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On s'intéresse à un solide élastique isotrope renfermant une ou plusieurs fissures planes, et soumis à un chargement d'origine thermique variable dans le temps. On relève la valeur du champ de déplacement et du champ des tractions surfaciques sur le bord du solide. On propose dans cette Note la définition et l'exploitation d'un écart à la réciprocité, formulé uniquement à partir des grandeurs mécaniques connues sur le bord du solide, qui permet de déterminer explicitement le plan renfermant la ou les fissures, les conditions régnant sur celles-ci étant quelconques dès lors qu'elles assurent la continuité du vecteur contrainte et du flux de chaleur normal.

Abridged English version

This Note addresses the problem of location of planar cracks buried inside a homogeneous isotropic elastic solid. The body is submitted to a thermal loading but only mechanical quantities (displacement field and surface traction fields) are measured on the whole boundary. Equipped with these data the problem is to determine the plane where cracks are lying. Eqs. [START_REF] Andrieux | Identification of planar cracks by complete overdetermined data: inversion formula[END_REF] that are satisfied by the displacement fields and temperature fields are an evolution equation for the temperature and a quasi-static equation for the displacement field. Following a previous approach, we define a linear form [START_REF] Ben Abda | Reciprocity principle and crack identification in transient thermal problems[END_REF] acting on auxiliary displacement fields that fulfill the elastic equilibrium equations in the uncracked body [START_REF] Andrieux | Reciprocity principle and crack identification[END_REF]. This linear form is the Reciprocity Gap functional, previously introduced for similar identification problems for the stationary or transient heat (or more general conduction) equation or for the elastostatic equation [START_REF] Andrieux | Identification of planar cracks by complete overdetermined data: inversion formula[END_REF][START_REF] Ben Abda | Reciprocity principle and crack identification in transient thermal problems[END_REF][START_REF] Andrieux | Reciprocity principle and crack identification[END_REF]. It makes use of a surface integral only over the external boundary of the body. The expression [START_REF] Friedman | Determining cracks from boundary measurements[END_REF] gives the interpretation of the reciprocity gap in terms of the jump of the displacement fields across the cracks and a volume integral involving the unknown temperature field inside the solid. Then, following an idea presented in [START_REF] Bui | A path-independent integral for mixed modes of fracture in linear thermoelasticity[END_REF], a constraint (5) on the auxiliary fields is designed in order to cancel the volume integral in [START_REF] Friedman | Determining cracks from boundary measurements[END_REF]. Equipped with this result, the exploitation of the reciprocity gap for some particular polynomial auxiliary fields leads to explicit formulas for the determination of the normal to the plane containing the cracks (10)-( 13) and to the scalar constant appearing in its affine equation ( 14). Then the plane can be entirely determined without need for the resolution of any elastic or conduction equations. These results extend previous formulas given by the authors [START_REF] Andrieux | Identification of planar cracks by complete overdetermined data: inversion formula[END_REF][START_REF] Andrieux | Reciprocity principle and crack identification[END_REF], but the situation is here more interesting because a thermal loading can being applied to a stress free body, the determination of the crack plane can be achieved with only a measurement at different times of the surface displacement field, without any information about the thermal loading.

Introduction

On s'intéresse à un solide tridimensionnel contenant éventuellement une ou plusieurs fissures portées par un même plan. Sous sollicitations thermomécaniques, excluant cependant les forces de masses, un champ de température et un champ de déplacement se développent au sein du solide. On suppose connus, sur tout le bord extérieur, le champ de déplacement, le champ de densité surfacique de force. On propose dans cette Note la définition et l'exploitation d'un écart à la réciprocité, formulé uniquement à partir des grandeurs mécaniques connues sur le bord du solide, qui permet de déterminer explicitement le plan renfermant la ou les fissures. Ces résultats étendent les résultats obtenus en thermique stationnaire [START_REF] Andrieux | Identification of planar cracks by complete overdetermined data: inversion formula[END_REF] ou transitoire [START_REF] Ben Abda | Reciprocity principle and crack identification in transient thermal problems[END_REF] et en élasticité [START_REF] Andrieux | Reciprocity principle and crack identification[END_REF]. Ils peuvent cependant conduire à des méthodes de contrôle plus réalisables puisque l'on pourrait se borner à imposer à un solide, libre de tout chargement mécanique, un chargement thermique, dont il est inutile de connaître la nature (contrairement au cas thermique transitoire traité en [START_REF] Ben Abda | Reciprocity principle and crack identification in transient thermal problems[END_REF]), et de relever le champ de déplacement en surface. L'exploitation de ces données à différents instants permet par ailleurs de lever l'ambiguïté sur la normale au plan de fissure qui subsiste en élasticité lorsqu'une seule mesure est disponible [START_REF] Andrieux | Reciprocity principle and crack identification[END_REF].

En notant u et τ les champs de déplacement et de température, A le tenseur de rigidité (isotrope et homogène), α le coefficient de dilatation linéaire, k la conductivité (également isotrope et homogène) et ρc la chaleur massique, les équations d'équilibre thermoélastique et d'évolution thermique sont les suivantes dans le cadre des petites perturbations et négligeant les effets d'inertie mécaniques (pour alléger l'écriture nous omettons les mesures dans les intégrales) :

             Ω A : ε(u) -ατ I : ε(w) = S ext F .w - Γ A : ε(u) -ατ I .N .JwK ∀w ∈ H 1 (Ω\Γ ) 3 , ∀t Ω k∇τ.∇ϕ + ρc Ṫ ϕ = Ω sϕ + S ext Φϕ - Γ k∇τ.NJϕK ∀ϕ ∈ H 1 (Ω\Γ ), ∀t (1) 
Cette écriture n'est valable que si sur les lèvres des fissures règnent des conditions aux limites imposant la continuité du flux normal de chaleur et du vecteur contrainte, conditions qu'il est cependant inutile ici de préciser plus. En particulier des conditions de contact avec frottement peuvent être prises en compte sans difficulté, la seule limitation est que ces conditions ne conduisent pas pour les chargements étudiés à une fermeture totale de la fissure avec blocage du glissement tangentiel puisque dans ce cas les fissures deviennent indiscernables du milieu non fissuré sur le plan mécanique.

F et Φ sont respectivement la densité de force et de flux de chaleur imposé sur le bord du solide, s la source de chaleur. La discontinuité d'un champ à la traversée de fissures est notée à l'aide du symbole J.K :

Jf K = f (x + ) - f (x -), x + ∈ Γ + , x -∈ Γ -, Γ + (respectivement Γ -) étant la face de normale extérieure -N (respectivement N ).
Enfin la température de référence du matériau constituant le solide est prise égale à zéro.

Le champ de déplacement U m et la densité de force F étant mesurés sur le bord extérieur S ext du solide à divers instants (en nombre fini), le problème d'identification des fissures consiste à déterminer tout d'abord le plan renfermant celles-ci puis d'en déterminer la forme dans ce plan, à partir des données surabondantes que constitue le couple (U m , F ). Dans cette version du problème d'identification, on ne suppose connus ni les sources s, ni les flux de chaleurs Φ imposés au solide, ni même la température en surface. De ce fait, la connaissance des conditions initiales en température pour le problème d'évolution posé sur celle-ci est également superflue. On se borne dans cette Note à donner les résultats d'identification obtenus pour le plan de fissure. Les résultats sur la géométrie de la fissure, plus longs à présenter, feront l'objet d'une publication ultérieure.

Si la question d'identification de fissures à l'aide de mesures thermiques (problème thermique seul) ou mécanique (problème élastostatique seul) a fait l'objet de nombreux travaux [START_REF] Andrieux | Identification of planar cracks by complete overdetermined data: inversion formula[END_REF][START_REF] Ben Abda | Reciprocity principle and crack identification in transient thermal problems[END_REF][START_REF] Andrieux | Reciprocity principle and crack identification[END_REF][START_REF] Friedman | Determining cracks from boundary measurements[END_REF][START_REF] Alessandrini | Determining two-dimensional cracks in three-dimensional bodies: uniqueness and stability[END_REF][START_REF] Ben Abda | Identification of 2D cracks by boundary elasticity measurements[END_REF][START_REF] Nakamura | Unique continuation for elliptic systems and crack determination in anisotropic elasticity[END_REF], fort peu en revanche se sont intéressés au problème thermoélastique. De plus, la formulation du problème inverse géométrique d'identification de fissures basé sur les équations de la thermoélasticité transitoire et utilisant uniquement des mesures mécaniques n'a jamais été abordée jusqu'ici à la connaissance des auteurs.

Écart à la réciprocité et condition sur les champs auxiliaires

Le principe de l'écart à la réciprocité consiste à écrire l'expression de réciprocité de Maxwell-Betti, non pas entre deux solutions du problème élastique posé sur un même domaine, mais entre une solution élastique sur le domaine renfermant potentiellement des fissures (le champ est alors le champ réel) et une solution du problème élastique posé sur le domaine non fissuré. Cette expression n'est alors pas identiquement nulle, sa valeur pour chaque champ en équilibre élastique dans le domaine sain fournit des informations sur les discontinuités de déplacement à la traversée des fissures. Il est possible d'exploiter ces informations dans le cas de fissures planes pour déterminer le plan contenant les fissures.

Si v est un champ de déplacement solution du problème d'élasticité dans le domaine sain, c'est-à-dire vérifiant :

Ω A : ε(v) : ε(w) = S ext A : ε(v).n.w ∀w ∈ H 1 (Ω) 3 (2) 
on définit la forme linéaire ER t suivante, dite écart à la réciprocité à l'instant t :

ER t (v) = S ext A : ε(v).n.U m (t) -F (t).v (3) 
L'écart à la réciprocité ER t se calcule pour tout champ v par une intégrale sur le bord du solide ne faisant intervenir que des quantités connues (F , U m ) ; il possède une propriété intéressante qui permet de faire apparaître explicitement le domaine Γ occupé par les fissures :

ER t (v) = Γ A : ε(v).N . q u(t) y + Ω 3Kατ (t) div(v) pour tout v satisfaisant (2) ( 4 
)
où K est le module de compressibilité élastique du matériau qui s'exprime à partir des deux coefficients de Lamé : 3K = 3λ + 2µ. On constate aisément que l'écart est identiquement nul si le solide est à sa température de référence et ne contient aucune fissure. Dans cette expression figure le champ de température réel τ à l'intérieur du solide, champ bien entendu inconnu. Pour lever cette difficulté et ne plus faire apparaître que le premier terme portant sur le domaine occupé par les fissures, on impose une contrainte supplémentaire sur les champs auxiliaires v. Suivant une idée due à Bui [START_REF] Bui | A path-independent integral for mixed modes of fracture in linear thermoelasticity[END_REF] et utilisée dans la construction d'intégrales invariantes en mécanique linéaire de la rupture, on considère les champs v * j suffisamment réguliers qui satisfont pour l'indice j l'équation :

v * j j = 0 dans Ω (sans sommation) (5) 
c'est-à-dire les champs pour lesquels la j ème composante est harmonique dans l'ouvert non fissuré. On a alors la propriété suivante (sans sommation) :

ER t v * j ,j = µ Γ ε v * j ,j : N ⊗ q u(t) y s pour tout v * j régulier satisfaisant (2) et (5) (6) 
La régularité nécessaire est ici : v * j

,j ∈ H 1 (Ω). Le résultat (6) s'établit aisément grâce aux équations de Navier (forme locale de (2)) que satisfait le champ v * j .

Formules d'identification du plan de fissure

Muni de la définition (3) de l'écart à la réciprocité et de la propriété (6) obtenue pour la famille de champs auxiliaires satisfaisant :

                       Pour j = 1, 2 ou 3 v * j ,j ∈ H 1 (Ω) 3 Ω A : ε(v * j ) : ε(w) = S ext A : ε(v * j ).n.w ∀w ∈ H 1 (Ω) 3 Ω ∇v * j j .∇ϕ = S ext ∇v * j j .nϕ ∀ϕ ∈ H 1 (Ω) (7) 
on peut formuler les résultats principaux de cette Note, qui permettent sans aucune résolution de problèmes thermoélastiques, d'identifier complètement le plan renfermant (par hypothèse) l'ensemble des fissures.

Formules d'identification de la normale au plan de fissure(s)

Introduisons le tenseur symétrique P d'ordre deux défini par :

P = 1 2 Γ JuK ⊗ N + N ⊗ Γ JuK def = (U ⊗ N) s (8)
et les champs de déplacements v * i et w * dont les composantes dans un repère cartésien sont données par les expressions suivantes :

v * 1 = 2x 2 1 -x 2 2 -x 2 3 -2x 1 x 2 -2x 1 x 3 , v * 2 = -2x 1 x 2 2x 2 2 -x 2 1 -x 2 3 -2x 2 x 3 , v * 3 = -2x 1 x 3 -2x 3 x 2 2x 2 3 -x 2 2 -x 2 1 , w * = 2x 2 x 3 2x 3 x 1 2x 1 x 2 (9)
alors seules les composantes de la partie déviatorique P de P peuvent être déterminées à partir du calcul de la valeur de la forme linéaire d'écart à la réciprocité sur les champs ainsi définis. Plus précisément :

       Pii = 1 12µ ER t v * i ,i , sans sommation Pij = |ε ij k | 8µ ER t w * ,k , i = j (10)
où ε ij k sont les composantes du tenseur de permutation.

Puisque N est un vecteur unitaire, on déduit de la connaissance du tenseur P les résultats suivants (seuls cas possibles pour les valeurs principales de P) :

• Si P possède une valeur principale double Λ :

Alors, la normale au plan de fissure est donnée par la direction principale associée à la valeur principale simple, l'intégrale du saut de déplacement sur les fissures est portée par N et a pour intensité 3Λ/2. • Si P possède trois valeurs principales simples (Λ 1 , Λ 2 , Λ 3 ) ordonnées par valeurs décroissantes, les directions principales normées étant (V 1 , V 2 , V 3 ), et en notant Λ ij = Λ i -Λ j , la normale N et l'intégrale du saut de déplacement U sur les fissures sont données par :

N = 1 √ Λ 13 Λ 12 V 1 -Λ 23 V 3 , U = -3Λ 2 N + 2 Λ 12 Λ 23 Λ 13 Λ 23 V 1 + Λ 12 V 3 (11) 
Du fait de la symétrie du tenseur P, on ne peut discriminer les vecteurs unitaires N et Γ JuK Γ JuK = U U . Comme dans [START_REF] Andrieux | Reciprocity principle and crack identification[END_REF], il faut donc a priori deux instants distincts lors d'un chargement thermique ou deux chargements mécaniques distincts pour identifier la normale au plan des fissures qui sera le vecteur commun aux deux couples de vecteurs unitaires identifiés grâce aux formules précédentes.

Il est également indispensable que le chargement mécanique ou thermique conduise à une solution thermoélastique pour laquelle l'une au moins des trois composantes de la discontinuité moyenne de déplacement ne soit pas nulle. Cette condition peut cependant être vérifiée en examinant la nullité éventuelle du tenseur P obtenu par les Éqs. (10).

Formule d'identification complète du plan de fissure(s)

Connaissant la normale N , on effectue un changement de coordonnées tel que dans le nouveau repère (O, x, y, z) l'axe Oz soit dirigé par le vecteur N et que la composante selon Ox du saut de déplacement moyen sur les fissures ne soit pas nulle (cette dernière condition pouvant être satisfaite via un nouveau changement de repère à partir de l'identification des composantes de la moyenne du saut de déplacement fournie par l'Éq. ( 11)). L'équation du plan affine renfermant les fissures est maintenant : z -C = 0. Le scalaire C est déterminé par la formule suivante :

C = 1 6µU x ER t h * ,x
où h * = 3x(z 2y 2 ) y 3 -3z 2 y 0 (12)
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