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Introduction

In this Note, a special class of nonlinear porous materials with isotropic 'sequentially laminated' microstructures is found to reproduce exactly the hydrostatic behavior of 'hollow sphere assemblages' (HSAs). The interest in this result 1 stems from the fact that, as will be argued below, it supports the conjecture that Gurson's approximate criterion [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[END_REF] for plastic porous materials, and its viscoplastic extension [START_REF] Leblond | Exact results and approximate models for porous viscoplastic solids[END_REF], may actually yield rigorous upper bounds for the hydrostatic flow stress of porous materials containing an isotropic, but otherwise arbitrary, distribution of porosity [START_REF] Chaboche | Endommagement et changement d'échelle[END_REF][START_REF] Leblond | [END_REF][START_REF] Gȃrȃjeu | On the influence of local fluctuations in volume fraction of constituents on the effective properties of nonlinear composites. Application to porous materials[END_REF]. Given that Gurson's criterion is the most widely used estimate for plastic porous materials, and the fact that for sufficiently high triaxialities it can be much more restrictive than the best upper bounds for porous materials known to date [START_REF] Castañeda | The effective mechanical properties of nonlinear isotropic composites[END_REF][START_REF] Willis | On methods for bounding the overall properties of nonlinear composites[END_REF][START_REF] Suquet | On bounds for the overall potential of power law materials containing voids with an arbitrary shape[END_REF]-especially at small porosities-, the validity of this conjecture would have important implications, both, practical and theoretical.

The subsequent analysis is set in the theoretical framework of nonlinear composites. Composites refer to heterogeneous materials made of N different homogeneous constituents, or phases, which are randomly distributed in a volume Ω, at a length scale that is much smaller than the size of Ω and the scale of variation of the loading conditions. The constitutive behavior of each phase is taken to be characterized by convex strain potentials w (r) (r = 1,...,N) such that

σ = ∂ ε w (r) (ε) (1) 
where ∂ ε denotes differentiation with respect to ε. Within the context of the deformation theory of plasticity, ε and σ represent the infinitesimal strain and stress, while in the context of viscoplasticity, they represent the Eulerian strain rate and Cauchy stress, respectively. Then, the effective behavior of the composite, which is defined as the relation between the volume averages of the stress σ = σ and the strain ε = ε , can be characterized by an effective strain potential W , such that (e.g., [START_REF] Castañeda | Nonlinear composites[END_REF])

σ = ∂ ε W(ε), W(ε) = min ε∈K(ε) N r=1 c (r) w (r) (ε) (r) (2) 
Here, • and • (r) denote the volume averages over the composite (Ω) and over phase r (Ω (r) ), respectively, c (r) is the volume fraction of phase r, and K is the set of kinematically admissible strain fields with a prescribed volume average ε. In general, the function W is extremely difficult to compute, since it amounts to solving a set of nonlinear partial differential equations with randomly oscillating coefficients. However, for the special class of sequentially laminated composites considered in Section 2, expression (2) simplifies considerably, becoming amenable of analytical treatment.

Two-phase composites with sequentially laminated microstructures

A sequential laminate is an iterative construction obtained by layering laminated materials (which in turn have been obtained from lower-order lamination procedures) with other laminated materials, or directly with the homogeneous phases that make up the composite, in such a way as to produce hierarchical microstructures of increasing complexity (e.g., [START_REF] Milton | The Theory of Composites[END_REF]). The rank of the laminate refers to the number of layering operations required to reach the final sequential laminate. Of the many possible types of sequential laminates, we restrict attention to two-phase, sequential laminates formed by layering at every step a laminate with one of the original phases, identified with r = 1. Thus, a rank-1 laminate corresponds to a simple laminate with a given layering direction n (1) , with phases 1 and 2 in proportions 1f 1 and f 1 (see Fig. 1(a)). In turn, a rank-2 laminate is constructed by layering the rank-1 laminate with phase 1, in a different layering direction n (2) , in proportions f 2 and 1f 2 , respectively (see Fig. 1(b)). Rank-M laminates are obtained by iterating this procedure M times, layering the rank-(M -1) laminate with phase 1 in direction n (M) , in proportions f M and 1f M , respectively. In this procedure, it is assumed that the length scale of the embedded laminate is much smaller than the length scale of the embedding laminate (i.e., δ 1 ≪ δ 2 in Fig. 1(b)). This assumption allows one to regard the rank-(M -1) laminate in the rank-M laminate as a homogeneous phase, so that available expressions for the effective potential of simple laminates (e.g., [START_REF] Debotton | On the ductility of laminated materials[END_REF]) can be used at each step of the process to obtain an exact expression for the effective potential of the rank-M sequential laminate (e.g., [START_REF] Castañeda | Bounds and estimates for the properties of nonlinear heterogeneous systems[END_REF][START_REF] Debotton | Transversely isotropic sequentially laminated composites in finite elasticity[END_REF]).

It is important to note that the effective behavior of the sequential laminates considered here, unlike that of typical nonlinear composites, does not depend on all the details of the microstructure, but only on partial information of it in the form of the volume fractions f i and lamination directions n (i) . Furthermore, from their construction process described above, it follows that the microstructure of these sequential laminates can be regarded as random and particulate, with phase 2 playing the role of the inclusion (discontinuous) phase embedded in a (continuous) matrix made up of phase 1 (see Fig. 1(b)). A distinctive feature of this very special class of 'particulate' composites is that the local fields are uniform in the inclusion phase, but not in the matrix phase.

In general, sequentially laminated microstructures are anisotropic. However, deBotton [START_REF] Debotton | Transversely isotropic sequentially laminated composites in finite elasticity[END_REF] has recently proposed a lamination sequence, namely a set of f i and n (i) (i = 1,...,M), such that isotropic microstructures result in the limit of infinite rank (M →∞). In this sequence, the M unit vectors n (i) are chosen so that their endpoints are uniformly distributed over the unit sphere S, and the corresponding f i arealltakentobef i = 1c (1) /M, where the volume fraction of the matrix phase c (1) in the rank-M laminate is assumed infinitesimally small (i.e., c (1) ≪ 1). Thus, expanding the effective potential of such rank-M laminate (e.g., [START_REF] Debotton | Transversely isotropic sequentially laminated composites in finite elasticity[END_REF]) to first order in c (1) , and then letting M →∞in the resulting expression, the following result is obtained for the effective potential of the infinite-rank laminate [START_REF] Idiart | Macroscopic behavior and field statistics in viscoplastic composites[END_REF]:

W(ε) = min a(n) 1 -c (1) w (2) (ε) + c (1) 1 |S| S w (1) ε + a(n) ⊗ s n -n • ∂ ε w (2) (ε)a(n) dS(n) (3) 
Here, |S| and dS(n) denote, respectively, the total and differential surface area over the unit sphere S, a(n) is the (three-dimensional) amplitude vector associated with the strain jump between laminae, and the symbol ⊗ s denotes the symmetric part of the outer product.

It is emphasized that expression (3) constitutes an exact result for nonlinear composites with the class of random and isotropic, 'particulate' microstructures described above. Even though this result, being valid only for composites with a dilute matrix concentration, may not seem very useful at first, in fact, it can be used in an iterative process to obtain exact results for composites with non-dilute matrix concentrations, as will be seen in the next section.

Finally, it is useful to note that the optimization problem in (3) simplifies when the matrix phase is incompressible. Indeed, the argument of w (1) in (3) must be traceless in this case, and therefore, the minimization must be carried out over functions a(n) of the form

a(n) =-tr(ε)n + a 1 (n)m 1 + a 2 (n)m 2 (4) 
where m 1 and m 2 are two mutually orthogonal, unit vectors lying on the plane with normal n. Thus, incompressibility reduces by one the dimension of the optimization problem in (3).

Porous, power-law materials under hydrostatic loadings

In this section, the result provided above is used to generate an exact expression for the effective potential of a special class of sequential laminates made of a power-law matrix containing an arbitrary concentration of pores. Thus, the inclusion phase is taken to be vacuous, so that w (2) = 0, and the matrix phase is taken to be characterized by an isotropic, incompressible potential of the form w (1) 

(ε) = σ 0 ε 0 1 + m ε e ε 0 1+m ( 5 
)
where m is the strain-rate sensitivity, such that 0 m 1, σ 0 is a flow stress, ε 0 is a reference strain, and the von Mises equivalent strain is given in terms of the deviatoric part of the strain tensor by

ε e = √ (2/3)ε d • ε d .
Following deBotton [START_REF] Debotton | Transversely isotropic sequentially laminated composites in finite elasticity[END_REF], porous laminates with non-dilute matrix concentrations are constructed by means of an iterative process based on a differential scheme. The idea is to take an infinite-rank porous laminate with a dilute matrix concentration, as the inclusion phase of an infinite-rank laminate with a dilute matrix concentration, which in turn is taken as the inclusion phase of an infinite-rank laminate with a dilute matrix concentration, and so on. Thus, each time, an infinitesimal amount of matrix material is added to the porous material, in such a way that, after repeating the process an infinite number of times, a non-dilute concentration of the matrix material is reached. This process allows repeated use of the exact result (3), so that, at the end, an exact expression for the effective potential of the non-dilute porous laminate is obtained in the form of a differential equation. It is noted that this process is contrary to those followed in common differential schemes, where the starting point is a composite with a dilute concentration of the inclusion phase (see Ref. [START_REF] Milton | The Theory of Composites[END_REF] and references therein).

Thus, the first step in this process is to consider an infinite-rank porous laminate with a dilute concentration c [1] of the power-law matrix [START_REF] Gȃrȃjeu | On the influence of local fluctuations in volume fraction of constituents on the effective properties of nonlinear composites. Application to porous materials[END_REF], subjected to hydrostatic loadings. A superscript [k] is used here to denote quantities corresponding to the kth iteration. According to ( 3) and ( 4), the corresponding effective potential is given by W [1] (ε) = min a [1] 1 (n),a [1] 2 (n)

c [1] 1

|S| S σ 0 ε 0 1 + m (2ε m ) 2 + (a [1] 1 (n)) 2 + (a [1] 2 (n)) 2 3 (1+m)/2 dS(n) ( 6 
)
where εm = (1/3) tr(ε) is the macroscopic mean strain. Clearly, the minimum in this expression is attained at a [1] 1 (n) = a [1] 2 (n) = 0, the integrand in ( 6) becomes independent of n, and so the effective potential W [1] can be written explicitly as

W [1] (ε) = σ [1] h ε 0 1 + m 2 εm ε 0 1+m , σ [1] h σ 0 = c [1] (7) 
where σ [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[END_REF] h denotes the hydrostatic effective flow stress of the porous laminate in the first iteration. Note that, because of the isotropy of W [1] , the derivative ∂ ε W [1] (ε) evaluated at hydrostatic loadings must be hydrostatic, the resulting mean stress being σm = (2/3) σ [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[END_REF] h |ε m /ε 0 | m sgn(ε m ). Next, let the potential [START_REF] Willis | On methods for bounding the overall properties of nonlinear composites[END_REF] be that of the inclusion phase in an infinite-rank laminate with a dilute concentration c [2] of a power-law matrix phase. It then follows from the specialized version of (3), together with (4), that the effective potential W [2] of this laminate subjected to hydrostatic loadings is of the same form (7) 1 , but with an effective flow stress σ [START_REF] Leblond | Exact results and approximate models for porous viscoplastic solids[END_REF] h given by

σ [2] h σ 0 = σ [1] h σ 0 + c [2] 1 + m σ [1] h σ 0 (8) 
where σ [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[END_REF] h isgi venby(7) 2 . In deriving this expression, use has been made of the facts that the derivative ∂ ε W [1] (ε) evaluated at hydrostatic loadings is hydrostatic, and the minimum in (3) is, once again, attained at a [2] 1 (n) = a [2] 2 (n) = 0. Note that σ [START_REF] Leblond | Exact results and approximate models for porous viscoplastic solids[END_REF] h corresponds to an infinite-rank, porous laminate with a total porosity (1c [2] )(1c [1] ). By following exactly similar arguments, it can be shown that the effective potential at the k + 1 iteration is of the same form [START_REF] Willis | On methods for bounding the overall properties of nonlinear composites[END_REF] 1 , but with an effective flow stress given by

σ [k+1] h σ 0 = σ [k] h σ 0 + c [k+1] 1 + m σ [k] h σ 0 ( 9 
)
where σ [k] h is the effective flow stress of the porous laminate in the previous iteration, with σ [0] h = 0, and c [k+1] denotes the (infinitesimal) concentration of matrix material added to the porous laminate at the k + 1 iteration. The total concentration c (1) k+1 of matrix material in the porous laminate at the k + 1 iteration is given by

c (1) k+1 = 1 - k+1 j =1 1 -c [j ] (10) 
and the increment of total matrix concentration at each iteration is thus given by c

(1)

k+1 -c (1) k = k j =1 1 -c [j ] - k+1 j =1 1 -c [j ] = c [k+1] k j =1 1 -c [j ] = c [k+1] 1 -c (1) k (11) 
Then, from relations ( 9) and [START_REF] Debotton | On the ductility of laminated materials[END_REF], it follows that

1 + m σ [k] h σ 0 -1 ( σ [k+1] h /σ (1) 0 ) -( σ [k] h /σ (1) 0 ) c (1) k+1 -c (1) k = 1 1 -c (1) k (12) 
Since the c [k] are infinitesimally small, relation [START_REF] Castañeda | Bounds and estimates for the properties of nonlinear heterogeneous systems[END_REF] leads to the following differential equation for the effective flow stress σh of a porous laminate with a total, non-dilute matrix concentration c (1) :

1 + m σh σ 0 -1 d( σh /σ 0 ) dc (1) = 1 1 -c (1) , σh σ 0 c (1) =0 = 0 (13) 
Finally, integrating this equation gives

σh σ 0 = 1 m f -m -1 (14) 
where f = 1c (1) denotes the total porosity in the final infinite-rank, porous laminate. In the limiting case of an ideally plastic matrix (m → 0), this expression becomes

σh σ 0 =-ln f (15) 
Note that the corresponding hydrostatic yield stress is |σ m |=(2/3) σh =-(2/3)σ 0 ln f . Expressions ( 14) and ( 15) agree exactly with those corresponding to HSAs (e.g., [START_REF] Leblond | Exact results and approximate models for porous viscoplastic solids[END_REF]). Finally, it is worth noting that the two-dimensional analogue of this result, i.e., transversely isotropic laminates reproducing the in-plane hydrostatic behavior of 'hollow cylinder assemblages', follows from exactly similar arguments.

Discussion

Thus, isotropic porous materials with HSAs and sequentially laminated microstructures exhibit identical hydrostatic behaviors. In turn, this behavior is reproduced exactly by the hydrostatic limit of Gurson's approximate criterion [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[END_REF] and its viscoplastic extension [START_REF] Leblond | Exact results and approximate models for porous viscoplastic solids[END_REF]. Furthermore, since expression [START_REF] Idiart | Macroscopic behavior and field statistics in viscoplastic composites[END_REF] with m = 1 reduces to the linear Hashin-Shtrikman upper bound for the class of porous materials exhibiting overall isotropy (e.g., [START_REF] Milton | The Theory of Composites[END_REF]), it follows that HSAs and sequentially laminated microstructures are 'optimal' within that class. Even though this 'optimality' is only valid in the linear case, the fact that porous materials with these two very different types of microstructures exhibit identical hydrostatic behaviors for any degree of matrix nonlinearity suggests that these microstructures may still be 'optimal' in the nonlinear domain. In turn, this supports the conjecture that the hydrostatic limit of Gurson's criterion and its viscoplastic extension may constitute rigorous upper bounds for the hydrostatic flow stress of porous materials containing an isotropic, but otherwise arbitrary, distribution of porosity [START_REF] Chaboche | Endommagement et changement d'échelle[END_REF][START_REF] Leblond | [END_REF][START_REF] Gȃrȃjeu | On the influence of local fluctuations in volume fraction of constituents on the effective properties of nonlinear composites. Application to porous materials[END_REF]. In this connection, it is noted that recent numerical simulations [START_REF] Bilger | Effect of a nonuniform distribution of voids on the plastic response of voided materials: a computational and statistical analysis[END_REF] of porous, ideally plastic materials with random distributions of porosity different than HSAs, indeed exhibit a weaker hydrostatic stress than that given by Gurson's criterion.

A distinctive feature of porous materials with the above-mentioned HSAs and sequentially laminated microstructures is that the fields in the 'inclusion' phase (i.e., the pores) are uniform, what may hint at proving Gurson's bounding character. A proof of this conjecture, however, remains elusive.

Fig. 1 .

 1 Fig. 1. Two-phase laminates: (a) simple or rank 1 laminate, (b) rank 2 laminate (δ 2 ≫ δ 1 ).
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