a 2700 mesh with 2880 nodes (5760 d.o.f.)

is used. For the imperfect 4� 4 cell aggregate (see Fig. 8) the mesh has 28,800 elements

with 29,985 nodes (59,970 d.o.f.). This discretization is found to be more than adequate for

the accuracy of the numerical calculations, since further mesh refinement does not result in

appreciably different onset-of-failure curves.

The governing equations for the unit-cell deformation problem (2.14) subjected to FðlÞ,
defined in (3.1), are solved using an incremental Newton–Raphson algorithm. The typical

step size Dl of the load parameter l, defined in (3.2), is Dl ¼ 10�3 for biaxial compression

paths and Dl ¼ 10�2 for all other paths. Occasionally larger step sizes are employed to

shorten calculation time. For most cases three iterations are required for convergence at

each load step and the accuracy criterion required to stop the iterations, based on the

nominal stress (S ¼ qW=qF) vector’s Euclidean norm, is kSk p 10�4kSk. The graphs of

the microscopic and macroscopic onset-of-failure surfaces are calculated using 360

different load path angles (staring with j ¼ 0 and repeating the calculations by increasing

each time the path angle by Dj ¼ p=180).
Calculations, at each load l, of the one-cell homogenized moduli tensor bLðlÞ ð¼ LHðlÞÞ

are based on (2.18), (2.19) as detailed in Triantafyllidis et al. (2006). The thus calculated

tensor bLðlÞ is then used to find the macroscopic coercivity constant bBðFðlÞÞ defined in

(2.29) and subsequently the macroscopic onset-of-failure load lcM according to definition

(2.32). The calculation of the microscopic onset-of-failure load lcm, defined in (2.33), is

based on the macroscopic coercivity constant bðFðlÞÞ. This calculation in turn requires

according to (2.26) knowledge of the corresponding critical wavenumber x.

In view of the corresponding time-consuming computations, full Bloch-wave calcula-

tions are done for only one periodic elastomer which has a square microgeometry, an

initial porosity f 0 ¼ p=16 and a neo-Hookean matrix, for a relatively coarse mesh of the

unit cell by using the algorithm introduced by Triantafyllidis et al. (2006). For this solid—

and for macroscopic strains aligned with the axes of orthotropy (y ¼ 0)—the critical

wavenumbers are found to be either o1L1 ¼ o2L2 ¼ p or o1L1;o2L2 ! 0, depending on

the load path angle j. Having thus established that for this periodic elastomer the only

microscopic bifurcation modes are periodic on a kD super-cell with k ¼ ð2; 2Þ (see

discussion following (2.22)), a 2� 2 cell aggregate with the final refined mesh and periodic

boundary conditions is used to capture more accurately the strains at the onset of the first

bifurcation.

4. Application to specific materials

This section presents the calculations for porous elastomers with different matrix

properties and microgeometries. Following the description of the different matrix

constitutive laws used in the calculations, the results are organized in three groups as

follows: the first group, Figs. 2, 3, pertains to the influence of microgeometry and matrix

constitutive law on the stress–strain response and on the porosity/aspect ratio evolution of

porous hyperelastic solids under equibiaxial and uniaxial loading. The second group,
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Figs. 4–10, investigates the influence of initial porosity and microgeometry on the

microscopic and macroscopic onset-of-failure curves in neo-Hookean matrix porous

elastomers under plane strain loading with principal directions aligned with the axes of

orthotropy of the elastomer. Finally the third group, Figs. 11 and 12, addresses the

influence of matrix material and loading axes orientation on the failure surfaces of porous

elastomers for a fixed initial porosity.

An important general remark about the onset-of-failure surfaces is in order at this point.

For the calculation of the first—as the load parameter l increases along a given load path

FðlÞ—microscopic (at lcm) or macroscopic (at lcM) instability to be physically meaningful,

one must ensure that no other type of failure is encountered along the load path in question

for loads lower than lcm (or lower than lcM in the case that the lower microscopic

instability load lcm is not available). However, there are several phenomena that can signal

some other (than loss of uniqueness or of rank-one convexity) type of failure of the porous

elastomer. These phenomena are (a) the instability that appears at large compressive

strains on the free surface of the voids, (b) percolation, i.e., contact of adjacent pores

leading to percolating network of voids, (c) strain lock-up, i.e., reaching of a maximum

strain at the surface of the pores, which results in unrealistically stiff macroscopic response,

and (d) pore self-contact (for the periodic case) or pore closure (for random

microstructures), which dramatically alters the nature of the porous elastomer. Their

detailed discussion is presented in Appendix A.

4.1. Matrix material properties

Two different hyperelastic, rank-one convex matrix materials are used here. They are

distinguished by the response in simple shear, the first being linear the other reaching an

asymptote at a finite strain. Their energy densities are given in terms of the following two

invariants associated with F:

I � F ijF ij ; J � detðF ijÞ. (4.1)

The first material is a compressible neo-Hookean solid, with strain energyW ðFÞ in plane strain:

W ¼ m

2
½ðI � 2Þ � 2 ln J� þ k� m

2
ðJ � 1Þ2, (4.2)

where m and k are, respectively, the shear and bulk moduli of the solid at zero strain. The

response of this solid in simple shear is linear, with a unit slope because of the adopted

non-dimensionalization for the stress.

The second material used is a compressible Gent solid, with a strain energy W ðFÞ in
plane strain given by

W ¼ � m

2
Jm ln 1� I � 2

Jm

� �
þ 2 ln J

� �
þ k� m

2
� m

Jm

� �
ðJ � 1Þ2, (4.3)

where m and k have the same interpretation as in (4.2) and Jm is a constant related to the

solid’s strain saturation. Indeed, as expected from (4.3), the stresses become infinite as the

strains (measured by the first invariant) approach Jm þ 2. This asymptotic behavior is

motivated by the reversible elastic range response of natural rubbers which cannot sustain

strains above a certain level without failure. The numerical value Jm ¼ 50, which has been

used by Lopez-Pamies and Ponte Castañeda (2004b) is also adopted for all the numerical
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calculations reported in this work. Note that at the limit Jm ! 1, the Gent energy density

in (4.3) converges to the neo-Hookean energy density in (4.2).

Both neo-Hookean and Gent solids (for m40; Jm40; k4½ðJm þ 2Þ=Jm�m) are poly-

convex, as defined in Ball (1977), since they are convex functions of I and J for an isotropic

solid and hence are rank-one convex, i.e., they must satisfy (2.7). Finally, it must be pointed

out that upon a linearization of the deformation gradient, the above two laws reduce to the

same small-strain linearly elastic solid with shear and bulk moduli m and k, respectively.

4.2. Macroscopic stress– strain response and porosity/aspect ratio evolution

Some general remarks applicable to all the results in this subsection (Figs. 2, 3) are first

in order: all elastomers have the same initial porosity (f 0 ¼ p=16 � 0:2) and the same

material properties at zero strain, since the two different matrix laws used have the same

initial shear and bulk moduli (k=m ¼ 10). The calculations are done for two different initial

microgeometries: (i) hexagonal and (ii) random polydisperse distributions of circular voids.

The results for the periodic microgeometry are based on FEM (dotted lines) calculations,

while for random microgeometry (dashed–dotted lines) SOH calculations are considered.

All the stress–strain, porosity and aspect ratio evolution curves end at the loss of ellipticity

of the corresponding homogenized moduli.

The influence of the matrix constitutive law on the macroscopic dimensionless Cauchy

stress (s1=m)-logarithmic strain ðe1Þ response of porous elastomers, subjected to plane

strain equibiaxial ðe1 ¼ e2Þ and uniaxial ð�2 ¼ 0Þ loading is presented in Fig. 2. Due to the

decreasing porosity with increasing strain in compression, the different microgeometry
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Fig. 2. Influence of matrix constitutive law on the macroscopic dimensionless Cauchy stress-logarithmic strain

response of fixed initial porosity elastomers with (i) hexagonal and (ii) random polydisperse microgeometries

under plane strain equibiaxial ð�1 ¼ �2Þ and uniaxial (�2 ¼ 0) loading.
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stress–strain curves for each loading path are almost indistinguishable from each other (at

the scale plotted). For tension, and for macroscopic strains above 10% for the balanced

biaxial loading (or above 20% for the uniaxial strain loading), the matrix constitutive law

has a significant impact on the porous elastomer’s response.

There are two competing mechanisms working in equibiaxial tension: the constitutive

stiffening of the matrix material with increasing strains and the geometric softening due to

increasing porosity. For the neo-Hookean matrix the two mechanisms balance out leading

to a plateau in the macroscopic stress. For the Gent matrix the constitutive stiffening wins,

resulting in a strain saturation (locking) of the porous elastomer, according to the results in

Fig. 2.

To the two competing mechanisms (matrix stiffening due to material constitutive

response and geometric softening due to the porosity increase) considered in explaining the

biaxial loading in tension, one has to add for the uniaxial strain loading case the stiffening

of the porous elastomer due to void ovalization. As a result, the stress–strain responses in

uniaxial strain tension (compression) for all elastomers are stiffer (softer) than in the

corresponding plane strain equibiaxial tension (compression) case.

The porosity (f) evolution of the porous elastomer subjected to the two loading paths

considered in Fig. 2 as function of the macroscopic strain ðe1Þ is depicted in Fig. 3a. Unlike

the stress–strain results of Fig. 2, the porosity evolution under equibiaxial or uniaxial

strain tension is remarkably insensitive to the microgeometry even for large tensile strains.

As expected, the porosity is a monotonically increasing function for a wide range of

macroscopic strains. Notice, however, that for the Gent material matrix, the porosity

evolution curves show a sharp decline, following the reaching of a maximum value for

admittedly large strains. This interesting behavior is due to the locking of the matrix

material at the surface of the void. This implies that no further increase of the void size is

possible with increasing macroscopic strain, and hence further macroscopic straining can
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Fig. 3. Influence of matrix constitutive law on the porosity (a) and on the pore aspect ratio (b) evolution of fixed

initial porosity f 0 ¼ p=16 ð� 0:2Þ elastomers with (i) hexagonal and (ii) random polydisperse microgeometries

under plane strain equibiaxial ð�1 ¼ �2Þ and uniaxial ð�2 ¼ 0Þ loading. Notice the locking occurring for the periodic

Gent elastomer.
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only be accommodated by swelling of the matrix, exactly as seen by the two deformed

configurations of the unit cell at maximum porosity strain and at a higher strain level—

shown for the equibiaxial loading case—in Fig. 3a.

The aspect ratio evolution of the same elastomer under uniaxial plane strain is presented

in Fig. 3b. As expected from the porosity reduction in compression, the aspect ratio

evolution is practically independent of the microgeometry for compressive strains at the

scale plotted. Notice, however, that noticeable discrepancies between the periodic and

random microgeometries in the tensile region appear for strains about e1 � 1:25 for the

neo-Hookean matrix and about e1 � 0:75 for the Gent matrix.

4.3. Onset-of-failure curves for neo-Hookean solids

The influence of porosity and microgeometry on the microscopic and macroscopic

onset-of-failure curves in porous elastomers subjected to plane strain loading with

principal directions aligned with the axes of orthotropy of the porous elastomer is

presented in the second subsection, Figs. 4–10. All results in this subsection are calculated

using a neo-Hookean matrix material with k=m ¼ 10.

The onset-of-failure curves for porous elastomers with an initial porosity f 0 ¼ p=16 �
0:2 and an initially perfect square arrangement of circular voids are presented in Fig. 4. In

Fig. 4a are plotted, in principal logarithmic strain space, the microscopic (first bifurcation,

in dotted lines) and macroscopic (loss of ellipticity of the homogenized moduli, in solid

lines) onset-of-failure curves while in Fig. 4b is plotted a blow-up of the biaxial
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Fig. 4. In (a) are plotted in principal logarithmic strain space the microscopic (dotted lines) and macroscopic

(solid lines) onset-of-failure curves of a neo-Hookean matrix elastomer with square microgeometry. The

macroscopic strains corresponding to the onset of an instability at the free surface of the voids (dashed lines) and

to percolation (dashed–dotted–starred lines) are also recorded. A blow-up of the biaxial compression region in (a)

is plotted in (b). The eigenmodes corresponding to the first bifurcation encountered under plane strain equibiaxial

tension and compression ð�1 ¼ �2p0) are also depicted.
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compression region of Fig. 4a. The macroscopic strains corresponding to the onset of an

instability at the free surface of the voids (dashed lines) and to percolation

(dashed–dotted–starred lines) are also recorded. All results shown in this figure are based

on FEM calculations. The first bifurcation curves are obtained by investigating the

stability of a 2� 2 cell aggregate subjected to periodic boundary conditions. Independent

calculations for this porous elastomer, using Bloch-wave theory on one cell, (unpublished

work, based on methodology and code described in Triantafyllidis et al. (2006)) have

established that the only finite wavelength mode encountered at the onset of a bifurcation

in this porous elastomer always corresponds to an antisymmetric mode, thus requiring

calculations on a 2� 2 cell aggregate subjected to periodic boundary conditions. The

larger aggregate used in the FEM calculations for the equibiaxial case has the advantage of

a better visualization of the eigenmode corresponding to the first bifurcation, as seen in the

two insets of Fig. 4.

A bifurcation with a finite wavelength eigenmode is the first instability encountered

under biaxial compression and biaxial tension, as seen in Fig. 4. The loss of ellipticity of

the homogenized moduli (which corresponds to a bifurcation with an infinitely long

wavelength mode) occurs at higher strains along the same path. For parts of the mixed

loading region ðe1e2o0Þ the first instability encountered is a long wavelength instability

and hence the microscopic and macroscopic onset-of-failure curves coincide. Observe that

in the biaxial compression region, the first instability always occurs for macroscopic strains

lower to the ones corresponding to the appearance of a surface instability at the void, while

in part of the mixed loading region, the surface instability appears prior to any other

failure (microscopic or macroscopic). Notice that for the remaining loading

paths for which no instability of any type is found, the pore size of the porous elastomer

increases to the point of percolation, i.e., adjacent voids come to contact as defined in

Appendix A.

The eigenmodes corresponding to the first instability under equibiaxial tension ðe1 ¼
e240Þ and equibiaxial compression ðe1 ¼ e2o0Þ are depicted, respectively, in Fig. 4a and b.

As previously discussed, the critical mode is periodic on a 2� 2 cell aggregate, thus

explaining the repetitive pattern shown in Fig. 4. Notice that in the tensile case, the

bifurcated mode consists of alternative change of the rate of expansion of the voids (one

continues expanding and one starts contracting) within each row and each column. An

alternating pattern, this time based on void ovalization (with the orientation of the

ovalized voids alternating this time) appears in the bifurcation mode in the compressive

case. Needless to say, that once a finite wavelength bifurcation or a surface instability is

encountered, the stability calculations for higher loads (which are based on the unit cell

principal solution) are no longer meaningful due to the presence of bifurcated equilibrium

branches in that load neighborhood.

The microgeometry-based comparison of the macroscopic onset-of-failure curves in

strain space for porous elastomers with different arrangements of circular voids and an

initial porosity f 0 ¼ p=16 � 0:2 is presented in Fig. 5. In Fig. 5a are plotted, in principal

logarithmic strain space, the macroscopic onset-of-failure (loss of ellipticity of the

homogenized moduli) curves for a porous elastomer with three different microgeometries:

(i) initially perfect square (solid lines), (ii) initially perfect hexagonal (dashed lines) and (iii)

initially random polydisperse (dashed–dotted lines) arrangements of circular voids. The

macroscopic strains corresponding to percolation and to zero porosity are also recorded

(dashed–dotted–starred lines). A blow-up of the biaxial compression region of the above
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graph is plotted in Fig. 5b. Results for the perfect and imperfect periodic microgeometries

are based on FEM calculations, while the random microgeometry results are based on

SOH calculations.

In comparing the macroscopic onset-of-failure curves for the square and hexagonal

microgeometries, one notes that for load path angles in the approximate range

2p=3ojo11p=6 the square and hexagonal loss of ellipticity curves are not that far

apart. For the remaining range, there are sizeable differences, the most noticeable being the

absence of an instability for the hexagonal microstructure under biaxial tension. Note that

the random microgeometry porous elastomer of the same porosity loses ellipticity under

biaxial compression (for higher but comparable to its ordered counterpart macroscopic

strains) and also in the neighborhood of uniaxial tension (for very large macroscopic

strains, emax42:5). Percolation is found only for the ordered microgeometries, while pore

closure is found for the random case for load path angles in the approximate range

3p=4ojop and 3p=2ojo7p=4. As expected, for a given load path the macroscopic

failure for the ordered porous elastomers always occurs at a load parameter lower than the

one corresponding to the random case with the same porosity and hence the macroscopic

onset-of-failure curves for the random case are outside (and often at considerable distance)

of their ordered microstructure counterparts.
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Fig. 5. In (a) is plotted, in principal logarithmic strain space, the microgeometry-based comparison of the

macroscopic onset-of-failure curves in plane strain for a neo-Hookean matrix elastomer for three different

microgeometries: (i) initially perfect square (solid lines), (ii) initially perfect hexagonal (dashed lines) and (iii) an

initially random polydisperse (dashed–dotted lines) microgeometries. The macroscopic strains corresponding to

percolation and to zero porosity are also recorded (dashed–dotted–starred lines). A blow-up of the biaxial

compression region of the above graph is plotted in (b). Also in (b) are plotted the macroscopic onset-of-failure

curves of three imperfect microgeometry elastomers using 4� 4 ‘‘super cells’’, resulting by a geometric

perturbation (with an imperfection amplitude x ¼ 0:1) of a 4� 4 perfect square arrangement of unit cells, having

one circular void each. The undeformed configuration of one such imperfect ‘‘super cell’’ and its deformed

configuration at the onset of macroscopic failure plane strain equibiaxial compression ð�1 ¼ �2p0) are also

depicted.
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Also in Fig. 5b are plotted (dotted line) the macroscopic onset-of-failure curves of three

imperfect microgeometry porous elastomers using 4� 4 aggregates, resulting by a

geometric perturbation, with an imperfection amplitude x ¼ 0:1, of a 4� 4 perfect square

arrangement of unit cells (the reference configuration of one such aggregate is shown in

Fig. 5b). These macroscopic instabilities occur at strains almost identical to the ones

shown in Fig. 4b for the first microscopic instability of the infinite perfect porous elastomer

with the square microstructure. The bifurcation load of the perfect 4� 4 periodic

structure (which coincides with the bifurcation load of the perfect 2� 2 periodic

structure) appears as a limit load for the corresponding imperfect 4� 4 aggregate.

Consequently, the microscopic instability curve in Fig. 4b practically coincides with the

loss of ellipticity of the imperfect 4� 4 aggregate in Fig. 5b. Hence, a small perturbation of

the periodic square microstructure results in a macroscopic failure at smaller strains

while a large perturbation that results in a random microstructure with the same porosity

results at a loss of ellipticity at much higher strains, as seen in Fig. 5b. An idea of the

deformed configuration of the imperfect 4� 4 aggregate at the onset of its macroscopic

instability under equibiaxial compression is also shown in Fig. 5b, where one notices a

deformation pattern close to the eigenmode of the corresponding perfect porous elastomer

shown in Fig. 4b.

The microgeometry-based comparison of the macroscopic onset-of-failure curves in

stress space, as well as the information about the corresponding loss of ellipticity directions
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Fig. 6. In (a) is plotted, in dimensionless principal nominal stress space, the microgeometry-based comparison of

the macroscopic instability curves for plane strain biaxial compression of a neo-Hookean matrix elastomer with (i)

initially perfect (solid line) and (ii) imperfect with imperfection amplitude x ¼ 0:1 (dotted line) square, (iii) initially

perfect hexagonal (dashed line) and (iv) initially random (dashed–dotted line) polydisperse microgeometries. In

(b) are plotted, for the same elastomers, the angle z (angle between the x1 axis and the normal n corresponding the

homogenized moduli loss of ellipticity) as a function of the macroscopic load path angle j. The relative

orientation between the direction n and amplitude a (i.e., perpendicular or not) at the loss of ellipticity is also

indicated.
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for the porous elastomers examined in Fig. 5 are presented in Fig. 6. In Fig. 6a are plotted,

in dimensionless principal nominal stress space, the macroscopic instability (loss of

ellipticity of the homogenized moduli) curves for biaxial compression of a solid with

different microgeometries: (i) initially perfect (solid line) and (ii) imperfect with

imperfection amplitude x ¼ 0:1 (dotted line) square, (iii) initially perfect hexagonal

(dashed line) and (iv) initially random (dashed–dotted line) polydisperse arrangements of

circular voids. As expected from the results in Fig. 5b and the stiffening of the porous

elastomer under increasing straining in compression, the relative order of the curves is

preserved in Fig. 6a. Hence, near equibiaxial compression, the hexagonal microstructure

loses ellipticity at higher stresses than its square counterpart, while the trend reverses itself

near uniaxial compression. Also the random microstructure always loses ellipticity at

higher stresses than its ordered counterparts with the same porosity. The V-shape of the

loss of ellipticity curve for the hexagonal microstructure is reminiscent of the

corresponding results for aluminum honeycombs (see Triantafyllidis and Schraad, 1998).

Notice that the macroscopic onset-of-failure curve for the imperfect porous elastomer with

the square microstructure does not extend to the axes (the corresponding calculations are

performed only for compressive strains in the range ppjp3p=2).
In Fig. 6b are plotted, for the same porous elastomers and loading, the angle z (angle

between the X 1 axis and the normal n (in the reference configuration) corresponding to the

loss of ellipticity of the homogenized moduli) as a function of the macroscopic load path

angle j. The relative orientation between the direction n and amplitude a (i.e.,

perpendicular or not) at the loss of ellipticity is also indicated. For the random case, the

loss of ellipticity always corresponds to the vanishing of the homogenized shear moduli

ðeL1212 ¼ eL2121 ¼ 0Þ and hence the loss of ellipticity orientation angle is

z ¼ kp=2; k ¼ 0; 1; 2. For the square microstructure, which shear modulus vanishes

depends on the load path angle and hence z ¼ 0;p for ppjp5p=4 but z ¼ p=2 for

5p=4pjp3p=2. For the hexagonal microstructure z ¼ p=2 for a part of the j45p=4
range of the load path angle. As expected from the orthotropy of the microstructure and

the loading, for the case of perfect periodic and random microstructures, the graphs are

symmetric about the z ¼ p=2 axis. For the imperfect square microstructure, the symmetry

arguments are no longer valid and z is not only arbitrary, but also highly sensitive to the

shape of the imperfection (recall that the three 4� 4 aggregates have the same imperfection

amplitude x ¼ 0:1 but different shapes).

The calculation method-based comparison of the macroscopic instability curves in strain

space for porous elastomers with periodic (i) square and (ii) hexagonal, microgeometries

and an initial porosity f 0 ¼ p=16 � 0:2 are presented in Fig. 7. In Fig. 7a and b are plotted

for square and hexagonal microgeometry, respectively, in principal logarithmic strain

space, the macroscopic onset-of-failure (loss of ellipticity of the homogenized moduli)

curves periodic porous elastomers using two different calculation methods: FEM (dotted

lines) and SOH (solid lines). The macroscopic strains corresponding to the onset of an

instability at the free surface of the voids (dashed lines) are also recorded, as are the

macroscopic strains corresponding to percolation and to zero porosity (dashed–dotted–

starred lines).

Comparing the results of the two calculation methods in the biaxial tension quadrant

e140; e240 is pointless in view of the large porosities involved and the resulting

inadequacy of the H–S approximation used in the SOH method, as previously discussed.

For the remaining quadrants, the agreement of the two methods is remarkably better for
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the square microgeometry (see Fig. 7a). It is worth noticing that the SOH method gives

a good approximation for the FEM loss of ellipticity even for the large strains in the mixed

strains quadrants ðe1e2o0Þ. The agreement of the two methods for the square
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Fig. 7. In (a) is plotted, in principal logarithmic strain space, the calculation method-based comparison of the

macroscopic onset-of-failure curves in plane strain for a neo-Hookean matrix elastomer for two different

calculation methods: FEM (dotted lines) and SOH (solid lines) using an initially perfect square periodic

microgeometry. The macroscopic strains corresponding to the onset of an instability at the free surface of the

voids (dashed lines) are also recorded, as are the macroscopic strains corresponding to percolation and to zero

porosity (dashed–dotted–starred lines). In (b) are plotted the corresponding results for the initially perfect

hexagonal periodic microgeometry.
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Fig. 8. Biaxial compression range blow-up of the results presented in Fig. 7 for porosity f 0 ¼ p=16 ð� 0:2Þ in (a)

and corresponding results for porosity f 0 ¼ 0:5 in (b).
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microgeometry is remarkably good in the biaxial compression quadrant, as seen in the

blow-up plot in Fig. 8a. For the considerably higher initial porosity f 0 ¼ 0:5 and under

biaxial compression, the SOH method gives a reasonable estimate for the FEM loss of

ellipticity for the square microstructure, but an unsatisfactory overestimation for the

hexagonal microstructure, as can be seen by comparing Fig. 8b with a.

It should be pointed out that the FEM loss of ellipticity results are reliable as long as the

unit cell calculations are accurate, thus requiring the knowledge of the macroscopic

strains corresponding to the onset of a surface instability at the void. For all load path

angles in the mixed strains quadrants, when a surface instability exists it precedes the

macroscopic loss of ellipticity. In the biaxial compression range shown in Fig. 6,

for the square microgeometry and almost all load path angles the loss of ellipticity

occurs at lower strains than the surface instability, while for the hexagonal microgeometry,

according to Fig. 6, this happens only for a small range of load paths near the equibiaxial

compression. It is also worth noticing that the best agreement between the FEM and the

SOH calculation methods occurs for the equibiaxial compression path, in view of the

resulting isotropy of the solid as well as the small porosity and circular aspect ratio

of the voids.

The remaining two figures of this subsection (Figs. 9,10) pertain to the influence

of initial porosity on the macroscopic onset-of-failure curves of neo-Hookean solids. The

first figure (Fig. 9) gives the results in macroscopic logarithmic strain space and the second

(Fig. 10) in macroscopic nominal stress space. Only the biaxial compression regime is

investigated.

The macroscopic onset-of-failure (loss of ellipticity of the homogenized moduli) curves

in principal logarithmic strain space for biaxially compressed solids with three different
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Fig. 9. Porosity influence on the macroscopic onset-of-failure curves in principal logarithmic strain space for

plane strain biaxially compressed, neo-Hookean matrix elastomers with three different initial porosities

ð0:1pf 0p0:5Þ, using (i) initially perfect square and (ii) random polydisperse microgeometries in (a) and initially

perfect hexagonal microgeometry in (b).
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initial porosities ðf 0 ¼ 0:1; 0:3; 0:5Þ, using (i) initially perfect square and (ii) random

polydisperse arrangements of circular voids are plotted in Fig. 9a, while the corresponding

results for initially perfect hexagonal arrangements of circular voids are plotted in Fig. 9b.

For the periodic microgeometry the results are based on two different calculation methods:

FEM (not shown due to graph overcrowding) and SOH (solid lines), while for the random

microgeometry (dashed–dotted lines) the results are based on SOH. The macroscopic

strains corresponding to the zero porosity curves (dashed–dotted–starred lines) are also

recorded.

For the square microgeometry and for compressive loads, an increase in initial porosity

results in thinner ligaments that are more prone to buckling, thus expecting a decrease in

macroscopic critical strains. Indeed, Fig. 9a shows the SOH macroscopic instability curves

nested one inside the other according to increasing initial porosity.

The rather counterintuitive results that the stability of the random microgeometry solid

improves monotonically with increasing porosity can be explained from Fig. 10a in which

the same results, plus the FEM loss of ellipticity and void surface instability curves, are

plotted in stress space. The macroscopic onset-of-failure curves in stress space clearly show

that, independently of the microgeometry and for a given load path, the critical stresses of

a porous elastomer decrease monotonically with increasing porosity. As expected for the

lower porosity f 0 ¼ 0:1 and near equibiaxial compression there is an excellent agreement

between the FEM and SOH results, while for the larger porosities f 0 ¼ 0:3; 0:5 the SOH

overestimates the critical stresses.

In contrast to the square microgeometry case, the hexagonal SOH macroscopic onset-of-

failure curves in Fig. 9b, show an increase in stability with increasing porosity, exactly as

for the random microgeometry in Fig. 9a. Moreover, for equibiaxial compression and for
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Fig. 10. Porosity influence on the macroscopic onset-of-failure curves in dimensionless principal nominal stress

space, for plane strain biaxially compressed neo-Hookean matrix elastomers with three different initial porosities

ð0:1pf 0p0:5Þ, using (i) initially perfect square and (ii) random polydisperse microgeometries in (a) and initially

perfect hexagonal microgeometry in (b).
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all porosities, there is a good agreement between the random and hexagonal SOH results,

as expected from the hydrostatic stress state and the decreasing porosity of the essentially

circular voids.

Again, the counterintuitive result that the stability of the hexagonal microgeometry solid

improves monotonically with increasing porosity (according to the SOH results or even the

FEM results for the two lower porosities f 0 ¼ 0:1; 0:3) can be explained from Fig. 10b in

which the same results are plotted in stress space. The macroscopic onset-of-failure curves

in principal nominal stress space clearly show that, independently of the microgeometry

and for a given load path, the critical stresses of a porous elastomer decrease

monotonically with increasing porosity. Once more, for the lower porosity f 0 ¼ 0:1 there

is a good agreement between the FEM and SOH results, while for the larger porosities

f 0 ¼ 0:3; 0:5 the SOH substantially overestimates the critical strains. Note also that, only

for the f 0 ¼ 0:5 porous elastomer in biaxial compression, the surface instability always

occurs at macroscopic stresses higher than the ones corresponding to the onset of the FEM

macroscopic failure.

4.4. Onset-of-failure curves for different matrix materials and load axes orientations

The influence of the matrix constitutive law on the onset-of-failure curves in porous

elastomers subjected to biaxial loading aligned with the axes of orthotropy is presented in

Fig. 11, while the influence of the load axes orientation on the macroscopic onset-of-failure

curves is presented in Fig. 12. All results in this subsection are calculated using an initial

porosity of f 0 ¼ p=16 � 0:2.
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Fig. 11. Macroscopic onset-of-failure curves in principal logarithmic strain space, for a Gent matrix elastomer

with (i) square and (ii) random polydisperse microgeometries.
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In Fig. 11 are plotted, in principal logarithmic strain space, the macroscopic (loss of

ellipticity of the homogenized moduli) onset-of-failure curves for a solid with a Gent

matrix material ðk=m ¼ 10; Jm ¼ 50Þ, for (i) square and (ii) random polydisperse

arrangements of circular voids. For the square microgeometry the results are based on

FEM calculations (dotted lines) and on SOH calculations (solid lines), while for the

random case the results are based only on SOH calculations (dashed–dotted lines). The

macroscopic strains corresponding to the onset of an instability at the free surface of the

voids (dashed lines), to percolation (dashed–dotted–starred lines) and to locking

(dotted–starred lines) are also recorded.

As seen in Fig. 11, for the random case, the ellipticity is lost only in the biaxial

compression regime while in the other regimes the material either locks or reaches zero

porosity. The FEM results indicate that a loss of ellipticity is reached for all strain paths,

except for the ones in the neighborhood of e1 ¼ �e2 where a percolation appears. The SOH

results are close to their FEM counterparts for load path angles in the approximate range

3p=4ojo7p=4. For the same load paths a surface instability also exists but appears after

the loss of ellipticity only in the biaxial compression regime.

A direct comparison of Fig. 7a and Fig. 11 shows no appreciable difference between the

loss of ellipticity curves for the neo-Hookean and Gent solids because their response in the

biaxial compression range is essentially the same.

All the results up to this point are calculated for loading with principal strains aligned

with the axes of orthotropy ðy ¼ 0Þ. In contrast, Fig. 12 addresses the loading orientation

influence on the macroscopic instability of a neo-Hookean solid with ðk=m ¼ 10Þ, an initial

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

�1

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

� 2

neo-Hookean Square, Loss of ellipticity

SOH, 	=�/10

FEM, 	=�/10

SOH, 	=0

	=0

FEM, 	=0

FEM, 	=0

Percolation,

SOH, 	=�//10

Zero porosity,

FEM, 	=�//10

Percolation,

Percolation,

SOH, 	=π//10

SOH,

Percolation,

�/�=10

f0=� /16

Fig. 12. Loading orientation influence on the macroscopic onset-of-failure curves, in principal logarithmic strain

space, for neo-Hookean elastomer with an square microgeometry for macroscopic loadings that are (i) aligned

ðy ¼ 0Þ and (ii) at an angle ðy ¼ p=10Þ with respect to initial axes of orthotropy.
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porosity f 0 ¼ p=16 � 0:2 and an initially perfect square arrangement of circular voids.

More specifically, Fig. 12 compares, in principal logarithmic strain space, the onset-of-

failure curves for macroscopic loadings with principal strain axes aligned ðy ¼ 0Þ and at an

angle ðy ¼ p=10Þ with respect to initial axes of orthotropy, with curves for the latter case

marked by a }. The results are based on two different calculation methods: FEM (dotted

lines) and SOH (solid lines). The macroscopic strains corresponding to zero porosity and

percolation are also plotted (dashed–dotted–starred lines).

Notice that outside the biaxial compression range, a slight change of principal strain axes

orientation has a significant effect on the stability curves. Thus for biaxial tension, the

macroscopic loss of ellipticity curve for the off-axes loading ðy ¼ p=10Þ almost disappears,

except for a small segment near the equibiaxial path where the loading is essentially

hydrostatic (and hence independent of the load axes orientation). What is also worth noticing

is that the change of loading orientation has a considerable effect in the accuracy of the SOH

approximation. Thus, for load paths in the approximate range 2p=3ojop and

3p=2ojo11p=6, while there is a satisfactory agreement between the FEM and SOH results

for y ¼ 0, the SOH method considerably overpredicts the macroscopic onset-of-failure strains

in spite of the fact that there is little difference of the FEM curves for y ¼ 0 and p=10.
Moreover, the SOH calculations for y ¼ p=10 predict pore closure prior to any macroscopic

instability for loading paths at which the FEM results indicate a loss of ellipticity at

considerably lower strains. In spite of the expected inaccuracy, the SOH method does predict

the overall trends due to the change in the principal axes orientation of the macroscopic strain.

The above discussion gives a comprehensive picture of the influence of calculation

method, microgeometry (porosity and void arrangement), matrix constitutive law and

macroscopic load orientation on the microscopic and macroscopic onset-of-failure in

hyperelastic porous elastomers under plane strain. A synthesis of these results is the object

of the discussion presented in the next section.

5. Discussion and conclusions

The above-presented work is an in-depth study of the connections between microstructural

instabilities and their macroscopic manifestations—as captured through the effective

properties—in finitely strained porous elastomers. The powerful second-order homogeniza-

tion (SOH) technique, initially used for random media, is for the first time used here to study

the onset of failure in periodic porous elastomers and the results are compared to more

accurate finite element method (FEM) calculations. The influence of different microgeome-

tries (random and periodic), initial porosity, matrix constitutive law and macroscopic load

orientation on the microbuckling and macroscopic loss of ellipticity is investigated in detail.

In addition to the above-described stability-based onset of failure mechanisms, limitations on

the principal solution are also addressed, thus giving a complete picture of the different

possible failure mechanisms present in finitely strained porous elastomers.

The most important stability feature of porous elastomers with a rank-one

convex matrix and initially circular section pores under plane strain, is the

consistent loss (at adequately large strains) of the rank-one convexity of the homogenized

energy, independently of the microgeometric pore arrangement (random or periodic).

This result should be contrasted with the case of elastomers that are reinforced

with perfectly bonded circular section fibers. In this latter case, periodic fiber arrangements

lead to macroscopic loss of ellipticity (Triantafyllidis et al., 2006), while random
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arrangements always give strongly elliptic responses (Lopez-Pamies and Ponte Castañeda,

2006b).

As expected from the general theory in Geymonat et al. (1993), microscopic bifurcation

precedes the macroscopic loss of ellipticity for periodic microstructures. This occurs not

only in biaxial compression but for square microgeometries in tension as well. For a fixed

porosity, there are considerable differences between the macroscopic loss of ellipticity

predictions of random and periodic media, especially when the deformation has one tensile

principal strain. For biaxial compression, the failure curves are closer but always the

failure along a given path happens at larger load parameters in the random medium than it

is in periodic counterpart of the same porosity. There are also dramatic changes between

the onset-of-failure curves for different periodic microgeometries.

Focusing attention on the most unstable (i.e., with the lowest critical strain or stress)

region of biaxial compression, the critical stresses at the loss of ellipticity decrease

monotonically with increasing initial porosity but this is not so for the corresponding

critical strains. Of course, the validity of these onset-of-failure curves depends on checking

a number of other limitations, i.e., void surface instability, percolation, strain lock-up and

pore closure/self-contact.

In addition to the physically relevant results of the influence of different parameters on

the failure of porous elastomers, the present investigation establishes the usefulness of the

SOH techniques. This computational tool is not only capable of accurately predicting the

macroscopic stress–strain response of finitely strained elastomers, but is powerful enough

(because it allows for microstructure evolution) to predict loss of ellipticity in the effective

medium, sometimes with great accuracy, as comparisons with FEM solutions show. In

addition to its proved usefulness for the random case (where it is the only choice), the

proposed methodology of using SOH techniques as a first approximation, showed itself to

be extremely promising—and computationally more efficient than the FEM—for the study

of the macroscopic response, microstructure evolution and stability of periodic elastomers

as well. However, the FEM is the only method at this point that can be effectively used for

the calculation of the microscopic instabilities of periodic elastomers (see Triantafyllidis et

al., 2006). Nevertheless, the possibility of employing the SOH for the same purpose,

although far from obvious at this stage, is worth investigating.
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Appendix A. Constraints on the onset-of-failure curves

As mentioned in Section 4, there are several other than loss of uniqueness or of rank-one

convexity phenomena that can signal failure of the porous elastomer. They are (a) the

instability that appears at large compressive strains on the free surface of the voids,

(b) percolation, i.e., contact of adjacent pores leading to percolating network of voids,

(c) strain lock-up, i.e., reaching of a maximum strain at the surface of the pores, which

results in unrealistically stiff macroscopic response, and (d) pore self-contact (for the
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periodic case) or pore closure (for random microstructures), which dramatically alters the

nature of the porous elastomer.

The surface instability of the voids is a relevant constraint only for periodic

microstructures, since it signals—at finite macroscopic strains—the onset of local

instabilities at the unit cell level, instabilities which are detected by the more accurate

FEM-based calculations. For random microstructures, surface instability of the voids

exists even for infinitesimally small macroscopic strains, due to strain concentration in the

surface of the smallest pores. However, local instabilities are not accounted for in random

microgeometry calculations. The remaining three limitations however, are applicable to

any type of microgeometry.

A word of caution is needed when discussing constraints on the onset-of-failure curves

related to the failure of the unit-cell solution for periodic microstructures. It pertains to the

nucleation of voids at regions of high hydrostatic tension. Here only single-valued

displacements are considered in the energy minimization problem discussed in Section 3,

thus excluding solutions which open holes in the matrix. The interested reader is referred to

Ball (1982) for an in-depth discussion of such solutions. On the practical side, for the

periodic porous elastomers considered here, hydrostatic tensions that are adequately high

for void nucleation are not expected.

A.1. Void surface instability

The calculation of the microscopic onset-of-failure curves for periodic porous elastomers

solid cannot be done analytically and relies here on the FEM technique. As previously

explained, structural instability modes of the periodic porous solid can always be captured

by a fine discretization of the unit cell. However, in solids with free surfaces that involve

materials subjected to large strains there is a particular type of instability, termed surface

instability, whose wavelength is infinitesimally small compared to any other characteristic

geometric dimension of the problem and which decays exponentially away from the free

surface. Fortunately this instability, first discussed by Biot (1965), is local in nature and

can be detected analytically by checking the stretch ratio at each point of a free surface.

The method works as follows.

Since the surface instability is a local phenomenon, it can be analyzed as the stability

problem of a traction-free half-space subjected to a surface stretch ratio ls. Without loss of

generality the half-space is taken to be X 2o0. Due to its isotropy, the half-space has a

constant deformation gradient F ¼ diagðliÞ (with l1 ¼ ls), where the normal stretch ratio

l2 is found in terms of its tangential counterpart from the zero normal stress requirement

s2 ¼ 0. Under these assumptions, from (2.27), the equations governing the eigenmode at

the onset of a surface instability of the homogeneous—and hence uniformly deformed

along the principal directions X i—solid are

LijklðlsÞvk;lj ¼ 0; ðX 2o0Þ; Li2klðlsÞvk;l ¼ 0 ðX 2 ¼ 0Þ; X 1 2 R. (A.1)

To obtain the two differential equations and two boundary conditions (A.1) from (2.27)

one notices that at the onset of an instability b ¼ 0, the outward normal to the free surface

is N i ¼ di2 and that the tangent moduli components LijklðlsÞ are constants independent of
the coordinates X i. For such a system of linear differential equations with constant
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coefficients, the solution can be expressed as

vj ¼
X2

k¼1

v
ðkÞ
j ; v

ðkÞ
j ¼ A

ðkÞ
j exp½ioðX 1 þ rðkÞX 2Þ�; A

ðkÞ
2 ¼ �A

ðkÞ
1

L1111 þ r2ðkÞL1212

rðkÞðL1122 þ L1221Þ
,

(A.2)

where rðkÞ are the two roots with negative imaginary part of the biquadratic polynomial in

r:

ar4ðkÞ þ 2br2ðkÞ þ c ¼ 0; IrðkÞo0; ðk ¼ 1; 2Þ
a � L1212L2222; 2b � L1212L2121 þ L1111L2222 � ðL1122 þ L1221Þ2,
c � L1111L2121. ðA:3Þ

The selection of the roots with negative imaginary part is dictated by the requirement of

an exponential decay of the mode v away from the free surface, while the existence of roots

with non-zero imaginary parts is guaranteed by the rank-one convexity of the solid

assumed in (2.7). The reason for the biquadratic nature of the r-polynomial appearing

in (A.3) is the orthotropy resulting in the initially isotropic solid when stressed along the

X i axis.

Upon introduction of the eigenmode (A.2) into the two boundary conditions (A.1)2 one

obtains a two-equation homogeneous linear system for the two unknowns A
ðkÞ
1 ; k ¼ 1; 2. A

non-zero solution of the system requires the 2� 2 matrix of coefficients of this linear

system be singular:

det

r2ð1ÞL1122L1212 � L1111L1221

rð1ÞðL1122 þ L1221Þ
r2ð2ÞL1122L1212 � L1111L1221

rð2ÞðL1122 þ L1221Þ
L2211L2121 � r2ð1ÞL2222L2112

ðL2121 þ r2ð1ÞL2222Þ
L2211L2121 � r2ð2ÞL2222L2112

ðL2121 þ r2ð2ÞL2222Þ

2
66664

3
77775
¼ 0. (A.4)

The above equation is a function of the surface stretch ratio ls. Of interest are the two

closest-to-unity roots, l�s and lþs , of (A.4) that signal the onset of a surface instability in

compression and tension, respectively.

Thus, in addition to the microscopic and macroscopic onset-of-failure curves for

periodic solids, an onset-of-surface-instability curve in macroscopic strain space can also

be calculated. At each point of this curve there is at least one point in the hole where in the

surface strain has reached one of the critical values l�s or lþs . For macroscopic strains

inside this curve, no instability at the surface of the void is possible in the periodic porous

elastomer in question.

A.2. Percolation

The evolution along finite strain loading paths of the size, shape, and orientation of the

pores in the elastomers considered here may result into adjacent pores coming into contact,

leading to a percolating network of voids. A different modeling approach of this
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phenomenon is required for calculations based on the SOH and on the FEM methods, as

explained below.

A.2.1. Percolation thresholds for second-order variational estimates

As mentioned in Section 3.2.1, the H–S estimates for the LCC given by (3.12) are known

to be accurate for small to moderate porosities, but they become increasingly inaccurate,

and ultimately meaningless, for porosity levels near the percolation limit, when the

interactions among the vacuous inclusions become especially strong. In addition, the

underlying microstructure in the porous elastomers studied here evolves as a function of

the applied finite deformation FðlÞ. Consequently, the second-order estimates of the H–S-

type should not be used once the relevant microstructural variables (which evolve along the

loading path of choice) reach values approaching the percolation limit.

For the random microgeometry, following Ponte Castañeda and Willis (1995), the H–S-

type second-order estimates utilized in this work are taken to become unsound whenever

the pores penetrate the security distributional ellipses surrounding them. More precisely,

the H–S-type second-order estimates for porous elastomers with the random isotropic

microgeometry first become invalid whenever the deformed elliptical void comes into

contact with the surrounding ellipse serving to characterize the distribution of the pores in

the deformed configuration. Consistent with this definition of the domain of validity, it is

important to emphasize that the H–S-type second-order estimates for the random

microgeometry may become inappropriate before percolation occurs in a strict sense, even

for aligned loading paths.

For the periodic square and hexagonal microgeometries considered here, the H–S-type

second-order estimates become unsound whenever the pores penetrate the periodic cells

surrounding them. For instance, the H–S-type second-order estimates for porous

elastomers with the periodic square microgeometry first become invalid whenever the

deformed elliptical void comes into contact with the surrounding parallelogram serving to

characterize the distribution of the pores in the deformed configuration. In line with the

above definition of rigorous validity, it is important to note that the second-order estimates

of the H–S-type for the periodic (square and hexagonal) microgeometries become invalid,

in general, before percolation actually takes place. However, under loading paths aligned

with the axes of orthotropy (i.e., for y ¼ 0 and p=2), it is not difficult to check that the

points at which the second-order estimates first become invalid coincide with percolation.

Explicit percolation conditions, in terms of the macroscopic principal stretch ratios ðliÞ,
the current porosity (f) and current aspect ratio (a), for the H–S-type second-order

estimates defined by (3.3) and (3.12), are given for all three porous elastomer

microstructures considered in this work. These conditions assume a loading path aligned

with the axes of orthotropy (i.e., for y ¼ 0 and p=2).
(i) Random isotropic distribution: The H–S second-order estimates for porous elastomers

with the random isotropic microgeometry subjected to aligned loading conditions first

become invalid whenever one of the following equalities holds:

ðiÞ f ¼ l1

l2
a or ðiiÞ f ¼ l2

a l1
. (A.5)

Unlike the expressions for the periodic square (A.6) and hexagonal (A.7) distributions,

conditions (A.5) do not necessarily correspond to percolation. However, in the

undeformed configuration, it is easy to see that conditions (A.5) reduce to f ¼ 1, which
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happens to correspond exactly with the actual onset of percolation, within the context of

this type of approximation.

(ii) Periodic square distribution: The H–S second-order estimates for porous elastomers

with the periodic squaremicrogeometry subjected to a loading path aligned with the axes of

orthotropy first become invalid whenever one of the following equalities holds:

ðiÞ f ¼ p

4

l1

l2
a or ðiiÞ f ¼ p

4a

l2

l1
. (A.6)

For clarity, it is recalled here that the pore aspect ratio a ¼ z2=z1, where 1=zi ði ¼ 1; 2Þ
denote the square roots of the eigenvalues of ZkiZkj, (where Z ¼ ðFð2ÞÞ�1 is the inverse of

the average deformation gradient of the pore). Conditions (A.6) correspond to percolation

in the context of the approximations associated with this type of estimate. In this

connection, it is interesting to note that in the undeformed configuration (i.e., for

l1 ¼ l2 ¼ 1) a ¼ 1 and percolation occurs at a porosity of f ¼ f 0 ¼ p=4 (which agrees with

the exact result).

(iii) Periodic hexagonal distribution: The H–S second-order estimates for porous elastomers

with the periodic hexagonalmicrogeometry subjected to a loading path aligned with the axes of

orthotropy, first become invalid whenever one of the following equalities holds:

ðiÞ f ¼ p

2
ffiffiffi
3

p l1

l2
a or ðiiÞ f ¼ p

8
ffiffiffi
3

p 3

a

l2

l1
þ l1

l2
a

� �
, (A.7)

where a is again the pore aspect ratio. Conditions (A.7) correspond precisely to percolation,

in the context of the approximations introduced in Section 3.2.2. Similar to the previous

case, it is interesting to note that in the undeformed configuration percolation take place at

a porosity of f ¼ f 0 ¼ p=ð2
ffiffiffi
3

p
Þ (which again agrees with the correct result).

A.2.2. Percolation thresholds for FEM calculations

For the periodic microgeometries where the deformed configuration is calculated using

the FEM, a percolation is said to occur (in the principal solution) if the current thickness

of the thinnest ligament between two adjacent voids becomes negligible compared the

characteristic dimension of the deformed unit cell. More specifically, the FEM-based

percolation criterion adopted here is

dmin

lmax

ptperc, (A.8)

where dmin and lmax are, respectively, the minimum ligament thickness between two

adjacent voids and the maximum distance between two adjacent voids, as measured in the

deformed principal solution. The numerical value for the percolation threshold tperc is taken

in the following calculations to be tperc ¼ 0:005. Although this choice is somewhat

arbitrary, numerical experimentation with lower threshold values showed no appreciable

difference in the percolation predictions in macroscopic strain space, thus explaining this

choice.

A.3. Strain lock-up

A characteristic behavior of natural rubbers is their inability to sustain strains above a

certain level, a phenomenon termed strain lock-up. When strains approach these limits,
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stresses rise sharply and consequently the values of the tangent moduli show dramatic

increases. For porous elastomers with a matrix material that exhibits strain lock-up, the

same dramatic increase in the values of the homogenized tangent moduli is expected as

limiting values of strain are approached in the matrix. A numerical lock-up criterion for

the SOH-homogenized elastomer is adopted based on the ratio between current (at F) and

initial (at I) shear components of the effective moduli:

eL1212ðFÞ
eL1212ðIÞ

Xtlock, (A.9)

where eL is the effective moduli tensor for the porous elastomer defined in (2.10). For the

case of periodic solids where the principal solution is obtained using the FEM, a slightly

different criterion using their one-cell homogenized counterparts bL ¼ LH, with the latter

calculated using (2.18) is employed:

max
i;j;k;l

bLijklðFÞ
bLijklðIÞ

Xtlock. (A.10)

The numerical value for the lock-up threshold tlock is taken for all the following calculations

to be tlock ¼ 10. Once again, this choice is arbitrary, but numerical experimentation with

lower threshold values showed no appreciable difference in the lock-up predictions in

macroscopic strain space, thus supporting this choice.

A.4. Pore closure/self-contact

The last in the list of limitations associated with the solution of the finitely strained

porous elastomer, pertains to the closure or to the self-contact of the void’s free surface.

When a porous elastomer is strained along a load path that decreases the elastomer’s

macroscopic volume, i.e., when the sum of the macroscopic principal logarithmic strains is

negative ðe1 þ e2o0Þ, its porosity decreases. For such load paths, the calculations based on

the SOH method, for the homogenized (random microgeometry) or for the unit cell

(periodic microgeometry) solution, eventually give a vanishing porosity ðf ¼ 0) at

adequately large values of the load parameter l. For periodic microgeometries calculated

using the FEM the porosity never vanishes ðf40Þ, but at adequately large values of the

load parameter l opposite faces of the void might come to contact, at which point the

corresponding macroscopic strains are recorded and the calculations are terminated.

Although pore self-contact has not been found for the neo-Hookean and Gent solids used

in the FEM calculations presented here, pore self-contact occurs in periodic elastomers

with softer matrix constitutive laws (unpublished work) and for this reason the FEM code

used is capable of detecting this phenomenon.

Appendix B. Expressions for the microstructural tensor P

In this appendix, we provide explicit expressions for the in-plane components of the

tensor P, which serve to characterize the three types of microstructures (in the reference

configuration) considered in this work: periodic square, periodic hexagonal, and random

isotropic distribution of aligned cylindrical pores with initially circular cross section.
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B.1. Periodic square distribution

The microstructural tensor P for the square distribution of cylindrical fibers with

circular cross section may be written as (see Suquet, 1990a, b)

Pijkl ¼
1

pð1� f 0Þ
Xþ1

p¼�1

Xþ1

q¼�1
�fp¼q¼0g

ðL0imkn xm xnÞ�1 xj xl
J2
1ð2

ffiffiffiffiffiffiffiffi
pf 0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2

p
Þ

p2 þ q2
, (B.1)

where x1 ¼ p, x2 ¼ q, and J1ð�Þ is the Bessel function of first kind.

B.2. Periodic hexagonal distribution

The microstructural tensor P for the hexagonal distribution of cylindrical fibers with

circular cross section may be written as (see Suquet, 1990a, b)

Pijkl ¼
ffiffiffi
3

p

2pð1� f 0Þ
Xþ1

p¼�1

Xþ1

q¼�1
�fp¼q¼0g

ðL0imknxmxnÞ�1xjxl
J2
1ð2

3=2

31=4

ffiffiffiffiffiffiffiffi
pf 0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � p qþ q2

p
Þ

p2 � p qþ q2
, (B.2)

where x1 ¼ p, x2 ¼
ffiffiffi
3

p
=3ð2q� pÞ, and J1ð�Þ is the Bessel function of first kind.

B.3. Random isotropic distribution

The microstructural tensor P for the random isotropic distribution of cylindrical fibers

with circular cross section may be expressed as (see Willis, 1977)

Pijkl ¼
1

2p

Z 2p

0

ðL0imknxmxnÞ�1xjxl dy, (B.3)

where x1 ¼ cos y and x2 ¼ sin y.
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Lopez-Pamies, O., Ponte Castañeda, P., 2004b. Second-order estimates for the macroscopic response and loss of

ellipticity in porous rubbers at large deformations. J. Elasticity 76, 247–287.
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