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Abstract

This work presents a combined numerical and theoretical study of the effective behavior and

statistics of the local fields in random viscoplastic composites. The full-field numerical simulations

are based on the fast Fourier transform (FFT) algorithm [Moulinec, H., Suquet, P., 1994. A fast

numerical method for computing the linear and nonlinear properties of composites. C. R. Acad. Sci.

Paris II 318, 1417–1423], while the theoretical estimates follow from the so-called ‘‘second-order’’

procedure [Ponte Castañeda, P., 2002a. Second-order homogenization estimates for nonlinear

composites incorporating field fluctuations: I—Theory. J. Mech. Phys. Solids 50, 737–757]. Two-

phase fiber composites with power-law phases are considered in detail, for two different

heterogeneity contrasts corresponding to fiber-reinforced and fiber-weakened composites. Both the

FFT simulations and the corresponding ‘‘second-order’’ estimates show that the strain-rate

fluctuations in these systems increase significantly, becoming progressively more anisotropic, with

increasing nonlinearity. In fact, the strain-rate fluctuations tend to become unbounded in the limiting

case of ideally plastic composites. This phenomenon is shown to correspond to the localization of the

strain field into bands running through the composite along certain preferred orientations

determined by the loading conditions. The bands tend to avoid the fibers when they are stronger

than the matrix, and to pass through the fibers when they are weaker than the matrix. In general, the
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, 220 S. 33rd Street, Philadelphia, PA 19104-6315, USA. Tel.: +1 2158985046; fax: +12155736334.
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‘‘second-order’’ estimates are found to be in good agreement with the FFT simulations, even for high 
nonlinearities, and they improve, often in qualitative terms, on earlier nonlinear homogenization 
estimates. Thus, it is demonstrated that the ‘‘second-order’’ method can be used to extract accurate 
information not only for the macroscopic behavior, but also for the anisotropic distribution of the 
local fields in nonlinear composites.

Keywords: Creep; Inhomogeneous material; Viscoplastic material; Homogenization; Numerical algorithms

1. Introduction

Homogenization methods for nonlinear heterogeneous media have come a long way
since the early work of Taylor (1938) to estimate the effective behavior of viscoplastic
polycrystals. Following the development of rigorous bounds by Talbot and Willis (1985),
who made use of an extension of the Hashin–Shtrikman variational principles for
nonlinear media (Willis, 1983), a novel ‘‘variational’’ method was proposed by Ponte
Castañeda (1991) to generate more general types of estimates for the effective behavior of
nonlinear composites in terms of suitably optimized linear comparison composites (LCCs).
Closely related methods have been developed by Suquet (1993) for the special cases of
power-law composites. Suquet (1995) and Hu (1996) have shown that the ‘‘variational’’
method of Ponte Castañeda (1991) could be given an alternative interpretation as a
‘‘modified secant’’ approach, thus establishing a link with the second moments of the local
fields in the LCC. In an attempt to improve on these ‘‘variational’’ estimates, and in
particular, to generate estimates that are exact to second order in the heterogeneity
contrast, and therefore agree with the perturbation expansions of Suquet and Ponte
Castañeda (1993) for weakly inhomogeneous nonlinear composites, Ponte Castañeda
(1996) proposed a ‘‘second-order’’ method, which made use of an LCC with elastic moduli
given by the tangent moduli of the nonlinear phases evaluated at the phase averages of the
fields in the LCC. However, this method may violate the rigorous bounds provided by the
earlier ‘‘variational’’ method when the field fluctuations are large, as is the case near the
percolation limit. Motivated by this finding, Ponte Castañeda (2002a) proposed an
improved ‘‘second-order’’ method that makes use of a ‘‘generalized secant’’ interpolation
of the nonlinear constitutive relations, incorporating dependence on both the first and
second moments of the relevant fields in the LCCs.
In parallel developments, methods have also been developed for computing numerically

the effective behavior of nonlinear composites. One of these methods that is particularly
well suited to strongly nonlinear composites, such as viscoplastic materials with low strain-
rate sensitivity, or in the limit, ideally plastic materials, is the fast Fourier transform (FFT)
method first proposed by Moulinec and Suquet (1994, 1998), and developed further by
Michel et al. (2001). Such accurate numerical simulations allow for, among other things,
comparisons with the above-mentioned theoretical approaches with the objective of
assessing the accuracy of the latter. Comparisons of this type have already been carried out
(Moulinec and Suquet, 2003, 2004) in the context of the earlier ‘‘variational’’ method
showing that, while more accurate in general than earlier methods, the ‘‘variational’’
method can lead to inaccurate predictions for large values of the heterogeneity parameter
and strong nonlinearities. One of the goals of this study is to investigate the accuracy of the
‘‘second-order’’ estimates, particularly with reference to the earlier variational approach.
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In the development of the ‘‘second-order’’ method, it was recognized (Ponte Castañeda,
2002a) that this method could not only be used to generate estimates for the effective
behavior of the nonlinear composite, but also to extract estimates for the covariance of the
field fluctuations in the phases of the nonlinear composite. Such information could be
useful for obtaining improved descriptions of microstructure evolution in composite
materials and polycrystals that are subjected to finite-deformation processes, as well as for
developing statistical theories of damage nucleation and evolution in heterogeneous
material systems. Field fluctuations in linear composites have been studied by Bobeth and
Diener (1987), Parton and Buryachenko (1990), and Cheng and Torquato (1997), among
others. A combined experimental and theoretical study of field fluctuations in two-phase
elastoplastic solids was given by Bornert et al. (1994). In the context of conductivity,
Pellegrini (2000) proposed that a Gaussian distribution of the local fields in the constituent
phases of random composites with linear constitutive behavior could be a good
approximation, and used this type of distribution as an ansatz for random composites
with nonlinear constitutive behavior, in an attempt to account for field fluctuations in self-
consistent nonlinear homogenization methods (Pellegrini, 2001). Another objective of this
work is to investigate this point further.

In connection with applications of the ‘‘second-order’’ method to porous and two-phase
power-law composites, Ponte Castañeda (2002b) and Idiart and Ponte Castañeda (2003)
found that the covariance of the field fluctuations generally increase and become highly
anisotropic with increasing nonlinearity. The conjecture was then made in these works that
the developing anisotropy of the field fluctuations with nonlinearity could be correlated
with the known fact that the strain fields become localized and preferentially oriented for
strongly nonlinear composites (e.g., Moulinec and Suquet, 1998). Of course, the numerical
simulations allow for the characterization of the full fields in the composite, and it is
natural to compute, in particular, the covariance of the field fluctuations in the phases of
the nonlinear composite, and to compare them with the theoretical predictions, in an
attempt to assess whether the homogenization theories can be used to reliably extract
information about the field fluctuations. A preliminary study of such comparisons has
been carried out recently by Moulinec and Suquet (2003, 2004) in the context of the
isotropic ‘‘variational’’ method, and it has been shown there that the predictions of this
method for the second moments of the fields are not accurate.

In the present work, comparisons will be made between the theoretical predictions of the
‘‘second-order’’ method for the averages and standard deviations of the fields in the phases
of a certain class of nonlinear composites with particulate microstructure, and the
corresponding results from the full-field numerical simulations. The objective will be to see
how accurate the ‘‘second-order’’ predictions for these first- and second-order statistics of
the fields are, and whether such statistics can be used to gain a priori insight into the actual
distribution of the fields in the physical space. More generally, the full distributions of the
fields will be computed in order to assess the relative importance of the higher moments
(higher than second) of the fields, as well as their implication for the homogenization
methods based on the use of linear comparison composites.

2. Preliminaries on viscoplastic composites

We consider composite materials made of N different homogeneous constituents, or
phases, which are assumed to be randomly distributed in a specimen occupying a volume O,
3



with boundary qO, at a length scale that is much smaller than the size of O and the scale of
variation of the loading conditions. The constitutive behavior of the viscoplastic phases is
characterized by convex dissipation (or strain-rate) potentials wðrÞ ðr ¼ 1; . . . ;NÞ, such that
the Cauchy stress r and Eulerian strain rate e are related by

r ¼
qw

qe
ðx; eÞ; wðx; eÞ ¼

XN

r¼ 1

wðrÞðxÞ wðrÞðeÞ, (1)

where the characteristic functions wðrÞ serve to describe the microstructure, being 1 if the
position vector x is in phase r, and 0 otherwise.
Let h�i and h�iðrÞ denote the volume averages over the composite ðOÞ and over phase r

ðOðrÞÞ, respectively. We are concerned with the problem of finding the effective behavior of
the composite, which is defined as the relation between the average stress r ¼ hri and the
average strain rate e ¼ hei. The effective behavior can be determined from the effective

strain-rate potential eW , such that

r ¼
q eW
qe
ðeÞ; eW ðeÞ ¼ inf

e 2KðeÞ
hwðx; eÞi ¼ inf

e 2KðeÞ

XN

r¼ 1

cðrÞhwðrÞðeÞiðrÞ, (2)

where cðrÞ denotes the volume fraction of phase r, and KðeÞ is the set of kinematically
admissible strain-rate fields, such that there is a velocity field v satisfying e ¼ ½rvþ

ðrvÞT�=2 in O, and v ¼ ex on qO. The above formula can be simplified for periodic
microstructures, as discussed in more detail in Section 4.1. Physically, eW corresponds to
the energy dissipated in the composite when subjected to affine velocities on the boundary,
with prescribed average strain rate e ¼ hei.
Alternatively, the behavior of the phases can be characterized by convex stress potentials

uðrÞ, which are the Legendre transforms of wðrÞ, that is, uðrÞðrÞ ¼ ðwðrÞÞ�ðrÞ. Then, the local
stress and strain-rate tensors are related by

e ¼
qu

qr
ðrÞ; uðx;rÞ ¼

XN

r¼ 1

wðrÞðxÞ uðrÞðrÞ (3)

and the effective behavior can be described in terms of the effective stress potential eU , such
that

e ¼
q eU
qr
ðrÞ; eUðrÞ ¼ inf

r 2SðrÞ
huðx; rÞi ¼ inf

r 2SðrÞ

XN

r¼ 1

cðrÞhuðrÞðrÞiðrÞ, (4)

where SðrÞ is the set of divergence-free stresses such that r ¼ hri.
The variational formulations (2) and (4) can be shown to be completely equivalent, in

the sense that the functions eW and eU are Legendre duals of each other. In general, these
functions are very difficult to compute, since they require the solution to sets of nonlinear
partial differential equations with randomly oscillating coefficients. In the next section we
describe a variational method for estimating these effective potentials.

3. Second-order variational estimates

In this section, an outline is given of the ‘‘second-order’’ homogenization method
introduced by Ponte Castañeda (2002a). Like earlier nonlinear homogenization methods,
4



it is based on the construction of a linear comparison composite (LCC) whose constituent
phases are identified with appropriate linearizations of the given nonlinear phases. This
allows the use of the many different methods already available to bound and estimate the
effective behavior of linear composites to generate corresponding estimates for the effective
behavior and field statistics in nonlinear heterogeneous media.

3.1. Estimates for the effective behavior

The second-order method can be formulated using either strain-rate or stress potentials.
We begin here by considering the stress formulation. In this case, an LCC is introduced,
with the same microstructure as the nonlinear composite, and with stress phase potentials
given by second-order Taylor approximations to the corresponding stress potentials uðrÞ,
namely,

u
ðrÞ
T ðrÞ ¼ uðrÞð �rðrÞÞ þ

quðrÞ

qr
ð �rðrÞÞ � ðr� �rðrÞÞ þ

1

2
ðr� �rðrÞÞ �MðrÞðr� �rðrÞÞ, (5)

where �rðrÞ are uniform reference stresses, and MðrÞ are uniform, symmetric, fourth-order
tensors (viscous compliances). Note that the stress–strain-rate relations associated with Eq.
(5) correspond to that of a ‘‘thermoelastic’’ material, given by e ¼MðrÞrþ gðrÞ, where
gðrÞ ¼ quðrÞ=qrð �rðrÞÞ �MðrÞ �rðrÞ are uniform strain-rate polarization tensors.

The central idea of the method is to choose the variables �rðrÞ andMðrÞ in such a way as to
generate the best possible estimates for the effective potential eU of the nonlinear composite
in terms of corresponding estimates for the effective potential eUT of the (thermoelastic)
LCC. To that end, a suitably designed variational principle is used, which leads to the
following estimate for eU (see Ponte Castañeda, 2002a):

eUðrÞ ¼ stat
MðsÞ

eUT ðr; �r
ðsÞ;MðsÞÞ �

XN

r¼1

cðrÞV ðrÞð �rðrÞ;MðrÞÞ

( )
, (6)

where an equality has been used in the sense of a variational approximation, and where the
‘‘error functions’’ V ðrÞ are defined by

V ðrÞð �rðrÞ;MðrÞÞ ¼ stat
r̂ðrÞ
fu
ðrÞ
T ðr̂

ðrÞ
Þ � uðrÞðr̂ðrÞÞg. (7)

The stationary operation in (7) leads to the following conditions:

quðrÞ

qr
ðr̂ðrÞÞ �

quðrÞ

qr
ð �rðrÞÞ ¼MðrÞðr̂ðrÞ � �rðrÞÞ. (8)

In turn, the stationary operation with respect to the tensors MðrÞ in expression (6) leads to
the conditions

ðr̂ðrÞ � �rðrÞÞ � ðr̂ðrÞ � �rðrÞÞ ¼ CðrÞr þ ðr
ðrÞ � �rðrÞÞ � ðrðrÞ � �rðrÞÞ, (9)

where rðrÞ ¼ hriðrÞ is the average of the stress over phase r, and

CðrÞr ¼
:
hðr� rðrÞÞ � ðr� rðrÞÞiðrÞ (10)

denotes the covariance tensor of the stress fluctuations in phase r (Bobeth and Diener,
1987; Parton and Buryachenko, 1990), in the LCC. It should be emphasized that the
fourth-order tensor appearing on the left-hand side of Eq. (9) is of rank one, whereas the
5



right-hand side is, in general, of full rank. Thus equality cannot be enforced for all
components of this tensorial relation, and only certain traces of it have to be used,
depending on the form of the tensors MðrÞ.
From relations (8) and (9), it is seen, as depicted in Fig. 1, that the viscous-compliance

tensor MðrÞ corresponds to a ‘‘generalized secant’’ linearization of the nonlinear
stress–strain-rate relation for phase r, which depends on the second-moments of the
(intraphase) fluctuations of the stress field.
Finally, using the fact that (6) and (7) are stationary with respect to the tensors MðrÞ and

r̂ðrÞ, respectively, the estimate (6) can be shown to reduce to

eUðrÞ ¼XN

r¼1

cðrÞ uðrÞðr̂ðrÞÞ �
quðrÞ

qr
ð �rðrÞÞ � ðr̂ðrÞ � rðrÞÞ

� �
, (11)

where the reference tensors �rðrÞ remain to be specified. Ponte Castañeda (2002a) initially
suggested that the best possible estimate for eU within this scheme could be obtained by
enforcing stationarity of (6) with respect to the tensors �rðrÞ. Unfortunately, it has not yet
been possible to satisfy the resulting conditions on �rðrÞ. Because of this, several different
prescriptions have been proposed (Ponte Castañeda, 2002b; Idiart and Ponte Castañeda,
2003, among others). In this work, use will be made of the simple prescription

�rðrÞ ¼ r, (12)

proposed recently by Idiart and Ponte Castañeda (2005), although it should be emphasized
that the optimal choice of the reference tensors �rðrÞ remains an open question.
Fig. 1. One-dimensional sketch of the nonlinear stress–strain-rate relation and the ‘‘generalized secant’’

linearization used by the second-order method. The symbols �cðrÞ and ĉðrÞ denote quðrÞ=qrð �rðrÞÞ and quðrÞ=qrðr̂ðrÞÞ,
respectively.
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Thus, estimate (11) requires the computation of the effective potential eUT , which can be
obtained using any linear homogenization method appropriate for composites with local
potentials u

ðrÞ
T and the same microstructure as the nonlinear composite. Then, relations (8)

and (9) become a system of algebraic nonlinear equations for the variables r̂ðrÞ and MðrÞ in
each phase, where the tensors rðrÞ and CðrÞr can be computed from the LCC (see expressions
(15)–(16)), and expression (11) gives the desired estimate for the effective potential of the
nonlinear composite.

An estimate for the dissipation potential eW may be obtained similarly by making use of
an LCC with phase potentials w

ðrÞ
T , given by second-order Taylor approximations to the

corresponding nonlinear strain-rate potentials wðrÞ, in terms of uniform reference strain
rates �eðrÞ and viscosity tensors LðrÞ. The resulting estimate for the nonlinear strain-rate
potential is given by

eW ðeÞ ¼XN

r¼1

cðrÞ wðrÞðêðrÞÞ �
qwðrÞ

qe
ð�eðrÞÞ � ðêðrÞ � eðrÞÞ

� �
, (13)

where the tensors êðrÞ and LðrÞ are determined by expressions analogous to (8) and (9). On
the other hand, for reasons that will become evident in the next subsection, the reference
strains �eðrÞ will be chosen in this work such that the estimates (11) and (13) be Legendre
duals of each other. One way to ensure this is to set all reference strain rates �eðrÞ equal to a
second-order tensor �e, and then determine this tensor using the duality conditioneUðr; �rÞ ¼ eW �

ðr; �eÞ or equivalently eW ðe; �eÞ ¼ eU�ðe; �rÞ, (14)

where the superscript � stands for Legendre transform. Thus, the procedure to compute the
estimates (13) is similar to that required to compute the estimates (11), but with a different
prescription for the tensor �e to ensure equivalence of the nonlinear estimates.

3.2. Statistics of the local fields

The local fields in the associated LCC constitute an approximation to the local fields in
the nonlinear composite. Although such an approximation is not expected to be very
accurate in a pointwise sense, it is reasonable to expect that it may yield reasonably
accurate estimates for averaged quantities, such as the phase averages and second-
moments of the field fluctuations.

Thus the phase averages and phase covariance tensors of the stress can be obtained from
the LCC generated by the stress version, using the following identities (see for example
Ponte Castañeda and Suquet, 1998):

rðrÞ ¼ BðrÞ rþ bðrÞ, (15)

CðrÞr ¼
2

cðrÞ
q eUT

qMðrÞ
� ðrðrÞ � �rðrÞÞ � ðrðrÞ � �rðrÞÞ. (16)

In these expressions, BðrÞ and bðrÞ are concentration tensors that depend on the tensors MðrÞ

and �rðrÞ according to the homogenization procedure utilized, eUT is the effective potential
of the LCC, and the derivative should be taken with �rðrÞ held fixed. Similarly, the phase
averages and phase covariance tensors of the strain-rate can be obtained from the LCC
generated by the strain-rate version, using analogous expressions.
7



It should be remarked at this point that, in general, the LCCs generated by the stress and
strain-rate versions are not equivalent to each other, in the sense that u

ðrÞ
T aðwðrÞT Þ

�, and
therefore the stress quantities (15)–(16) and their strain-rate counterparts correspond to
different LCCs. However, the phase averages thus obtained are actually consistent with the
stress–strain-rate relation of the nonlinear composite arising from the ‘‘second-order’’
estimates, in the sense that

e ¼
q eU
qr
ðrÞ ¼

XN

r¼1

cðrÞeðrÞ and r ¼
q eW
qe
ðeÞ ¼

XN

r¼1

cðrÞrðrÞ, (17)

where eU and eW are the nonlinear estimates (11) and (13). The reason for this is that the
LCC associated with the stress (resp. strain-rate) formulation is subjected to the same
macroscopic stress (resp. strain-rate) as the nonlinear composite (cf. expression (6)). Then,
relations (17) follow from the fact that the effective potentials generated by both versions
are Legendre duals of each other, which in turn follows from the choice (14) for the
reference strain-rate.

4. A numerical method based on the fast Fourier transform

The numerical method used in the present work derives from that initially developed in
the context of elasto-plasticity by Moulinec and Suquet (1998), which is based on fast
Fourier transforms.
For clarity, the notation used in this section is slightly different from that used in the rest

of the paper. The strain rate, denoted by e in the rest of the paper, will be denoted here by
_e, since the constitutive relations which are used for computational purposes involve both
the strain e and the strain rate _e.

4.1. Elasto-viscoplastic problem

The Euler equations associated with the variational problem (2) amount to finding a
stress field r and a velocity field v such that

_e ¼
qu

qr
ðx;rÞ; _e ¼

1

2
ðrvþrvTÞ; divðrÞ ¼ 0; h_ei ¼ _e. (18)

The problem is closed by imposing periodicity conditions on the boundary of the r.v.e. V .
The solution of the nonlinear system (18) is obtained by incorporating elastic effects in

the constitutive equations and then taking the limit as the time t tends to þ1 of the
solution of an elasto-viscoplastic problem derived from (18) (this procedure is very similar
to the approach used by Moulinec and Suquet (1998) to determine the extremal surface of
rigid-plastic composites through the resolution of elasto-plastic problems). An alternative
method based on augmented Lagrangians has been proposed by Michel et al. (2001).
However, in order to get a good convergence rate of this method, a fine tuning of its
numerical parameters has to be performed. For the problem considered in the next section,
this optimization has to be done for each individual configuration and each nonlinearity
exponent. By contrast, the method used in the present study, although slightly slower, is
more robust in that it can be used with the same set of parameters for all configurations
and all nonlinearity exponents.
8



Each nonlinear viscous constituent is given an elasticity characterized by a fourth-order
tensor LðrÞ, and the constitutive relations for the individual constituents now read as

_rðxÞ ¼ LðxÞð_eðxÞ � _evpðxÞÞ; _evpðxÞ ¼
qu

qr
ðx;rÞ. (19)

Eq. (19), complemented by equilibrium and compatibility equations, is solved
incrementally. A constant (time-independent) macroscopic strain rate _e is applied to the
unit-cell, and the time-dependent stress and strain fields (with initial conditions identically
0) are determined by a time integration algorithm detailed below. As t tends to þ1 the
stress field r and the strain-rate field _e eventually reach an asymptotic state for which _r ¼ 0

and _e ¼ _evp. These asymptotic fields are solutions of (18). The resolution of the local
problem using (19) is numerically simpler and less stiff than that based on (18).

4.2. Time integration of the constitutive relations

Relation (19) is an ordinary differential equation expressing the constitutive relations
which can be integrated by an implicit step-by step time integration algorithm very similar
to the radial-return algorithm used in Moulinec and Suquet (1998).

The time interval ½0;T � is discretized into time steps ½ti; tiþ1�. Assuming that the fields ri

and ei at time t ¼ ti have been determined, we look for the unknown fields riþ1 and eiþ1 at
time t ¼ tiþ1. Replacing time differentiation by a finite difference in (19) gives (the
dependence on the phase is omitted for simplicity)

riþ1 � ri ¼ Lðeiþ1 � ei � ð_evpÞiþ1ðtiþ1 � tiÞÞ; ð_evpÞiþ1 ¼
qu

qr
ðriþ1Þ. (20)

Assuming that eiþ1 is known, and introducing the elastic ‘‘trial’’ prediction riþ1
T ¼

ri þ Lðeiþ1 � eiÞ, the nonlinear equation (20) takes the form

riþ1 þ ðtiþ1 � tiÞL
qu

qr
ðriþ1Þ ¼ riþ1

T . (21)

When the phases are isotropic and incompressible, the nonlinear equation (21) further
reduces to a single nonlinear scalar equation. Therefore the solution of (21) can be
expressed symbolically as a nonlinear constitutive relation

riþ1ðxÞ ¼ Fiþ1ðx; eiþ1ðxÞÞ. (22)

In addition, riþ1 and eiþ1 must also satisfy the equilibrium and compatibility equations.
These partial differential equations coupling different material points in the r.v.e. are
treated through a Green’s operator approach as in Moulinec and Suquet (1998). More
specifically, the solution of the nonlinear local problem

r ¼ FðeÞ; e ¼ 1
2
ðruþ ruTÞ; divðrÞ ¼ 0; hei ¼ e, (23)

with periodic boundary conditions, solves the nonlinear integral equation

eðuÞ ¼ �C0 � dFðeðuÞÞ þ e; dFðx; eÞ ¼ Fðx; eÞ � L0e, (24)

where L0 is the stiffness of a reference medium and C0 the associated Green’s operator (see
Moulinec and Suquet, 1998). The integral equation (24) is solved by iterations

eðukþ1Þ ¼ �C0 � dFðeðukÞÞ þ e, (25)
9



which can be further simplified by noting that C0 � ðL0 eðuÞÞ ¼ eðuÞ � e. The final iterative
scheme reads

eðukþ1Þ ¼ eðukÞ � C0 � rk where rk ¼ FðeðukÞÞ. (26)

Finally, this iterative scheme is used with F ¼ Fi as defined by (22).

5. Two-phase, power-law, fiber composites

In what follows, the focus will be on two-phase, fiber composites with random

microstructures exhibiting overall transversely isotropic symmetry. The fibers are assumed
to be aligned with the x3 axis, and will be identified with phase 2, whereas the continuous
phase, called the matrix, will be identified with phase 1. The individual phases are assumed
to be isotropic, incompressible, viscoplastic materials with a constitutive behavior
characterized by power-law potentials

wðrÞðeÞ ¼
�0s
ðrÞ
0

1þm

�e
�0

� �1þm

; uðrÞðrÞ ¼
�0s
ðrÞ
0

1þ n

se
sðrÞ0

 !1þn

, (27)

where �0 is a reference strain rate, m is the strain-rate sensitivity, such that n ¼ 1=m and
0pmp1, sðrÞ0 is the flow stress of phase r, and the von Mises equivalent strain rate and

stress are, respectively, given in terms of the deviatoric strain-rate and stress tensors by

�e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=3Þ ed � ed

p
and se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3=2Þrd � rd

p
. Note that the limiting values, m ¼ 1 and

m ¼ 0, correspond to linearly viscous and rigid-perfectly plastic (rate-insensitive)
behaviors, respectively.
For simplicity, both phases are assumed to have the same exponent m and reference

strain rate �0. Then, from the homogeneity of the local potentials (27), and the fact that the
composites are transversely isotropic, it follows that, under isochoric plane-strain

conditions, the effective potentials can be written as

eW ðeÞ ¼ �0es0
1þm

�e
�0

� �1þm

; eUðrÞ ¼ �0es0
1þ n

sees0
� �1þn

, (28)

where es0 is the effective flow stress of the composite, and �e and se are the equivalent

macroscopic strain rate and stress, respectively, which are given by �e ¼ ð2=
ffiffiffi
3
p
Þ

ffiffiffiffiffiffiffiffiffiffi
�212þ

q
1
4
ð�11 � �22Þ

2 and se ¼ ð
ffiffiffi
3
p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s212 þ

1
4
ðs11 � s22Þ

2
q

. This is a very special class of nonlinear

(2D) composites, for which the analytical form of the effective potentials is known a priori.
The effective behavior is thus completely characterized by es0, which is a function of the
strain-rate sensitivity, the heterogeneity contrast, and the concentration of fibers. It should
be emphasized, however, that the methods presented above can account for very general
microstructures and constitutive behaviors, and that the choice made in this work is
dictated by convenience, while preserving the capability of dealing with strongly nonlinear
behavior.
It can also be shown for this particular class of nonlinear composites that the local stress

and strain-rate fields are homogeneous functions of degree 1 in se and �e, respectively. In
addition, since the phases and their distribution are isotropic, it is expected that the phase
averages are co-axial with the macroscopic averages. It is also expected that the phase
10



covariance tensors are ‘‘aligned’’ with the macroscopic averages, in the sense that one of
their eigentensors is co-axial with r and e. (Indeed, this turns out to be the case in the
calculations to follow.) Under incompressible plane-strain conditions, the local stress and
strain deviator fields are vectorial in character, thus co-axiality implies proportionality,
and so their phase averages can be written as

r
ðrÞ
d ¼

seðrÞ

se
rd and e

ðrÞ
d ¼

�e
ðrÞ

�e
ed , (29)

where the ratios seðrÞ=se and �eðrÞ=�e depend only on material parameters. It is also natural
to identify two ‘‘components’’ of the strain-rate (resp. stress) tensor which represent its
projections ‘‘parallel’’, �k (resp. sk), and ‘‘perpendicular’’, �? (resp. s?), to the macroscopic
strain rate (resp. stress). These components can be determined (up to a sign) by the two
orthogonal fourth-order projection tensors E and F given by expressions (56) in Ponte
Castañeda (2002a), with �rðrÞ ¼ r, through the following relations: �2k ¼ ð2=3Þ ðe � EeÞ,
�2? ¼ ð2=3Þ ðe � FeÞ, s2k ¼ ð3=2Þ ðr � ErÞ, and s2? ¼ ð3=2Þ ðr � FrÞ. They are such that �2e ¼
�2k þ �

2
? and s2e ¼ s2k þ s2?. For instance, in the numerical simulations to follow, the

macroscopic stress will be taken to be

r ¼ s12 ðe1 � e2 þ e2 � e1Þ, (30)

so that the corresponding ‘‘parallel’’ and ‘‘perpendicular’’ components of the local fields
are

sk ¼
ffiffiffi
3
p

s12; s? ¼
ffiffiffi
3
p s11 � s22

2
; �k ¼

2ffiffiffi
3
p �12; �? ¼

2ffiffiffi
3
p

�11 � �22
2

. (31)

The standard deviations of the spatial distributions within each phase of the quantities (31)

ðSDðrÞð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð�Þ

2
iðrÞ � ðh�iðrÞÞ

2
q

Þ provide a measure of the intraphase field fluctuations, and
are given in terms of the phase covariance tensors by

SDðrÞðskÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
E � CðrÞr

r
; SDðrÞðs?Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
F � CðrÞr

r
, (32)

SDðrÞð�kÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
E � CðrÞe

r
; SDðrÞð�?Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
F � CðrÞe

r
. (33)

From the homogeneity of the local fields in se and �e, it follows that the ratios SDðrÞðsÞ=se
and SDðrÞð�Þ=�e depend only on the material parameters.

In this work, a special class of random transversely isotropic microstructures is
considered known as the composite cylinder assemblage (CCA), introduced by Hashin and
Rosen (1964), in which aligned homothetic composite cylinders of an infinite number of
sizes fill the entire space. The interest in this type of microstructures is that, in the linear

case, their effective behavior is known to be well approximated by the Hashin–Shtrikman
(HS) estimates (Hashin and Shtrikman, 1963), at least when the constituent phases are
isotropic. Because of this, the ‘‘second-order’’ estimates for nonlinear composites with this
type of microstructures will be generated by making use of the linear HS estimates to
determine the homogenized behavior of the associated LCC.

In order to carry out full-field numerical simulations for this class of composites using
the FFT method, 20 different configurations of the unit-cell were generated by randomly

placing in a square cell self-similar non-overlapping composite cylinders of three different
11



Fig. 2. Typical configuration of the unit cell used in the full-field FFT simulations. It contains 490 composite

cylinders of three different sizes, randomly distributed.
sizes, with periodicity conditions for cylinders intersecting the cell boundaries. Fig. 2 shows
a typical configuration for the unit cell, containing 490 composite cylinders. Each
composite cylinder is composed of a circular core (in white in Fig. 2) surrounded by a
circular layer of matrix (in black). It is emphasized that these microstructures constitute an
approximation to the CCAs described above, since only a finite number of sizes is used for
the composite cylinders. As a consequence of using a finite number of sizes for the
composite cylinders, as well as a different number of cylinders of a given size from one
configuration to another, the fiber concentration in each configuration is not exactly the
same, and ranged between 0:203 and 0:210, the average value being 0:20626.
The issues of statistical homogeneity and isotropy for this type of microstructures are

briefly discussed in Moulinec and Suquet (2004) (see also Kanit et al., 2003, for a related
problem). Both the number of composite cylinders per unit-cell and the number of
different configurations used in the analysis result from a compromise between several
constraints. First, each configuration has to be large enough to ensure that the periodicity
conditions play almost no role on the effective properties. Second, by considering large
unit-cells containing a large number of inclusions (several hundreds), the scatter in the
quantities of interest (effective properties, first and second moments of the fields) is small
and only a few configurations are necessary for the ensemble average of these quantities to
reach stationarity.
The FFT results provided in the next section for the effective properties, phase averages,

and standard deviations of the local fields are ensemble averages of the computational
results over all configurations, and they are taken as approximate values for a fiber
concentration of 0:20626. The way these ensemble averages were performed can be found
in Moulinec and Suquet (2003, 2004). In addition to the phase averages and covariance
tensors, the histograms of the spatial distribution of the local fields can be obtained from
the FFT simulations. For any scalar field z, it is convenient to introduce a ‘‘density of
states per unit volume’’ or ‘‘probability density function’’, PðrÞz ðzÞ, defined so that PðrÞz ðzÞdz

is the volume fraction of phase r in a given configuration where the variable z takes values
in the range z and zþ dz. (Note that the first and second moments of z are then given by
hzqiðrÞ ¼

R1
�1

zq PðrÞz ðzÞdz with q ¼ 1 and q ¼ 2, respectively.) At a given value zi, the
function PðrÞz is computed from the numerical simulations by counting the number of pixels
12



N
ðrÞ
i out of the total number of pixels N ðrÞ in phase r where the variable z takes values

between zi p zozi þ Dz. In this work, the following relations have been used:

PðrÞz ðziÞ ¼
1

Dz

N
ðrÞ
i

N ðrÞ
; zi ¼ zmin þ iDz; Dz ¼

zmax � zmin

Nb � 1
, (34)

where Nb denotes the number of bars in the histogram (200 in this work), zmin and zmax

denote, respectively, the minimum and maximum values that the quantity z takes in a given
simulation, and i ¼ 0; 1; . . . ;Nb � 2. For the last bar, N

ðrÞ
Nb�1

is set equal to the number of
pixels where z takes the value zmax.

The unit-cells used in the numerical simulations were discretized into 1024 � 1024 pixels.
They were subjected to an in-plane shear stress (30), and the computations were run until
the macroscopic strain reached �12 ¼ 0:5.
6. Results and discussion

In this section, the ‘‘second-order’’ (SO) estimates of the Hashin–Shtrikman type,
described in the previous section, for the effective behavior and statistics of the local fields
in power-law composites are compared with corresponding results generated by FFT full-
field simulations. The results are presented as a function of the strain-rate sensitivity m, for
a given concentration of fibers ðcð2Þ ¼ 0:20626Þ. Two values of the heterogeneity contrast
are considered, one corresponding to fiber-reinforced composites ðsð2Þ0 =s

ð1Þ
0 ¼ 5Þ and the

other to fiber-weakened composites ðsð2Þ0 =s
ð1Þ
0 ¼ 0:2Þ. Full-field simulations were carried out

for several values of the strain-rate sensitivity ð1=m ¼ n ¼ 1; 2; 3; 5; 10;1Þ. The dark circles
representing the FFT results in the plots to follow correspond to ensemble averages over
20 different configurations (like the one shown in Fig. 2), and the ‘‘error’’ bars (where
given) correspond to the maximum and minimum values, quantifying the scatter of the
numerical results.

In addition, comparisons are also provided with the earlier ‘‘variational’’ (VAR) method
of Ponte Castañeda (1991) and Suquet (1993), as well as with the ‘‘tangent second-order’’
(TSO) method of Ponte Castañeda (1996), once again, making use of the HS estimates for
the relevant LCC. It is recalled here that these methods arise from considering different
linearization schemes. Thus, the ‘‘variational’’ method makes use of an LCC whose phases
are identified with the ‘‘secant’’ viscous-compliance/viscosity tensors of the nonlinear
phases, evaluated at the second-moments of the local fields over the phases (Suquet, 1995;
Hu, 1996). It is emphasized that since the nonlinear phases are isotropic, the corresponding
LCC is also locally isotropic in this model. On the other hand, in the earlier version of the
‘‘second-order’’ method (TSO), the phases of the LCC are identified with the ‘‘tangent’’
viscous-compliance/viscosity tensors of the nonlinear phases, evaluated at the phase
averages of the local fields. Therefore, unlike the ‘‘second-order’’ method outlined above,
this method does not take into account the field fluctuations in the linearization. It should
also be mentioned that the TSO estimates are known to have a duality gap (Ponte
Castañeda, 1996), and so two sets of estimates corresponding to the strain-rate (W) and
stress (U) versions are shown. Finally, the classical estimates of Voigt and Reuss are also
included for comparison purposes. Because of this reason, the TSO estimates for strain-
rate statistics correspond to the W version, while those for the stress statistics correspond
to the U version. These are rigorous upper and lower bounds, independent of the
13



microstructure, which are obtained by using uniform strain-rate and stress trial fields in the
minimum energy principles (2) and (4), respectively.
Before proceeding with the discussion of the results, it is useful to recall that the

nonlinear homogenization methods based on the use of an LCC involve two different levels
of approximation. The first one consists in the linearization of the behavior of each phase
in the nonlinear composite, in order to generate the LCC. Once the LCC is generated,
however, its effective behavior needs to be computed. In general, computing exactly the
effective behavior of the LCC, which is a random composite, is still a difficult problem, and
therefore a second level of approximation is required, which consists in estimating the
effective behavior of the LCC, making use of suitable linear homogenization estimates.
Therefore, any differences between the homogenization results and the numerical
simulations shown below could have either one (or both) of two sources: the estimate
used for the LCC (in this case, the HS estimates) or the linearization procedure itself (SO,
TSO, VAR).

6.1. Fiber-weakened composites

Effective behavior. In Fig. 3a, the various bounds and estimates for the effective flow
stress es0 of a fiber-weakened composite, and the corresponding FFT results, are plotted as
a function of the strain-rate sensitivity m. (Part (b) will be discussed in the next subsection.)
The results are normalized by the flow stress of the matrix sð1Þ0 . It can be observed that the
FFT simulations yield a es0 which decreases slightly with decreasing values of m (i.e.,
increasing nonlinearity). The main observation, however, is that the SO estimates are
found to be in good agreement with the FFT simulations, for weak to moderate
nonlinearities ð0:2pmp1Þ, but the agreement is found to deteriorate close to the perfectly
plastic limit ðm! 0Þ, where the FFT results keep decreasing with m, while the SO
estimates exhibit a slight increase. As explained in more detail below, the reason for such
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Fig. 3. Effective flow stress es0, normalized by the flow stress of the matrix sð1Þ0 , for power-law fiber composites

subjected to in-plane shear, as a function of the strain-rate sensitivity m, for a given concentration of fibers

ðcð2Þ ¼ 0:20626Þ. Comparisons between the ‘‘second-order’’ ðSOÞ, ‘‘tangent second-order’’ ðTSOÞ, and

‘‘variational’’ (VAR) estimates of the Hashin–Shtrikman type, and the FFT results, for the cases of (a) weaker

fibers ðsð2Þ0 =s
ð1Þ
0 ¼ 0:2Þ and (b) stronger fibers ðsð2Þ0 =s

ð1Þ
0 ¼ 5Þ.
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differences as m! 0 could be related to the use of HS estimates for the LCC. It is worth
noting though that for m ¼ 0:1 the differences are still relatively small (approx. 3:5%).
Also included in the figure are both versions of the TSO estimates, as well as the
‘‘variational’’ estimates. The latter are known to provide rigorous upper bounds for the es0
of the class of composites here considered (see for example, Ponte Castañeda and Suquet,
1998). Several observations are in order. First, the homogenization estimates all coincide
for m ¼ 1 with the linear HS estimate, as they should, but give diverging predictions as m

decreases. However, it is seen that the TSO and SO estimates give very close predictions for
weak to moderate nonlinearities ð0:3pmp1Þ, and it is only for strong nonlinearities that
they differ significantly. In this connection, it is noted that, as already pointed out by Ponte
Castañeda (2002b), the TSO estimates exhibit a large duality gap for small values of m, and
in the limit m! 0 the TSOðUÞ estimates tend to the Voigt bound, thus violating the
sharper ‘‘variational’’upper bound. In contrast, the new SO estimates have no duality gap,
and are found to satisfy the ‘‘variational’’ upper bound for all values of m. Finally, it is
noted that the scatter exhibited by the FFT results, although barely noticeable in this
figure, increases with increasing nonlinearity. This scatter is due to several reasons, such as
the finite size of the specimens, as well as the fact that all specimens have slightly different
fiber concentrations. In any event, the scatter is found to be very small even for the smaller
values of m, suggesting that the quality of the numerical results is good.

Statistics of the local fields. Corresponding estimates for the phase averages and
standard deviations of the stress field are given in Fig. 4. In part (a), the equivalent average
stresses in each phase seðrÞ are shown, normalized by the equivalent macroscopic stress se.
It can be seen that all the homogenization estimates are in good agreement with the FFT
simulations, for all values of m. This is perhaps not surprising, since for the extreme case of
void fibers (i.e., sð2Þ0 ¼ 0) all these methods give the exact result (i.e., seð1Þ=se ¼ 1=cð1Þ and
seð2Þ=se ¼ 0). Nonetheless, it is worth mentioning that the SO estimates are the most
consistent ones with the FFT results, the agreement being excellent. Part (b) shows the
standard deviations of the stress field in the matrix, as given by expressions (32),
normalized by the equivalent macroscopic stress se.The main observation in the context of
Fig. 4. Statistics of the stress field for the case of weaker fibers. (a) Equivalent average stresses in the matrix ðseð1ÞÞ
and in the fibers ðseð2ÞÞ. (b) Standard deviation (SD) of the ‘‘parallel’’ and ‘‘perpendicular’’ components of the

stress field in the matrix. The results are normalized by the equivalent macroscopic stress se.
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this figure is that the FFT simulations show that, while the stress fluctuations are isotropic

(i.e., SDð1ÞðskÞ ¼ SDð1Þðs?Þ) in the linear case, they become progressively more anisotropic

as the nonlinearity increases, being larger for the ‘‘perpendicular’’ component than for the
‘‘parallel’’ component. Furthermore, the ‘‘perpendicular’’ fluctuations are found to
increase with decreasing m, while the ‘‘parallel’’ fluctuations exhibit a non-monotonic
dependence on m. It can be seen in the figure that the SO estimates are consistent with
these observations, exhibiting good agreement with the FFT results for weak to moderate
nonlinearities ð0:3pmp 1Þ. However, this agreement is seen to deteriorate close to the
perfectly plastic limit, where the SO estimates underestimate the stress fluctuations. On the
other hand, while for weak to moderate nonlinearities the TSOðUÞ estimates are very
similar to the SO estimates, as m! 0 they give vanishing and infinite fluctuations in the
‘‘parallel’’ and ‘‘perpendicular’’ directions, respectively, which is in disagreement with the
FFT results. Finally, the ‘‘variational’’ estimates are seen to predict isotropic stress
fluctuations for all values of m, and are thus inconsistent with the FFT simulations.
Fig. 5 provides corresponding estimates for the phase averages and standard deviations

of the strain-rate field. Part (a) shows the equivalent average strain rates in each phase �e
ðrÞ,

normalized by the equivalent macroscopic strain rate �e. It can be seen that the FFT
simulations yield an average strain rate in the (weaker) fibers which is higher than that in
the matrix, as expected, and that the former increases with nonlinearity while the latter
decreases. (Note that, in view of relations (29), these quantities are related by
cð1Þ ð�e

ð1Þ=�eÞ þ cð2Þ ð�e
ð2Þ=�eÞ ¼ 1.) Among the homogenization estimates, the SO estimates

are found to be, once again, the most consistent with the FFT results, the agreement being
very good for all values of m. Although the TSOðW Þ estimates give very similar predictions
in the range 0:2pmp 1, they are seen to deviate significantly as m! 0. In fact, in this
limit, they predict a vanishing average strain rate in the matrix, which is inconsistent with
the FFT results. In this connection, it is worth mentioning that the SO estimates with
reference tensors �rðrÞ identified with the phase averages predict an average strain rate in the
matrix that also vanishes as m! 0 (see Idiart and Ponte Castañeda, 2003, 2005). Thus the
Fig. 5. Statistics of the strain-rate field for the case of weaker fibers. (a) Equivalent average strain rates in the

matrix ð�e
ð1ÞÞ and fibers ð�e

ð2ÞÞ. (b) Standard deviation (SD) of the ‘‘parallel’’ and ‘‘perpendicular’’ components of

the strain-rate field in the matrix. The results are normalized by the equivalent macroscopic strain rate �e.
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alternative prescription (12)–(14) used in this work is found to give much more reasonable
estimates, especially for strong nonlinearities. Finally, it is observed that the ‘‘variational’’
estimates are inconsistent with the FFT simulations, being almost insensitive to m. Part (b)
provides plots for the standard deviations of the strain-rate field in the matrix, normalized
by the equivalent macroscopic strain rate �e. The main observation in the context of this
figure is that the FFT simulations show that the strain-rate fluctuations, which are isotropic

in the linear case, increase significantly and become progressively more anisotropic as the
nonlinearity increases. Furthermore, it is observed that, unlike the stress fluctuations (cf.
Fig. 4b), the strain-rate fluctuations are larger for the ‘‘parallel’’ component than for the
‘‘perpendicular’’ component. As will be seen in detail shortly, the increase of the strain-rate
fluctuations and their anisotropy are consequences of strain localization, which becomes
more pronounced with increasing nonlinearity. It can be seen in the figure that the SO
estimates are in good agreement with the FFT results for weak to moderate nonlinearities
ð0:2pmp 1Þ, but they are found to underestimate the strain-rate fluctuations for small
values of m, yielding finite values in the ideally plastic limit, while the FFT results seem to
be consistent with unbounded fluctuations in this limit (the FFT results for m ¼ 0 yield
strain-rate fluctuations that are very large but finite, since the numerical procedure cannot
handle infinite quantities). The TSOðW Þ estimates are seen to give similar predictions to
the SO estimates for weak to moderate nonlinearities, but as m! 0 they give infinite and
vanishing fluctuations for the ‘‘parallel’’ and ‘‘perpendicular’’ components, respectively,
which is also inconsistent, since the FFT results suggest that the fluctuations blow up for
both components. Finally, the ‘‘variational’’ estimates are seen to be almost insensitive to
m here as well, and more importantly, they predict isotropic fluctuations for all values of
m, which is inconsistent with the FFT simulations.

At this point, it is worth noting that the degree of anisotropy of the stress and strain-rate
fluctuations predicted by the different homogenization methods depends strongly on the
anisotropy of the compliance/elastic tensors used in the LCC. In fact, for the cases
considered here, the compliance/elastic tensors used by these methods are all of the same
form, as given by expressions (55) and (44) in Ponte Castañeda (2002a), and it can be
verified that the anisotropy of the HS estimates for the stress fluctuations in the matrix is
SDð1ÞðskÞ=SDð1Þðs?Þ ¼

ffiffiffi
k
p

, while that of the strain-rate fluctuations is SDð1Þð�kÞ=
SDð1Þð�?Þ ¼ 1=

ffiffiffi
k
p

, where k ¼ lð1Þ0 =m
ð1Þ
0 is the (anisotropy) ratio of the ‘‘parallel’’ and

‘‘perpendicular’’ shear moduli. Thus, as already mentioned, the ‘‘variational’’ method
makes use of isotropic compliance tensors (when the nonlinear phase is isotropic), so
k ¼ 1, and consequently it predicts isotropic stress and strain-rate fluctuations for all
values of m. On the other hand, the TSO estimates make use of the ‘‘tangent’’ compliance
tensor, which for a power-law phase is of the form mentioned above with k ¼ m. This still
constitutes a strong restriction, for the anisotropy of the fluctuations is thus given by the
strain-rate sensitivity, and cannot depend, for example, on the microstructure. In contrast,
the compliance tensors used by the new SO estimates are somewhat more general (see
Section 3), allowing for k to depend not only on m but also on the heterogeneity contrast
and concentration of fibers. This is one of the reasons why the ‘‘second-order’’ method is
able to give superior predictions over the earlier ‘‘tangent second-order’’ and ‘‘variational’’
methods. Finally, it is noted that, the k associated with the W and U versions of the SO
estimates are not equal, thus allowing the anisotropy of the strain-rate and stress
fluctuations to be different from each other, which is in agreement with the FFT
simulations.
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Fig. 6. FFT results for the standard deviations (SD) of the fields in the fibers, for the cases of (a) weaker fibers

ðsð2Þ0 =s
ð1Þ
0 ¼ 0:2Þ and (b) stronger fibers ðsð2Þ0 =s

ð1Þ
0 ¼ 5Þ. The SD of the stress components are normalized by the

equivalent macroscopic stress se, while the SD of the strain-rate components are normalized by the equivalent

macroscopic strain rate �e.
The corresponding standard deviations of the local fields in the fiber phase are shown in
Fig. 6a. (Part (b) will be discussed in the next subsection.) It can be seen that the FFT
results yield stress fluctuations in the fibers that are small, yet finite, in comparison with
those in the matrix phase (cf. Fig. 4b), for all values of m. On the other hand, the strain-
rate fluctuations are comparable to those in the matrix phase when m ¼ 1, and more
importantly, they are seen to increase significantly with decreasing m, becoming even larger
than those in the matrix phase (cf. Fig. 5b). Furthermore, they seem to be consistent with
unbounded strain-rate fluctuations in the perfectly plastic limit (the FFT results for m ¼ 0
yield very large strain-rate fluctuations in this phase as well). Such an increase of the strain
fluctuations in the fiber phase is due to the fact that, as the nonlinearity increases, the strain
rate also becomes localized in this (weaker) phase, as is discussed further below. In
contrast, the nonlinear homogenization estimates provided in this work require zero field
fluctuations in the fibers. The reason for this is that use has been made of the
Hashin–Shtrikman estimates to homogenize the associated LCCs, which assume that the
local fields are uniform and equal inside all the fibers, and this assumption carries over to
the nonlinear estimates. It should be emphasized, however, that this is a limitation
associated only with the linear HS estimates and not with the nonlinear homogenization
methods considered here. The fact that the strain-rate fluctuations in the FFT simulations
become very large for small values of m suggests that, for the class of microstructures
considered here, the linear HS estimates used in the context of the nonlinear
homogenization methods may be inappropriate as m! 0. In this connection, it is noted
that for strong nonlinearities, the LCC generated by the ‘‘second-order’’ method has highly
anisotropic phases, and the linear HS estimates, which are known to be accurate for CCA
microstructures with isotropic phases, may not give accurate predictions for composites
with CCA microstructures when the phases are that anisotropic, at least for the case of
weaker fibers. This could explain why the SO estimates and the FFT results provided in
this subsection are generally found to be in very good agreement for weak to moderate
nonlinearities, while for strong nonlinearities they are found to exhibit different trends. In
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particular, the fact that the SO estimates for the effective flow stress become larger than the
corresponding FFT results (see Fig. 3a) is consistent with the fact that the requirement of
uniform fields in the fiber phase implicit in the HS hypothesis should lead to a stiffer
macroscopic behavior, since, in a sense, it ‘‘prevents’’ the localization of the strain field in
the fibers. In turn, this suggests that a better correlation should be obtained by using the
‘‘second-order’’ method in combination with more appropriate linear homogenization
methods, or even by computing numerically the homogenized behavior of the LCC, as has
been recently done in combination with the ‘‘variational’’ method by Moulinec and Suquet
(2004).

Distribution of local fields. For a fuller understanding of the results discussed above,
maps of the local fields were generated from the FFT simulations. The maps provided in
this work correspond to a composite with the microstructure shown in Fig. 2, subject to in-
plane shear (30). Thus, in this case the ‘‘parallel’’ and ‘‘perpendicular’’ components of the
fields refer to those defined by expressions (31).
Fig. 7. Strain-rate distribution in a power-law composite with weaker fibers ðsð2Þ0 =s
ð1Þ
0 ¼ 0:2Þ, subjected to in-plane

shear s12. The microstructure is the one shown in Fig. 2. Distribution of the ‘‘parallel’’ component �12 � �
ðrÞ
12 when

(a) m ¼ 1 and (c) m ¼ 0:1; distribution of the ‘‘perpendicular’’ component ð�11 � �22Þ=2 when (b) m ¼ 1, (d)

m ¼ 0:1. The quantities are normalized by ð
ffiffiffi
3
p

=2Þ �e. Black and white correspond, respectively, to values smaller

than �2 and larger than 2.
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Fig. 7 provides maps of the components of the strain-rate field. Parts (a) and (c) show
the deviation in each phase of the ‘‘parallel’’ component about its phase average, that is,
�12ðxÞ � �

ð1Þ
12 in the matrix and �12ðxÞ � �

ð2Þ
12 in the fibers, while parts (b) and (d) show the

‘‘perpendicular’’ component ð�11 � �22Þ=2, which fluctuates about zero in both phases. In
turn, parts (a) and (b) correspond to the case of linear ðm ¼ 1Þ phases, while parts (c) and
(d) correspond to the case of highly nonlinear ðm ¼ 0:1Þ phases. These maps show the
changing character of the spatial distribution of the strain rate with nonlinearity. Thus, in
the linear case, the distributions of both components of the strain rate are rather diffuse
and exhibit similar degrees of heterogeneity (see parts (a) and (b)). This fact is manifested
by the isotropy of the strain-rate fluctuations mentioned in the context of Fig. 5b. In
contrast, the distributions of the ‘‘parallel’’ and ‘‘perpendicular’’ components of the strain
rate in the nonlinear case are much more heterogeneous and significantly different from
each other (see parts (c) and (d)). In this connection, it should be recalled that in nonlinear
composites the deformation rate can localize in bands, which may become progressively
thinner as the nonlinearity increases (see for example, Moulinec and Suquet, 1998). Across
such bands, the tangential component of the velocity field varies significantly, resulting in
large shear strain rate. More precisely, if the vectors t and n denote, respectively, the
directions tangential and normal to the band, then �tn increases with decreasing band
width, but not ð�nn � �ttÞ=2. Indeed, it can be seen in part (c) that the ‘‘parallel’’ component
of the strain localizes in (white) bands running across the specimen, which are found to
seek the (weaker) fibers, remaining at the same time as parallel as possible to the directions
of maximum macroscopic shear (0� and 90�). Thus, the macroscopic deformation rate is
being accommodated mainly by large deformation rates along these bands, outside of
which the deformation rate is relatively small. These localization bands are responsible for
the significant increase of SDðrÞð�kÞ observed in Figs. 5b and 6a. On the other hand, it can
be seen in part (d) that the ‘‘perpendicular’’ component of the strain rate is small wherever
the bands observed in part (c) are oriented at 0� and 90�. However, when the bands ‘‘bend’’
in order to accommodate the randomness of the distribution of fibers, this component is
also found to be very large, being positive (white) or negative (black) depending on the
local orientation of the band. Thus, the fact that all bands are not perfectly ‘‘aligned’’ with
the directions of maximum macroscopic shear in this case explains the significant increase
of SDðrÞð�?Þ observed in Figs. 5b and 6a. Nonetheless, the fluctuations of the ‘‘parallel’’
component of the strain rate are larger than those of the ‘‘perpendicular’’ component as a
consequence of the preferred orientation of the bands mentioned above. (In fact, the ratio
SDðrÞð�?Þ=SD

ðrÞ
ð�kÞ provides a measure of the tortuosity of the bands, for low enough

values of m, which is strongly dependent on the concentration of fibers.) Thus, by allowing
strain localization, nonlinearity not only increases significantly the strain-rate fluctuations,
but also induces anisotropy on them, even though the phases and their spatial distribution
are isotropic.
In the perfectly plastic limit, the localization bands can turn into shear bands, across

which the tangential component of the velocity field is discontinuous (Suquet, 1981). In
this connection, it is recalled that in the case of perfectly plastic porous composites with
periodic microstructures, the exact solution corresponds to shear bands passing through
the pores (Drucker, 1966), which is consistent with the localization bands observed in
Fig. 7c. In addition, it is noted that in the presence of shear bands, the fluctuations of
certain components of the strain rate may become unbounded. (In perfect plasticity, the
strain-rate tensor e is a bounded measure on O, and therefore, its integral is finite but its L2
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norm may become unbounded (Suquet, 1981).) As already mentioned, the FFT results for
the standard deviations of both components of the strain rate shown in Figs. 6b and 5b are
seen to increase at an increasing rate as m decreases. This strongly suggests that indeed the
strain-rate fluctuations should blow up in the perfectly plastic limit.

Fig. 8 provides the corresponding maps of the components of the stress field for the case
of highly nonlinear ðm ¼ 0:1Þ phases. Part (a) shows the deviation in each phase of the
‘‘parallel’’ component about its phase average, that is, s12ðxÞ � sð1Þ12 in the matrix and
s12ðxÞ � sð2Þ12 in the fibers, while part (b) shows the ‘‘perpendicular’’ component
ðs11 � s22Þ=2, which fluctuates about zero in both phases. In the linear case, the stress
components are simply equal to the corresponding strain-rate component multiplied by the
flow stress (constant within each phase), and so the maps of the stress are very similar to
those shown in Figs. 7a and b, and are omitted here. The important point to make,
however, is that, in the linear case, the distributions of both components of the stress also
exhibit similar degrees of heterogeneity, and this is manifested by the isotropy of the stress
fluctuations mentioned in the context of Fig. 4b. When the phases are nonlinear, on the
other hand, the distribution of the ‘‘perpendicular’’ component is seen to be more
heterogeneous than the that of the ‘‘parallel’’ component. In addition, the ‘‘parallel’’
component (part (a)) is seen to exhibit, in the matrix, a pattern similar to that of the strain
rate observed in Fig. 7c, but much less contrasted, taking the largest values along the
localization bands mentioned in the context of that figure. This is not surprising, since in
the perfectly plastic limit a necessary (local) condition for the development of a shear band
running at 0� or 90� is that sk ¼ sðrÞ0 . Note that while the strain rate is becoming
unbounded along these bands, the stress is becoming bounded by the flow stress in each
phase, as m! 0. This is why the strain-rate fluctuations shown in Figs. 5b and 6a blow up
as m! 0, whereas the stress fluctuations shown in Figs. 4b and 6a remain finite.

Histograms. Fig. 9 provides plots for the probability density functions of the
components of the local fields in the matrix. The clear and dark circles represent
the FFT results corresponding to the specific configuration shown in Fig. 2 (and not to the
Fig. 8. Stress distribution in a power-law composite with weaker fibers ðsð2Þ0 =s
ð1Þ
0 ¼ 0:2Þ, subjected to in-plane

shear s12. The microstructure is the one shown in Fig. 2. Distribution for m ¼ 0:1 of the (a) ‘‘parallel’’ component

s12 � sðrÞ12 , and (b) ‘‘perpendicular’’ component ðs11 � s22Þ=2. The quantities are normalized by se=
ffiffiffi
3
p

. Black and

white correspond, respectively, to values smaller than �1 and larger than 1.
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Fig. 9. FFT results for the probability density functions of the local fields for the case of weaker fibers, associated

with the microstructure shown in Fig. 2. The clear and dark circles correspond, respectively, to exponents m ¼ 1

and m ¼ 0:1. The continuous and dashed lines represent, respectively, the Gaussian distributions whose mean and

standard deviation are those obtained from the FFT simulations for m ¼ 1 and m ¼ 0:1. Distributions of (a)

‘‘parallel’’ ðsk=seÞ and (b) ‘‘perpendicular’’ ðs?=seÞ components of the stress, (c) ‘‘parallel’’ ð�k=�eÞ and (d)

‘‘perpendicular’’ ð�?=�eÞ components of the strain rate.
ensemble averages) with linear ðm ¼ 1Þ and highly nonlinear ðm ¼ 0:1Þ phases, respectively.
In addition, the continuous and dashed lines represent, respectively, Gaussian distributions
whose mean and standard deviations are those obtained from the FFT simulations for
m ¼ 1 and m ¼ 0:1, which are included in order to verify the possible Gaussian character
of the field distributions.
Parts (a) and (b) show, respectively, the distributions of the ‘‘parallel’’ and

‘‘perpendicular’’ components of the stress normalized by the equivalent macroscopic
stress se (as given by expressions (34) with z ¼ sk=se and z ¼ s?=se). We begin by noting
that in the linear case (clear circles), the distributions of both components of the stress are
in very good agreement with the corresponding Gaussian distributions (continuous lines).
(In this connection, it should be mentioned that while the Gaussian distributions vanish
only at infinity, the distributions of the local fields vanish at finite values, which correspond
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to the maximum and minimum values that the fields take in the composite.) In addition,
the distributions of both components are seen to be fairly similar to each other, except for
a shift in abscissa, which is manifested by the isotropy of the stress fluctuations mentioned
in the context of Fig. 4b. In the nonlinear case, on the other hand, while the distribution of
the ‘‘perpendicular’’ component remains fairly Gaussian, the distribution of the ‘‘parallel’’
component is seen to become skewed to the right and to drop to zero rather abruptly for
values of sk=se larger than the mean. The latter is a manifestation of the fact that in the
limiting case of perfect plasticity ðm! 0Þ, the stress components become bounded by
the requirement s2e ¼ s2k þ s2?pðs

ðrÞ
0 Þ

2. Although this restriction applies to both stress
components, the fact that only the distribution of the ‘‘parallel’’ component exhibits an
abrupt drop follows from the fact that, unlike the ‘‘perpendicular’’ component, its mean
value is greater than zero and therefore closer to the bound that develops in the limit
m! 0.

Parts (c) and (d) show, respectively, the corresponding distributions of the ‘‘parallel’’
and ‘‘perpendicular’’ components of the strain rate, normalized by the equivalent
macroscopic strain rate �e (as given by expressions (34) with z ¼ �k=�e and z ¼ �?=�e). In
the linear case, the distributions of the strain-rate components are similar to those of the
corresponding stress components, and therefore similar observations apply. Thus, the
distributions of both strain-rate components (clear circles) are also found to be in good
agreement with the corresponding Gaussian distributions (continuous lines). In the
nonlinear case, on the other hand, the distributions of the ‘‘parallel’’ and ‘‘perpendicular’’
components (dark circles) are found to be very different from the corresponding Gaussian
distributions (dashed lines). In particular, the distribution of the ‘‘parallel’’ component is
seen to be highly skewed to the left with respect to its mean, being maximum at �k=�e � 0
and exhibiting an abrupt drop for smaller values of �k=�e (see part (c)). In addition, this
distribution is found to develop a tail in the range of large values of �k=�e. In contrast, the
distribution of the ‘‘perpendicular’’ component is found to remain symmetric about its
mean, but it becomes more concentrated close to �?=�e ¼ 0 than in the linear case, and it
develops tails in the range of large values of j�?=�ej. The tails developed by the strain-rate
distributions correspond to the presence of very large strain rates in very small regions, i.e.
localization bands, and the fact that these distributions are maximum at approximately 0
means that the deformation rate is relatively small for most regions (in the matrix) outside
the bands. Thus, as the nonlinearity increases, the strain-rate distributions, especially that
of the ‘‘parallel’’ component, progressively deviate further from a Gaussian distribution,
due to the development of strain localization. It is worth noting that the reasons why the
field distributions become non-Gaussian with nonlinearity are different for the strain rate
than for the stress fields, and that the former is seen to be more sensitive in this regard than
the latter.

6.2. Fiber-reinforced composites

Effective behavior. The various bounds and estimates for the effective flow stress es0 of a
fiber-reinforced composite are plotted in Fig. 3b, together with the FFT results as a
function of the strain-rate sensitivity m, normalized by the flow stress of the matrix sð1Þ0 .
The main observation in the context of this figure is that the SO estimates are found to be
in good agreement with the FFT simulations, even for the smaller values of m. Thus, both
methods yield a decreasing es0 with decreasing values of m (i.e., increasing nonlinearity),
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and in the perfectly plastic limit ðm! 0Þ they predict no reinforcement effect due to the
stronger fibers, i.e. es0 ¼ sð1Þ0 . As pointed out by Drucker (1966), this is the correct limit if
the arrangement of fibers allows for a shear plane passing through the matrix (see below
for more details). Furthermore, this coincides with the Reuss lower bound, which is known
to be optimal in this limit in 2D (see Garroni et al., 2001; Suquet, 2005). Also included in
this figure are the ‘‘tangent second-order’’ (TSO) estimates and the‘‘variational’’ (VAR)
estimates. As already mentioned, the latter are rigorous upper bounds for all other
nonlinear estimates of the HS type, and in particular for the SO and TSO estimates.
Several comments are in order. First, the homogenization estimates all coincide for m ¼ 1
with the linear HS estimates, as they should, but give different predictions for other values
of m. However, the SO and TSO estimates are found to be very similar for all values of m

in this case, and they coincide not only for m ¼ 1 but also for m ¼ 0. Thus the TSO
estimates are also in good agreement with the FFT results in this case. The ‘‘variational’’
estimates, on the other hand, are found to overestimate the FFT results for all values of m

different than 1, and they even give a finite reinforcement effect in the limit m! 0. It is
further observed that, as anticipated, the TSO estimates exhibit a duality gap, but as
opposed to what happens in the case of fiber-weakened composites, this gap is seen to be
small for all values of m, and even vanishes in the perfectly plastic limit. In contrast, the SO
estimates (11) and (13) are exactly equivalent for all values of m. Finally, it is noted that the
scatter exhibited by the FFT results is found to be very small in this case as well.

Statistics of the local fields. Corresponding estimates for the phase averages and
standard deviations of the stress field are shown in Fig. 10. Part (a) provides plots for the
equivalent average stresses seðrÞ in each phase, normalized by the equivalent macroscopic
stress se. It can be seen in this figure that the FFT results show an average stress in the
(stronger) fibers that is always higher than that in the matrix, as expected. However, the
former is seen to decrease with increasing nonlinearity, while the latter is seen to increase,
until they both coincide with se in the perfectly plastic limit. Among the homogenization
estimates, the SO estimates are the most consistent ones with the FFT simulations, the
agreement being good for all values of m. The TSOðUÞ estimates are found to give similar
Fig. 10. Statistics of the stress field for the case of stronger fibers. (a) Equivalent average stresses in the matrix

ðseð1ÞÞ and fibers ðseð2ÞÞ. (b) Standard deviation (SD) of the ‘‘parallel’’ and ‘‘perpendicular’’ components of the

stress field in the matrix. The results are normalized by se.
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predictions, and even coincide with the SO estimates as m! 0, as anticipated in the
previous paragraph. In contrast, the trends exhibited by the ‘‘variational’’ estimates are
seen to be inconsistent with the FFT results. Part (b) shows plots for the standard
deviations of the ‘‘parallel’’ and ‘‘perpendicular’’ components of the stress in the matrix,
normalized by the equivalent macroscopic stress se. The main observation in the context of
this figure is that, like in the previous subsection, the FFT simulations are found to give
stress fluctuations that are isotropic in the linear case and become progressively more
anisotropic as the nonlinearity increases, being larger for the ‘‘perpendicular’’ component
than for the ‘‘parallel’’ component. However, unlike what happens in a fiber-weakened
composite (cf. Fig. 4b), both the ‘‘parallel’’ and the ‘‘perpendicular’’ fluctuations are found
to decrease for values of m smaller than about 0.3, almost vanishing in the perfectly plastic
limit. It can be seen that the SO estimates are consistent with these observations, being in
good agreement with the FFT results for all values of m. Note that in the limit m! 0 these
estimates predict vanishing fluctuations, which, together with the fact that seð1Þ ¼ seð2Þ ¼
se (see part (a)), implies that the stress field tends to become uniform throughout the
composite. It is further observed that the TSOðUÞ estimates exhibit the same trends as the
FFT results, but they are not as close in general to them as the SO estimates. Finally,
the ‘‘variational’’ estimates are seen to overestimate the stress fluctuations for all values of
m different than 1, and more importantly, they predict isotropic stress fluctuations for all
values of m, thus being, once again, inconsistent with the FFT simulations.

Fig. 11 provides corresponding estimates for the phase averages and standard deviations
of the strain-rate field. In part (a), plots are given for the equivalent average strain rate �e

ðrÞ

in each phase, normalized by the equivalent macroscopic strain rate �e. It is observed in
this figure that all homogenization estimates are in very good agreement with the FFT
simulations, for all values of m. Thus, all methods are seen to predict an average strain rate
in the (stronger) fibers which is lower than that in the matrix, and that decreases with
decreasing m, until it vanishes in the limit m! 0. Thus in this limit, the fibers behave like
rigid inclusions. This is related to the well-known fact that nonlinearity enhances the
Fig. 11. Statistics of the strain-rate field for the case of stronger fibers. (a) Equivalent average strain rates in the

matrix ð�e
ð1ÞÞ and fibers ð�e

ð2ÞÞ. (b) Standard deviation (SD) of the ‘‘parallel’’ and ‘‘perpendicular’’ components of

the strain-rate field in the matrix. The results are normalized by �e.
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contrast between the phases. In part (b), plots are given for the standard deviations of the
strain-rate field in the matrix, normalized by the equivalent macroscopic strain rate �e. It is
observed that, like in the case of fiber-weakened composites, the FFT simulations show
strain-rate fluctuations which are isotropic in the linear case, and become progressively
more anisotropic as the nonlinearity increases, being larger for the ‘‘parallel’’ component
than for the ‘‘perpendicular’’ one. Moreover, the ‘‘parallel’’ fluctuations are seen to
increase monotonically with nonlinearity here as well. However, unlike what happens in
fiber-weakened composites, the ‘‘perpendicular’’ fluctuations are found to increase slightly
in the range 0:3pmp 1, and decrease for smaller values of m. It can be seen that the SO
estimates are consistent with these observations. Furthermore, it is seen that the SO
estimates for the ‘‘parallel’’ strain-rate fluctuations are in good agreement with the FFT
results for all values of m. On the other hand, the agreement may not be as good for the
‘‘perpendicular’’ strain-rate fluctuations, quantitatively, but the trends exhibited by both
sets of results are seen to be fully consistent. It is also noted that, as m! 0, the SO
estimates predict infinite and vanishing strain-rate fluctuations in the ‘‘parallel’’ and
‘‘perpendicular’’ directions, respectively, which is consistent with strain localization along
straight shear bands, as discussed below. It is further observed that the TSOðW Þ estimates
are almost identical to the SO estimates for all values of m, so that the previous comments
apply to these estimates as well. In contrast, the ‘‘variational’’ estimates are found to
predict a slight increase of the strain-rate fluctuations with increasing nonlinearity, but
more importantly, they predict, once again, isotropic strain-rate fluctuations for all values
of m, which is inconsistent with the FFT simulations.
The corresponding standard deviations of the local fields in the fiber phase are shown in

Fig. 6b. It can be seen that, unlike for the case of weaker fibers, the FFT simulations give
stress fluctuations that are comparable to those in the matrix phase when m ¼ 1, and
increase with increasing nonlinearity, becoming even larger than the stress fluctuations in
the matrix phase for moderate nonlinearities. However, they decrease significantly as
m! 0, which together with the FFT results for the stress phase averages and fluctuations
in the matrix (cf. Fig. 10) indicates that the stress field is quite uniform (and approximately
equal to the macroscopic stress) in the perfectly plastic limit throughout the composite. On
the other hand, the strain-rate fluctuations in the fiber phase are much smaller than those
in the matrix phase (cf. Fig. 11b), for all values of m, and decrease with increasing
nonlinearity. This is a consequence of the fact that, opposite to what happens in the case of
weaker fibers, no strain localization occurs in the fibers when these are stronger than the
matrix (see further below). The fact that the fluctuations of the local fields shown in Fig. 6b
tend to be relatively small as m! 0 may explain why the SO predictions based on the HS
estimates for the LCC are in better agreement with the FFT results in this case than in the
case of weaker fibers, where the strain-rate fluctuations in the fiber phase increase
significantly for small values of m, and are therefore inconsistent with the HS hypothesis.

Distribution of local fields. Fig. 12 provides maps of the strain-rate field generated from
the FFT simulations, for a composite with the microstructure shown in Fig. 2, for the case
of highly nonlinear ðm ¼ 0:1Þ phases, subjected to in-plane shear (30). Part (a) shows the
deviation in each phase of the ‘‘parallel’’ component about its phase average, that is,
�12ðxÞ � �12

ð1Þ in the matrix and �12ðxÞ � �12
ð2Þ in the fibers, while part (b) shows the

‘‘perpendicular’’ component ð�11 � �22Þ=2, which fluctuates about zero in both phases. The
corresponding maps for the linear case ðm ¼ 1Þ are, for the purposes of the comparisons of
interest here, qualitatively similar to those shown in Figs. 7a and b for fiber-weakened
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Fig. 12. Strain-rate distribution in a power-law composite with stronger fibers ðsð2Þ0 =s
ð1Þ
0 ¼ 5Þ, subjected to in-

plane shear s12. The microstructure is the one shown in Fig. 2, and the exponent is m ¼ 0:1. Distribution of the (a)

‘‘parallel’’ component �12 � �
ðrÞ
12 , and (b) ‘‘perpendicular’’ component ð�11 � �22Þ=2. The quantities are normalized

by ð
ffiffiffi
3
p

=2Þ �e. Black and white correspond, respectively, to values smaller than �2 and larger than 2.
composites, and are therefore omitted for brevity. Several comments are relevant in the
context of this figure. First, as it has already been observed in the case of weaker fibers,
while in the linear case the distributions of both components of the strain rate are rather
diffuse and exhibit similar degrees of heterogeneity, in the nonlinear case the distributions
of the ‘‘parallel’’ and ‘‘perpendicular’’ components are much more heterogeneous and
significantly different from each other. As already explained in the previous subsection,
this is due to the fact that for nonlinear materials the deformation rate tends to localize in
thin bands running across the specimen. However, unlike what happens for the case of
weaker fibers, these localization bands are found here to avoid the (stronger) fibers,
remaining at the same time as parallel as possible to the directions of maximum
macroscopic shear (0� and 90�). This is the reason why in this case the strain-rate
fluctuations, shown in Figs. 11b and 6b, while increasing in the matrix with increasing
nonlinearity, actually decrease in the fibers. In addition, it is observed that, as for the case
of weaker fibers, the bands tend to ‘‘bend’’ in order to accommodate the randomness of the
distribution of fibers, but they remain straighter than when they seek the fibers (at least at
this concentration of fibers). This fact helps explain why the ‘‘perpendicular’’ component
shown in Fig. 12b is not as localized as that shown in Fig. 7d. In fact, the trend exhibited
by the FFT results for SDð1Þð�?Þ shown in Fig. 11b suggests that the fluctuations of the
‘‘perpendicular’’ component of the strain rate in the matrix actually decrease for smaller
values of m, unlike in the case of weaker fibers (cf. Fig. 6b).

In order to put these results in context, it is useful to recall the following result for ideally
plastic materials reinforced by stronger fibers (Drucker, 1966; Suquet, 1993): if the
arrangement of the fibers in the composite is such that it is possible to pass (straight) planes
through the matrix that are aligned with the shear loading, then the exact result
corresponds to straight shear bands along these planes. In this case, the effective flow stresses0 would be exactly that of the matrix, as it has already been mentioned. In addition, the
corresponding strain-rate fluctuations in the matrix would be such that SDð1Þð�kÞ ! 1 and
SDð1Þð�?Þ ! 0, while the strain rate in the fibers would be exactly zero. Also, the stress field
27



would be uniform throughout the composite. Now, it is observed that the trends seen for
the ‘‘second-order’’ HS predictions in the limit as m! 0 are entirely consistent with this
result (regardless of the concentration of fibers). On the other hand, for the specific random
microstructures considered in the FFT simulations, the probability of finding such
(straight) shear planes is expected to be small at relatively small fiber concentrations, and
to vanish at sufficiently high fiber concentrations. Indeed, at the intermediate volume
fraction considered here ð0:20626Þ, many realizations of the composite do not allow for
such straight shear planes, and therefore the above-mentioned results cannot be expected
to apply. This is the reason why the FFT results do not agree precisely with the ‘‘second-
order’’ HS estimates in the ideally plastic limit. However, the fact that, at this volume
fraction, nearly straight bands can develop explains why the FFT results are still in fairly
good agreement with the ‘‘second-order’’ HS estimates in this case.
Fig. 13 provides the corresponding maps of the stress field for the case of highly

nonlinear ðm ¼ 0:1Þ phases. Part (a) shows the deviation of the ‘‘parallel’’ component in
each phase about its phase average, that is, s12ðxÞ � sð1Þ12 in the matrix and s12ðxÞ � sð2Þ12 in
the fibers, while part (b) shows the ‘‘perpendicular’’ component ðs11 � s22Þ=2, which
fluctuates about zero in both phases. It is recalled that in the linear case, the maps of the
stress are qualitatively similar to those of the strain shown in Figs. 7a and b, and are
omitted here. The important point to make, though, is that, when the phases are linear, the
distribution of both components of the stress also exhibit similar degrees of heterogeneity,
and this is manifested by the isotropy of the stress fluctuations shown in Fig. 10b. On the
other hand, when the phases are nonlinear, the distributions of the ‘‘parallel’’ and
‘‘perpendicular’’ components of the stress are found to be very different from each other.
In particular, the ‘‘parallel’’ component shown in part (a) is seen to be quite homogeneous
throughout the specimen. In fact, as m! 0 it becomes progressively more homogeneous,
tending to the flow stress of the matrix everywhere. Note that this level of stress is large
enough to produce localization bands in the matrix, but does not produce any deformation
in the (stronger) fibers (cf. Figs. 12c and d). In contrast, the distribution of the
Fig. 13. Stress distribution in a power-law composite with stronger fibers ðsð2Þ0 =s
ð1Þ
0 ¼ 5Þ, subjected to in-plane

shear s12. The microstructure is the one shown in Fig. 2, and the exponent is m ¼ 0:1. Distribution of the (a)

‘‘parallel’’ component s12 � sðrÞ12 , and (b) ‘‘perpendicular’’ component ðs11 � s22Þ=2. The quantities are normalized

by se=
ffiffiffi
3
p

. Black and white correspond, respectively, to values smaller than �0:68 and larger than 0:68.
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‘‘perpendicular’’ component exhibits a much more heterogeneous and complicated
pattern, especially in the matrix. We do not have an explanation for such a pattern. In
any event, the differences between these distributions is what gives rise to the anisotropy of
the stress fluctuations mentioned in the context of Fig. 10b (for m ¼ 0:1). Finally, it is also
noted that both components of the stress are seen to exhibit a ‘‘cross’’ pattern inside the
fibers, but this could be an artifact of the numerical simulations related to the ‘‘pixelation’’
of the fiber boundaries.

Histograms. Fig. 14 provides plots for the probability density functions of the
components of the local fields in the matrix. The clear and dark circles represent the
FFT results corresponding to the specific configuration shown in Fig. 2 (and not ensemble
averages) with linear ðm ¼ 1Þ and highly nonlinear ðm ¼ 0:1Þ phases, respectively. In
addition, the continuous and dashed lines represent, respectively, Gaussian distributions
Fig. 14. FFT results for the probability density functions of the local fields for the case of stronger fibers,

associated with the microstructure shown in Fig. 2. The clear and dark circles correspond, respectively, to

exponents m ¼ 1 and m ¼ 0:1. The continuous and dashed lines represent, respectively, the Gaussian distributions

whose mean and standard deviation are those obtained from the FFT simulations for m ¼ 1 and m ¼ 0:1.
Distributions of (a) ‘‘parallel’’ ðsk=seÞ and (b) ‘‘perpendicular’’ ðs?=seÞ components of the stress, (c) ‘‘parallel’’

ð�k=�eÞ and (d) ‘‘perpendicular’’ ð�?=�eÞ components of the strain rate.
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whose mean and standard deviation are those obtained from the FFT simulations for
m ¼ 1 and m ¼ 0:1.
Parts (a) and (b) show, respectively, the distributions of the ‘‘parallel’’ and

‘‘perpendicular’’ components of the stress normalized by the equivalent macroscopic
stress se. As in the case of weaker fibers, when the phases are linear, the distributions of
both components of the stress (clear circles) are found to be in very good agreement with
the corresponding Gaussian distributions (continuous lines). In addition, both distribu-
tions are seen to be very similar to each other, which is manifested by the isotropy of the
stress fluctuations mentioned in the context of Fig. 10b. When the phases are nonlinear, on
the other hand, the distributions of both components of the stress (dark circles) are seen to
be very different from each other. Thus, it is observed that, as for the case of weaker fibers,
the distribution of the ‘‘parallel’’ component of the stress is in disagreement with the
corresponding Gaussian distribution (see part (a)), while the ‘‘perpendicular’’ component
remains in good agreement with the corresponding Gaussian distribution (see part (b)). As
already mentioned in the context of Fig. 9, this is due to the fact that in the limiting case of
perfect plasticity ðm! 0Þ, the stress becomes bounded by the requirement s2epðs

ðrÞ
0 Þ

2.
Parts (c) and (d) show, respectively, the corresponding distributions of the ‘‘parallel’’

and ‘‘perpendicular’’ components of the strain rate, normalized by the equivalent
macroscopic strain rate �e. It can be seen that while in the linear case the distributions of
the ‘‘parallel’’ and ‘‘perpendicular’’ components of the strain rate are seen to be fairly
Gaussian, in the nonlinear case they are found to be very different from the corresponding
Gaussian distributions. More specifically, the distribution of the ‘‘parallel’’ component is
seen to become skewed to the left with respect to its mean, and to develop a tail for large
values of �k=�e (see part (c)). In contrast, the ‘‘perpendicular’’ component is seen to remain
fairly symmetric with respect to its mean, becoming more concentrated at �?=�e ¼ 0 than
in the linear case, and to develop tails in the range of large values of j�?=�ej (see part (d)).
As already pointed out in the context of weaker fibers, these tails are due to the presence of
strain localization bands, since the bands represent thin regions where the strain rate takes
very large values. However, unlike what is observed in the case of weaker fibers, the
distribution of the ‘‘parallel’’ component exhibits a maximum at �k=�e � 1, as opposed to
� 0 (cf. Fig. 9c). This means that, while the strain rate in most regions outside the
localization bands is relatively small when the fibers are weaker than the matrix, it is
approximately equal to the macroscopic strain rate when the fibers are stronger than the
matrix, at least at these values of the strain-rate sensitivity and fiber concentration. This
may be related to the fact that the localization bands tend to be more uniformly distributed
in the matrix phase for the case of stronger fibers than for the case of weaker fibers, where
the bands choose fewer paths through the matrix (see Figs. 7c and 12c). Finally, it is noted
that, like in the case of weaker fibers, the strain-rate distributions are seen to be much more
sensitive to nonlinearity than the stress distributions, in the sense that they deviate more
significantly from the corresponding Gaussian distributions.

7. Conclusions

This paper has presented a combined numerical-theoretical study of the macroscopic
behavior and local field distributions for a special class of nonlinear composite materials
with random ‘‘particulate’’ microstructures. The numerical simulations were carried out
using the FFT method developed by Moulinec and Suquet (1994, 1998), and have the
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advantage of leading to (numerically) exact results, as well as to complete information on
the field distributions, at least at the level of one realization of the microstructure.
Information on the statistics of the fields were obtained by performing ensemble averages
over several different realizations. The theoretical results were obtained by means of the
‘‘second-order’’ homogenization method, proposed by Ponte Castañeda (2002a), making
use of suitably chosen estimates for the effective behavior of a linear comparison composite

(LCC) whose properties are determined by the method itself. The main advantage of the
method is that the resulting estimates are analytical, up to some nonlinear algebraic
equations, which can be solved numerically with negligible computational effort. On the
other hand, the theoretical predictions introduce approximations both at the level of the
estimate for the effective behavior of the LCC, as well as at the level of the linearization
itself. The main findings of this work are as follows.

The fluctuations of the strain-rate and stress fields, as measured by the standard
deviations of these quantities, were found to generally increase and to become anisotropic,
with increasing nonlinearity (decreasing values of strain-rate sensitivity m), in agreement
with earlier theoretical predictions using the ‘‘second-order’’ method (Ponte Castañeda,
2002b; Idiart and Ponte Castañeda, 2003). More specifically, for the case of softer
particles, the FFT simulations show that both the ‘‘parallel’’ and ‘‘perpendicular’’
components of the fluctuations of the strain-rate field tend to increase, with the parallel
component increasing faster than the perpendicular component, and tending to become
unbounded in the ideally plastic limit ðm ¼ 0Þ. These results were found to be consistent
with the localization of the deformation pattern in the strongly nonlinear composite, where
the localization bands ‘‘bend’’ seeking out minimum dissipation paths through the softer
inclusions (see Fig. 7). In this case, the fluctuations of the corresponding stress field were
also found to increase with increasing nonlinearity, with the difference that this time the
perpendicular components of the fluctuations were found to be larger, and that the
fluctuations remain bounded in the ideally plastic limit. For the harder-particle case,
similar trends were observed for the strain-rate and stress fluctuations, but this time the
perpendicular component of the strain-rate, as well as of both components of the stress,
tends to become smaller for sufficiently low values of the strain-rate sensitivity parameter.
These observations were thought to be related to the fact that, contrary to the softer-
particle case, in the harder-particle case, the localized bands tend to avoid the particles and
develop in the gaps between the inclusions (see Fig. 12). For the relatively low
concentration of fibers considered in this study (approximately 20%), the macroscopic
deformation can be accommodated by nearly straight bands, requiring large fluctuations in
the parallel component of the strain rate, but relatively smaller fluctuations in the
perpendicular component of the strain rate, as well as for both components of the stress.

Even though the ‘‘second-order’’ method, being only a homogenization theory, is not
able to capture detailed information about the distribution of the local fields in the
composites, it was found that the method gives remarkably accurate predictions not only
for the averages of the stress and strain-rate fields in the phases, but also for the standard
deviations of the fields in the composite, including the above-mentioned strong dependence
of the anisotropy of the fields on the nonlinearity of the material. Even though the
‘‘second-order’’ method could never mimic the highly localized patterns of deformation
shown in Figs. 7 and 12, somehow it is able to capture the signature of these localized fields
through fairly accurate predictions for the standard deviations of the fields. Thus, the
‘‘second-order’’ predictions are consistent with the fact that the parallel component of the
31



strain rate localizes more than the corresponding perpendicular component, as well as with
the opposite prediction that the perpendicular component of the stress fluctuates more
than the corresponding parallel component. The theoretical predictions even reflect the
more subtle relative differences between the deformation and stress patterns for the softer-
and harder-particle cases.
As already anticipated in an earlier publication (Moulinec and Suquet, 2003), the FFT

results (see Figs. 9 and 14) show that the probability distributions of the fields (in the
matrix phase) become progressively distorted away from Gaussian with increasing
nonlinearity. This suggests that the ‘‘second-order’’ homogenization theory using a linear
comparison composite—and therefore incorporating only information on the first and
second moments of the fields—would not be able to capture the higher moments required
to explain the strongly non-Gaussian behavior for the higher nonlinearities. However, the
theory somehow does the best it can with the information that it has at its disposal, and it
would seem that the higher moments which would be required to capture accurately the
non-Gaussian distribution of the fields are perhaps not essential to obtain fairly accurate
estimates for the first two moments of the fields (except perhaps in the ideally plastic limit).
An additional observation in the context of the probability distributions is that while the
distributions of some of the components of the fields become strongly non-Gaussian with
increasing nonlinearity, as expected, other components actually remain fairly Gaussian.
Thus, the parallel component of the stress becomes skewed to the right, which can be
explained by the fact that the stress develops a bound with increasing nonlinearity, while
the parallel component of the strain-rate becomes skewed to the left, which can be
explained by the fact that the strain-rate field localizes and hence develops a long tail for
large values of the strain rate. On the other hand, the perpendicular component of the
stress is found to remain fairly Gaussian even for a relatively low value of m (0.1), while the
perpendicular component of the strain rate is fairly symmetric, and although strictly not
Gaussian, a Gaussian would not be a bad approximation.
As already mentioned, the ‘‘second-order’’ method appears to give fairly accurate

estimates for the first and second moments of the stress and strain-rate fields. In addition,
the ‘‘second-order’’ estimates for the macroscopic behavior also appear to be quite good.
Of course, the agreement is not perfect, especially for the stronger nonlinearities, and it is
generally better for the harder-particle case than for the softer-particle case, which appears
to be more sensitive. The worse agreement for the softer-particle case than for the harder-
particle case is probably related to the fact that the field fluctuations generated by the FFT
simulations in the inclusion phase are much larger (in relative terms) for the softer-particle
case. This fact is inconsistent with the assumption that the fluctuations are small (in fact,
vanish) implicit in the use of the HS estimates to estimate the effective behavior of the LCC
(for use with the ‘‘second-order’’ method). Indeed, the fact that the deformation fields
localize in bands that tend to go through the inclusion phase in the softer-particle case
implies that the fields are forced to fluctuate significantly in the inclusion phase. Therefore,
in retrospect, the use of the HS approximation for the LCC in the softer-particle case is
probably not fully justified, at least for strong nonlinearities. In this connection, it is
important to emphasize that the choice of the HS approximation is strictly appropriate in
the context of the composite cylinder assemblage (CCA) microstructure only for linear
systems with isotropic phases. In fact, the LCC used to estimate the effective behavior of
the nonlinear composite has anisotropic phases, and so the use of the HS approximation is
not necessarily justified a priori. On the other hand, the fact that the ‘‘second-order’’
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estimates for the harder-particle case, where the HS estimates for the LCC are more
appropriate (because the fluctuations in the fibers are smaller in this case), suggest that the
‘‘second-order’’ method itself has the capability of giving good estimates for the effective
behavior and field fluctuations in the nonlinear composite, provided that sufficiently
accurate estimates are available for the LCC. This suggests that improved ‘‘second-order’’
estimates could be generated for the softer-particle case if use is made of more appropriate
estimates for the effective behavior of the LCC. One possibility, which will be left for
future work, is to estimate numerically the exact effective behavior of the LCC, and to
generate improved estimates for the effective behavior of the nonlinear composite still
using the ‘‘second-order’’ method. This type of comparison is certainly feasible, and has
already been attempted in earlier work (Moulinec and Suquet, 2004) in connection with the
variational approximation.

Now, if the differences observed between the ‘‘second-order’’ predictions and the FFT
simulations at the larger nonlinearities could be largely attributed to inaccuracies
associated with the computation of the effective behavior of the LCC, this would suggest
that the ‘‘second-order’’ method has the capability to give fairly accurate predictions not
only for the first and second moments of the local fields, but also for the macroscopic
behavior. Since, in principle, the macroscopic behavior of a nonlinear composite would be
expected to also depend on the higher moments of the fields, it would follow that the
effective behavior of such nonlinear composite systems is controlled primarily by the first
two moments of the fields (which is the only information available to the ‘‘second-order’’
method making use of an LCC). If this observation were confirmed by more careful
comparisons between the ‘‘second-order’’ estimates and full-field simulations, it could help
explain why the ‘‘second-order’’ estimates for the macroscopic behavior turn out to be so
good, at least for this class of microstructures.

Concerning comparisons of the ‘‘second-order’’ estimates with earlier types of estimates,
it has been found that the ‘‘second-order’’ estimates are the most accurate in an overall
sense. In particular, the variational method (Ponte Castañeda, 1991), or modified secant
method (Suquet, 1995), leads to qualitatively incorrect predictions for the phase averages
and standard deviations of the field fluctuations in the phases. Thus, for example, it gives
rather inaccurate predictions for the phase averages of the strain-rate field in the softer-
particle case, while it gives inaccurate predictions for the phase averages of the stress field
in the harder-particle case. It also misses out the strong dependence of the field fluctuations
on nonlinearity, including the pronounced anisotropy of the fluctuations, which can be
attributed to the use of an LCC with local isotropic behavior (in the variational method).
The variational predictions for the macroscopic behavior are also less accurate than the
corresponding ‘‘second-order’’ predictions, although they have the redeeming feature that
they provide bounds, while the ‘‘second-order’’ predictions do not. While the earlier
‘‘tangent second-order’’ estimates (Ponte Castañeda, 1996) are only slightly less accurate
than the more recent ‘‘second-order’’ estimates (Ponte Castañeda, 2002a) for the harder-
particle case, the ‘‘tangent second-order’’ estimates are clearly less accurate for the softer-
particle case. Thus, while the ‘‘tangent second-order’’ estimates give very good predictions
for weak nonlinearities, they become progressively less accurate, and can also give
qualitatively incorrect predictions for large values of the nonlinearity. In addition, the
‘‘tangent’’ predictions for the effective behavior exhibit a large duality gap in the ideally
plastic limit, which can be associated with the large fluctuations that develop in the fields in
this case. It should also be emphasized that the ‘‘second-order’’ estimates derived in this
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work make use of a different choice for the ‘‘reference tensor’’ than the one proposed
originally by Ponte Castañeda (2002a), and used by Idiart and Ponte Castañeda (2003).
This new choice for the ‘‘reference tensor’’ appears to give improved results, in the sense
that it gives better overall agreement with the numerical results, but the optimal choice of
this variable remains an open problem.
Finally, it should be mentioned that similar comparisons between full-field simulations

and homogenization estimates for the macroscopic behavior and field fluctuations in a
special class of two-dimensional viscoplastic polycrystals have been carried out recently by
Lebensohn et al. (2004) (see also Bhattacharya and Suquet, 2005). In that work, use was
made of the standard self-consistent approximation for the LCC, which is better suited to
‘‘granular’’ microstructures. However, the conclusions of that work are entirely consistent
with the conclusions of the present work, in that it was also found in the polycrystalline
work that the ‘‘second-order’’ estimates improved—often in qualitative terms—on earlier
types of homogenization estimates, and that these estimates are rather accurate when
compared to full-field numerical simulations. Given the fact that the ‘‘second-order’’
method appears to give accurate estimates for these two rather different but also special
types of composites, it is conjectured that the method may also lead to accurate results for
even more general types of composites.
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Ponte Castañeda, P., 2002b. Second-order homogenization estimates for nonlinear composites incorporating field

fluctuations: II—Applications. J. Mech. Phys. Solids 50, 759–782.
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Suquet, P., Ponte Castañeda, P., 1993. Small-contrast perturbation expansions for the effective properties of

nonlinear composites. C. R. Acad. Sci. Paris II 317, 1515–1522.

Talbot, D.R.S., Willis, J.R., 1985. Variational principles for inhomogeneous nonlinear media. IMA J. Appl.

Math. 35, 39–54.

Taylor, G.I., 1938. Plastic strain in metals. J. Inst. Metals 62, 307–324.

Willis, J.R., 1983. The overall response of composite materials. ASME J. Appl. Mech. 50, 1202–1209.
35


	Macroscopic behavior and field fluctuations in viscoplastic composites: Second-order estimates versus full-field simulations
	Introduction
	Preliminaries on viscoplastic composites
	Second-order variational estimates
	Estimates for the effective behavior
	Statistics of the local fields

	A numerical method based on the fast Fourier transform
	Elasto-viscoplastic problem
	Time integration of the constitutive relations

	Two-phase, power-law, fiber composites
	Results and discussion
	Fiber-weakened composites
	Fiber-reinforced composites

	Conclusions
	Acknowledgements
	References




