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Abstract

A special class of nonlinear porous materials with isotropic ‘sequentially laminated’ microstructures is found to reproduce

exactly the hydrostatic behavior of ‘hollow sphere assemblages’. It is then argued that this result supports the conjecture that

Gurson’s approximate criterion for plastic porous materials, and its viscoplastic extension of Leblond et al. (1994), may actually

yield rigorous upper bounds for the hydrostatic flow stress of porous materials containing an isotropic, but otherwise arbitrary,

distribution of porosity.

Résumé

Matériaux séquentiellement stratifiées non-linéaires reproduisant des ‘assemblages des sphères composites’. On montre

qu’une classe spéciale des matériaux poreux non-linéaires avec des microstructures ‘séquentiellement stratifiées’ isotropes repro-

duit exactement le comportement hydrostatique des ‘assemblage des sphères composites’ de Hashin. On argumente que ce résultat

conforte la conjecture suivant laquelle le critère de Gurson pour les matériaux poreux plastiques, et son extension viscoplastique

due à Leblond et al. (1994), peuvent constituer des bornes supérieures rigoureuses pour le seuil plastique hydrostatique des maté-

riaux poreux contenant une distribution de porosité arbitraire mais macroscopiquement isotrope.
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1. Introduction

In this Note, a special class of nonlinear porous materials with isotropic ‘sequentially laminated’ microstructures is

found to reproduce exactly the hydrostatic behavior of ‘hollow sphere assemblages’ (HSAs). The interest in this result
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stems from the fact that, as will be argued below, it supports the conjecture that Gurson’s approximate criterion [1]

for plastic porous materials, and its viscoplastic extension [2], may actually yield rigorous upper bounds for the

hydrostatic flow stress of porous materials containing an isotropic, but otherwise arbitrary, distribution of porosity

[3–5]. Given that Gurson’s criterion is the most widely used estimate for plastic porous materials, and the fact that for

sufficiently high triaxialities it can be much more restrictive than the best upper bounds for porous materials known to

date [6–8]—especially at small porosities—, the validity of this conjecture would have important implications, both,

practical and theoretical.

The subsequent analysis is set in the theoretical framework of nonlinear composites. Composites refer to het-

erogeneous materials made of N different homogeneous constituents, or phases, which are randomly distributed in a

volume Ω , at a length scale that is much smaller than the size of Ω and the scale of variation of the loading conditions.

The constitutive behavior of each phase is taken to be characterized by convex strain potentials w(r) (r = 1, . . . ,N )

such that

σ = ∂εw
(r)(ε) (1)

where ∂ε denotes differentiation with respect to ε. Within the context of the deformation theory of plasticity, ε and σ

represent the infinitesimal strain and stress, while in the context of viscoplasticity, they represent the Eulerian strain

rate and Cauchy stress, respectively. Then, the effective behavior of the composite, which is defined as the relation

between the volume averages of the stress σ̄ = 〈σ 〉 and the strain ε̄ = 〈ε〉, can be characterized by an effective strain

potential W̃ , such that (e.g., [9])

σ̄ = ∂ε̄W̃ (ε̄), W̃ (ε̄) = min
ε∈K(ε̄)

N∑

r=1

c(r)
〈
w(r)(ε)

〉(r)
(2)

Here, 〈·〉 and 〈·〉(r) denote the volume averages over the composite (Ω) and over phase r (Ω(r)), respectively, c(r) is

the volume fraction of phase r , and K is the set of kinematically admissible strain fields with a prescribed volume

average ε̄. In general, the function W̃ is extremely difficult to compute, since it amounts to solving a set of nonlinear

partial differential equations with randomly oscillating coefficients. However, for the special class of sequentially lam-

inated composites considered in Section 2, expression (2) simplifies considerably, becoming amenable of analytical

treatment.

2. Two-phase composites with sequentially laminated microstructures

A sequential laminate is an iterative construction obtained by layering laminated materials (which in turn have been

obtained from lower-order lamination procedures) with other laminated materials, or directly with the homogeneous

phases that make up the composite, in such a way as to produce hierarchical microstructures of increasing complexity

(e.g., [10]). The rank of the laminate refers to the number of layering operations required to reach the final sequential

laminate. Of the many possible types of sequential laminates, we restrict attention to two-phase, sequential laminates

formed by layering at every step a laminate with one of the original phases, identified with r = 1. Thus, a rank-1

laminate corresponds to a simple laminate with a given layering direction n(1), with phases 1 and 2 in proportions

Fig. 1. Two-phase laminates: (a) simple or rank 1 laminate, (b) rank 2 laminate (δ2 ≫ δ1).
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1 − f1 and f1 (see Fig. 1(a)). In turn, a rank-2 laminate is constructed by layering the rank-1 laminate with phase 1,

in a different layering direction n(2), in proportions f2 and 1 − f2, respectively (see Fig. 1(b)). Rank-M laminates

are obtained by iterating this procedure M times, layering the rank-(M − 1) laminate with phase 1 in direction n(M),

in proportions fM and 1 − fM , respectively. In this procedure, it is assumed that the length scale of the embedded

laminate is much smaller than the length scale of the embedding laminate (i.e., δ1 ≪ δ2 in Fig. 1(b)). This assumption

allows one to regard the rank-(M − 1) laminate in the rank-M laminate as a homogeneous phase, so that available

expressions for the effective potential of simple laminates (e.g., [11]) can be used at each step of the process to obtain

an exact expression for the effective potential of the rank-M sequential laminate (e.g., [12,13]).

It is important to note that the effective behavior of the sequential laminates considered here, unlike that of typical

nonlinear composites, does not depend on all the details of the microstructure, but only on partial information of it

in the form of the volume fractions fi and lamination directions n(i). Furthermore, from their construction process

described above, it follows that the microstructure of these sequential laminates can be regarded as random and

particulate, with phase 2 playing the role of the inclusion (discontinuous) phase embedded in a (continuous) matrix
made up of phase 1 (see Fig. 1(b)). A distinctive feature of this very special class of ‘particulate’ composites is that

the local fields are uniform in the inclusion phase, but not in the matrix phase.

In general, sequentially laminated microstructures are anisotropic. However, deBotton [13] has recently proposed

a lamination sequence, namely a set of fi and n(i) (i = 1, . . . ,M), such that isotropic microstructures result in the

limit of infinite rank (M → ∞). In this sequence, the M unit vectors n(i) are chosen so that their endpoints are

uniformly distributed over the unit sphere S, and the corresponding fi are all taken to be fi = 1 − c(1)/M , where the

volume fraction of the matrix phase c(1) in the rank-M laminate is assumed infinitesimally small (i.e., c(1) ≪ 1). Thus,

expanding the effective potential of such rank-M laminate (e.g., [13]) to first order in c(1), and then letting M → ∞ in

the resulting expression, the following result is obtained for the effective potential of the infinite-rank laminate [14]:

W̃ (ε̄) = min
a(n)

{(
1 − c(1)

)
w(2)(ε̄) + c(1) 1

|S|

∫

S

[
w(1)

(
ε̄ + a(n) ⊗s n

)
− n · ∂εw

(2)(ε̄)a(n)
]

dS(n)

}
(3)

Here, |S| and dS(n) denote, respectively, the total and differential surface area over the unit sphere S, a(n) is the

(three-dimensional) amplitude vector associated with the strain jump between laminae, and the symbol ⊗s denotes

the symmetric part of the outer product.

It is emphasized that expression (3) constitutes an exact result for nonlinear composites with the class of random

and isotropic, ‘particulate’ microstructures described above. Even though this result, being valid only for composites

with a dilute matrix concentration, may not seem very useful at first, in fact, it can be used in an iterative process to

obtain exact results for composites with non-dilute matrix concentrations, as will be seen in the next section.

Finally, it is useful to note that the optimization problem in (3) simplifies when the matrix phase is incompressible.

Indeed, the argument of w(1) in (3) must be traceless in this case, and therefore, the minimization must be carried out

over functions a(n) of the form

a(n) = −tr(ε̄)n + a1(n)m1 + a2(n)m2 (4)

where m1 and m2 are two mutually orthogonal, unit vectors lying on the plane with normal n. Thus, incompressibility

reduces by one the dimension of the optimization problem in (3).

3. Porous, power-law materials under hydrostatic loadings

In this section, the result provided above is used to generate an exact expression for the effective potential of a

special class of sequential laminates made of a power-law matrix containing an arbitrary concentration of pores.

Thus, the inclusion phase is taken to be vacuous, so that w(2) = 0, and the matrix phase is taken to be characterized

by an isotropic, incompressible potential of the form

w(1)(ε) =
σ0ε0

1 + m

(
εe

ε0

)1+m

(5)

where m is the strain-rate sensitivity, such that 0 � m � 1, σ0 is a flow stress, ε0 is a reference strain, and the von Mises

equivalent strain is given in terms of the deviatoric part of the strain tensor by εe =
√

(2/3)εd · εd .
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Following deBotton [13], porous laminates with non-dilute matrix concentrations are constructed by means of an

iterative process based on a differential scheme. The idea is to take an infinite-rank porous laminate with a dilute

matrix concentration, as the inclusion phase of an infinite-rank laminate with a dilute matrix concentration, which

in turn is taken as the inclusion phase of an infinite-rank laminate with a dilute matrix concentration, and so on.

Thus, each time, an infinitesimal amount of matrix material is added to the porous material, in such a way that, after

repeating the process an infinite number of times, a non-dilute concentration of the matrix material is reached. This

process allows repeated use of the exact result (3), so that, at the end, an exact expression for the effective potential of

the non-dilute porous laminate is obtained in the form of a differential equation. It is noted that this process is contrary

to those followed in common differential schemes, where the starting point is a composite with a dilute concentration

of the inclusion phase (see Ref. [10] and references therein).

Thus, the first step in this process is to consider an infinite-rank porous laminate with a dilute concentration c[1]

of the power-law matrix (5), subjected to hydrostatic loadings. A superscript [k] is used here to denote quantities

corresponding to the kth iteration. According to (3) and (4), the corresponding effective potential is given by

W̃ [1](ε̄) = min
a

[1]
1 (n),a

[1]
2 (n)

c[1] 1

|S|

∫

S

σ0ε0

1 + m

[
(2ε̄m)2 +

(a
[1]
1 (n))2 + (a

[1]
2 (n))2

3

](1+m)/2

dS(n) (6)

where ε̄m = (1/3) tr(ε̄) is the macroscopic mean strain. Clearly, the minimum in this expression is attained at a
[1]
1 (n) =

a
[1]
2 (n) = 0, the integrand in (6) becomes independent of n, and so the effective potential W̃ [1] can be written explicitly

as

W̃ [1](ε̄) =
σ̃

[1]
h ε0

1 + m

∣∣∣∣2
ε̄m

ε0

∣∣∣∣
1+m

,
σ̃

[1]
h

σ0
= c[1] (7)

where σ̃
[1]
h denotes the hydrostatic effective flow stress of the porous laminate in the first iteration. Note that, because

of the isotropy of W̃ [1], the derivative ∂ε̄W̃
[1](ε̄) evaluated at hydrostatic loadings must be hydrostatic, the resulting

mean stress being σ̄m = (2/3)σ̃
[1]
h |ε̄m/ε0|m sgn(ε̄m).

Next, let the potential (7) be that of the inclusion phase in an infinite-rank laminate with a dilute concentration c[2]

of a power-law matrix phase. It then follows from the specialized version of (3), together with (4), that the effective

potential W̃ [2] of this laminate subjected to hydrostatic loadings is of the same form (7)1, but with an effective flow

stress σ̃
[2]
h given by

σ̃
[2]
h

σ0
=

σ̃
[1]
h

σ0
+ c[2]

(
1 + m

σ̃
[1]
h

σ0

)
(8)

where σ̃
[1]
h is given by (7)2. In deriving this expression, use has been made of the facts that the derivative ∂ε̄W̃

[1](ε̄)

evaluated at hydrostatic loadings is hydrostatic, and the minimum in (3) is, once again, attained at a
[2]
1 (n) = a

[2]
2 (n) =

0. Note that σ̃
[2]
h corresponds to an infinite-rank, porous laminate with a total porosity (1 − c[2])(1 − c[1]).

By following exactly similar arguments, it can be shown that the effective potential at the k + 1 iteration is of the

same form (7)1, but with an effective flow stress given by

σ̃
[k+1]
h

σ0
=

σ̃
[k]
h

σ0
+ c[k+1]

(
1 + m

σ̃
[k]
h

σ0

)
(9)

where σ̃
[k]
h is the effective flow stress of the porous laminate in the previous iteration, with σ̃

[0]
h = 0, and c[k+1]

denotes the (infinitesimal) concentration of matrix material added to the porous laminate at the k + 1 iteration. The

total concentration c
(1)
k+1 of matrix material in the porous laminate at the k + 1 iteration is given by

c
(1)
k+1 = 1 −

k+1∏

j=1

(
1 − c[j ]) (10)
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and the increment of total matrix concentration at each iteration is thus given by

c
(1)
k+1 − c

(1)
k =

k∏

j=1

(
1 − c[j ]) −

k+1∏

j=1

(
1 − c[j ]) = c[k+1]

k∏

j=1

(
1 − c[j ]) = c[k+1](1 − c

(1)
k

)
(11)

Then, from relations (9) and (11), it follows that

(
1 + m

σ̃
[k]
h

σ0

)−1 (σ̃
[k+1]
h /σ

(1)
0 ) − (σ̃

[k]
h /σ

(1)
0 )

c
(1)
k+1 − c

(1)
k

=
1

1 − c
(1)
k

(12)

Since the c[k] are infinitesimally small, relation (12) leads to the following differential equation for the effective flow

stress σ̃h of a porous laminate with a total, non-dilute matrix concentration c(1):

(
1 + m

σ̃h

σ0

)−1
d(σ̃h/σ0)

dc(1)
=

1

1 − c(1)
,

σ̃h

σ0

∣∣∣∣
c(1)=0

= 0 (13)

Finally, integrating this equation gives

σ̃h

σ0
=

1

m

(
f −m − 1

)
(14)

where f = 1 − c(1) denotes the total porosity in the final infinite-rank, porous laminate. In the limiting case of an

ideally plastic matrix (m → 0), this expression becomes

σ̃h

σ0
= − lnf (15)

Note that the corresponding hydrostatic yield stress is |σ̄m| = (2/3)σ̃h = −(2/3)σ0 lnf .

Expressions (14) and (15) agree exactly with those corresponding to HSAs (e.g., [2]). Finally, it is worth noting that

the two-dimensional analogue of this result, i.e., transversely isotropic laminates reproducing the in-plane hydrostatic

behavior of ‘hollow cylinder assemblages’, follows from exactly similar arguments.

4. Discussion

Thus, isotropic porous materials with HSAs and sequentially laminated microstructures exhibit identical hydrosta-

tic behaviors. In turn, this behavior is reproduced exactly by the hydrostatic limit of Gurson’s approximate criterion [1]

and its viscoplastic extension [2]. Furthermore, since expression (14) with m = 1 reduces to the linear Hashin–

Shtrikman upper bound for the class of porous materials exhibiting overall isotropy (e.g., [10]), it follows that HSAs

and sequentially laminated microstructures are ‘optimal’ within that class. Even though this ‘optimality’ is only valid

in the linear case, the fact that porous materials with these two very different types of microstructures exhibit identical

hydrostatic behaviors for any degree of matrix nonlinearity suggests that these microstructures may still be ‘optimal’

in the nonlinear domain. In turn, this supports the conjecture that the hydrostatic limit of Gurson’s criterion and its

viscoplastic extension may constitute rigorous upper bounds for the hydrostatic flow stress of porous materials con-

taining an isotropic, but otherwise arbitrary, distribution of porosity [3–5]. In this connection, it is noted that recent

numerical simulations [15] of porous, ideally plastic materials with random distributions of porosity different than

HSAs, indeed exhibit a weaker hydrostatic stress than that given by Gurson’s criterion.

A distinctive feature of porous materials with the above-mentioned HSAs and sequentially laminated microstruc-

tures is that the fields in the ‘inclusion’ phase (i.e., the pores) are uniform, what may hint at proving Gurson’s bounding

character. A proof of this conjecture, however, remains elusive.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grants CMS-02-01454 and

OISE-02-31867. Insightful discussions with Professor P. Ponte Castañeda and K. Danas are gratefully acknowledged.

5



References

[1] A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth: Part I—Yield criteria and flow rules for porous ductile

media, J. Engrg. Mat. Tech. 99 (1977) 2–15.

[2] J.B. Leblond, G. Perrin, P. Suquet, Exact results and approximate models for porous viscoplastic solids, Int. J. Plasticity 10 (1994) 213–235.

[3] J.-L. Chaboche, P. Suquet, J. Beson, Endommagement et changement d’échelle, in: M. Bornert, T. Bretheau, P. Gilormini (Eds.), Homogénéi-

sation en mécanique des matériaux, vol. 2, Hermes Science, 2001, pp. 91–146.

[4] J.-P. Leblond, private communication (2006).
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