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Multi-scale finite-strain plasticity model
for stable metallic honeycombs

incorporating microstructural evolution

Dirk Mohr

Impact and Crashworthiness Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA

Department of Mechanics, CNRS UMR 7649, Ecole Polytechnique, Palaiseau, France

This paper deals with the development of a mechanism-based two-scale constitutive model for 
thick-walled metallic honeycombs in sandwich applications. The mechanical response of metallic 
honeycomb sandwich sheets subject to large in-plane normal loading and out-of-plane shear loading 
is investigated using a detailed finite element model of the honeycomb microstructure. Based on the 
simulation results, a simple micro-mechanical system is proposed and used to develop the macro-
scopic constitutive model. The finite-strain constitutive model accounts for microstructural evolution 
due to geometrical changes and strain hardening at the microscale. The macroscopic model has been 
validated for various loading conditions. Furthermore, the evolution of the macroscopic yield sur-
face for pure out-of-plane shear is discussed in detail.

Keywords: Honeycombs; Sandwich structures; Constitutive modeling; Large deformations; Plasticity; Finite

strains

1. Introduction

Metallic honeycombs exhibit highly orthotropic periodic microstructures composed of
tubular cells. This type of material finds widespread use in lightweight vehicle structures,
notably as core material in sandwich constructions. The mechanical behavior of metallic
honeycombs depends strongly on their so-called microstructural configuration: the cell
shape, cell size, cell wall thickness and the cell wall base material properties. Thin-walled
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honeycombs of relative densities below 5% are mostly used in aerospace engineering. These
materials combine low weight with substantial out-of-plane shear stiffness and strength.
Ultralight honeycombs are also employed in energy absorption devices; upon compressive
loading along their tubular direction, thin-walled honeycomb microstructures respond by
the folding of the cell walls, a process which is characterized by an almost constant force level
at themacroscale (e.g.Gibson andAshby, 1997). The response of thin-walled honeycombs to
in-plane loading is characterized by the formation of bands of collapsing cells within the two-
dimensional microstructure (e.g., Zhang and Ashby, 1992; Papka and Kyriakides, 1999).
Theoretical models have been developed to predict the occurrence of buckling-type instabil-
ities in low density honeycombs subject to general in-plane loading (e.g., Triantafyllidis and
Schraad, 1998; Okumura et al., 2004). Mohr and Doyoyo (2004) performed multi-axial
experiments to come up with a physically-motivated model to describe the macroscopic
behavior of a low density aluminum honeycomb in crashworthiness applications. Quasi-sta-
tic experiments on low-density honeycombs including non-proportional loading paths have
been carried out byHong et al. (2006, in press). Basedonfinite element simulations,Xue et al.
(submitted) proposed a phenomenological constitutive model for thin-walled honeycombs
incorporating strain-rate dependency (Zhao andGary, 1998). It shall be noted that the yield
surfaces for constructed cellular solids such as honeycombs and truss lattice materials may
exhibit corners in the six-dimensional stress space, whereas the random nature and different
microstructural deformation mechanisms results in more smooth yield surfaces for foams
(e.g., Doyoyo and Wierzbicki, 2003; Wang and Pan, in press; Zhang and Lee, 2003).

Thick-walled honeycombs of relative densities above 10% are of growing interest in auto-
motive applications. However, unlike their thin-walled counterparts, the microstructure of
thick-walled honeycombs remains ‘stable’ when subject to mechanical loading. Instead of
forming folds, the cell walls of thick-walled honeycombs are being deformed in a fairly uni-
formmanner while they remain essentially flat. It is emphasized that this fundamental differ-
ence between thin-walled and thick-walled honeycombs is of foremost importance in
modeling the mechanical behavior of this type of materials. Based on the assumption that
plastic yield at the microscale defines the onset of macroscopic failure, Wang andMcDowell
(2005) derived the three-dimensional failure surfaces for periodicmetal honeycombs at inter-
mediate density.

In this work, amicromechanics-based constitutivemodel for thick-walledmetallic honey-
combs is developed. Specific characteristics of the honeycombmicrostructure such as the cell
wall thickness, shape and orientation are taken into account which provides the model with
some predictive capabilities. Throughout the development, special emphasis is placed on the
coupling between large in-plane deformation and the evolution of the out-of-plane shear
strength. This paper is organized as follows: a detailed finite element model of the character-
istic ‘unit cell’ of the honeycomb sandwich material is presented in Section 2 and subse-
quently used to study the macroscopic response of a thick-walled honeycomb under
various loading conditions. Based on the microstructural simulation results, a simple
mechanical system is proposed in Section 3 tomodel the governing deformationmechanisms
at the microscale. With this simple micromechanical system in mind, a macroscopic finite-
strain constitutive model is formulated for thick-walled honeycomb core materials and
implemented into a commercial finite element code. In Section 4, the macroscopic constitu-
tive model is calibrated and validated by comparison with the response of the detailed finite
element model. Furthermore, the evolution of the macroscopic yield surface of the honey-
comb material is discussed in Section 5.
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2. Material and virtual experiments

In view of practical applications, we consider an all-metal honeycomb sandwich sheet
which has been shown to be formable (see Mohr and Straza, 2005). This material com-
prises a 12.5% relative density honeycomb core and two 0.2 mm thick face sheets.
Fig. 1 shows a schematic of the periodic microstructure. The cell walls are l = 0.92 mm
wide and t = 0.075 mm thick, which corresponds to a width-to-thickness ratio of
l/t @ 12. The cell wall opening angle for this perfectly hexagonal microstructure is
h = 30�. Due to the manufacturing process, the cell walls aligned with the L-direction
are of double-thickness. Throughout our discussion, the in-plane direction perpendicular
to the L-axis is referred to as W-direction.

The plastic properties of the face sheets (stainless steel 347) and the cell wall base mate-
rial (hastelloy X) have been determined from uniaxial tensile tests (Fig. 2). Both materials
exhibit pronounced strain hardening which contributes to the microstructural stability of
the sandwich material (e.g., prevention of local plastic buckling). Furthermore, an elastic
modulus of E = 205 GPa and a Poisson’s ratio of m = 0.33 are assumed for both parent
materials. The overall behavior of the sandwich material is determined from ‘virtual exper-
iments’, i.e., finite element simulations of a characteristic unit cell of the sandwich struc-
ture. The shaded rectangle in Fig. 1 highlights the basic ‘Y’-unit which makes up the
entire hexagonal microstructure.

2.1. Detailed shell element model

Two neighboring Y-units are chosen as mechanical unit cell in investigating the
mechanical behavior of the sandwich material (Fig. 3a). This particular unit cell is chosen
to facilitate the prescription of periodic displacement boundary conditions. The unit cell
widths along the W- and L-direction are DW = 1.6 mm and DL = 2.772 mm, respectively.
The sandwich core height, that is the unit cell length along the T-direction, is
DT = 2.2 mm. The entire unit cell geometry is discretized by 4-node reduced-integration
shell elements of three different thicknesses (Fig. 3a): 0.2 mm for the top and bottom face
sheets (light grey), 0.150 mm for the cell walls aligned with the L-direction (white), and
0.075 mm for the single-thickness cell walls (dark grey).

l
2t

t L

W

θ

Fig. 1. Schematic of the (perfectly) hexagonal honeycomb microstructure. The dashed rectangle highlights the

basic Y-unit cell. The double-thickness cell walls are initially aligned with the L-direction.
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Periodic boundary conditions are defined for the nodes at the boundaries of the unit
cell. Additionally, the average displacements are prescribed on these boundaries. The
notation huiixj¼a

is introduced to denote the average of the displacement component ui
at the boundary surface defined by all nodes for which the initial coordinate xj = a. Using
this notation, we define the macroscopic in-plane (engineering) normal strains
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Fig. 2. True stress–strain curves of the cell wall material (Hastelloy X) and the face sheets (stainless steel 347).

Both curves have been determined from uniaxial tensile tests on a prototype sandwich sheet material (Aerovision,

San Diego, CA). The dashed line shows the cell wall base material stress–strain curve obtained from calibration of

the constitutive model.

Fig. 3. (a) Detailed finite element model of a period unit of the honeycomb sandwich, three different gray shades

indicate the regions of homogeneous shell element thickness; (b) schematic of the continuum finite element model

comprising solid elements for the honeycomb core and shell elements for the face sheets.
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ELL ¼
huLixL¼DL � huLixL¼0

DL
� 1 ð1Þ

EWW ¼ huW ixW ¼DW � huW ixW ¼0

DW
� 1 ð2Þ

and the macroscopic out-of-plane (engineering) shear strains

ELT ¼ huLixT¼DT � huLixT¼0

DT
ð3Þ

EWT ¼ huW ixT¼DT � huW ixT¼0

DT
ð4Þ

2.2. Virtual experiments

Finite element simulations are performed to investigate the honeycomb sandwich sheet
behavior under selected loading conditions which are important in sandwich forming
operations. In particular, the interaction between in-plane deformation and out-of-plane
shear is studied in detail.

2.2.1. In-plane compression and tension

When subject to uniaxial in-plane loading, incompatibilities between the unconstrained
deformation responses of the honeycomb core material and the face sheets may lead to
additional stresses within the sandwich material. For flat face sheets made of a Levy-
von Mises material, simple relationships between the in-plane normal strain components
EWW and ELL may be derived from the condition of plastic incompressibility. In a first
approximation, we neglect elastic deformations and enforce incompressibility by setting
the trace of the true strain tensor to zero. Thus, as the engineering strain EWW is prescribed
(uniaxial loading along the W-direction), the reaction strain along the L-direction due to
plastic incompressibility is

ELL ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ EWW

p � 1 ð5Þ

Similarly, we have the reaction strain EWW upon uniaxial (monotonic) loading along the
L-direction:

EWW ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ELL

p � 1 ð6Þ

Analogous expressions may be derived for the honeycomb core material. For this, we as-
sume that the honeycomb material deforms preferentially by the formation of plastic
hinges (bending-dominated) rather than uniform stretching/compressing of its cell walls.
Using the simple hinge model shown in Fig. 4, we obtain the following relationship be-
tween the in-plane strain components ELL and EWW:

ELL ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos2 hð1þ EWW Þ2
q

1þ sin h
� 1 ð7Þ
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Recall that h denotes the initial cell wall opening angle. We note that Eq. (7) may be ap-
plied to both cases of prescribed deformation along the W- and L-axis. Fig. 5 shows a
comparison of the preferential in-plane deformation modes of the face sheets and the hon-
eycomb material. Both plots are used in the following to explain some of the results ob-
tained from detailed finite element analysis.

2.2.1.1. Uniaxial loading along the W-direction. Simulations are carried out for both uni-
axial compression and tension along the W-direction. Fig. 6a shows a plot of the section
force NW as a function of the applied work-conjugate strain EWW. We divided NW by the
initial cross-sectional area (DT)(DL), i.e., NW/(DT)(DL) may be interpreted as the mean
normal stress in the W-direction. In addition to the results from the detailed finite element
model of the sandwich sheet (solid line), we plotted the response of a fictitious sandwich
material comprised of face sheets only, that is a sandwich sheet where the core has zero
resistance to deformation (dashed line). Fig. 6 also shows the curves for a continuum
model which will be discussed in detail in Section 4. The comparison of these two results
indicates that both the solid and dashed curves are remarkably close in the compressive
range (EWW < 0), while the section force for the honeycomb sandwich sheet is substan-
tially higher as tension is applied (EWW > 0). In other words, the core material’s contribu-
tion to the section force may be neglected under compression, whereas its contribution
must be taken into account when tension is applied. This observation may be explained
by the lack of compatibility between the core and face sheet deformation. As illustrated
in Fig. 5a, the unconstrained deformation mode of the face sheets and the bending-dom-
inated low-resistance deformation mode of the honeycomb core are fairly compatible in
the compressive range. However, in the tensile regime (EWW > 0), the lateral contraction
(ELL < 0) of the core material is significantly larger than the plastic Poisson effect for
the face sheet material. Thus, additional work is required to achieve mechanical compat-
ibility between the core and face sheets, which explains the increased deformation resis-
tance of the sandwich section when subject to tensile loading along the W-direction.
More specifically, we note that the cell walls are being compressed and locally bent to
match the deformation field of the face sheet. For the same reason, tensile stresses act
on the face sheets in the L-direction (in addition to tension along the W-direction).
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Fig. 4. Low-resistance in-plane deformation mode of the honeycomb core. The microstructure deforms by

forming plastic hinges at the cell wall intersections whereas the cell wall length remains constant throughout

deformation.
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2.2.1.2. Uniaxial loading along the L-direction. Similar results have been obtained from the
detailed finite element analysis of the unit cell subject to uniaxial compression or tension
along the L-direction. As for loading along the W-direction, the comparison of the hon-
eycomb sandwich response with the results for face sheets only (Fig. 6b) reveals only little
difference for compression whereas the tensile force NL/(DT)(DW) is remarkably higher.
However, as far as the microstructural deformation fields are concerned, it is worth noting
that the face sheet dimpling occurred under large compressive loads. Observe from Fig. 5b
that the incompatibility between the core and face sheet deformation fields is expected to
laterally compress the face sheets for large strains along the L-direction (ELL < �0.25).
This effect of biaxial face sheet compression may also be expected upon compressive load-
ing along the W-direction, but it occurs later and is less pronounced (see Fig. 5a). In addi-
tion to the development of biaxial compression, geometrical changes at the
microstructural level increase the likelihood of buckling for large strains along the L-direc-
tion. Fig. 7 shows the top view of the sandwich sheets after various uniaxial loading sce-
narios. The solid lines highlight the free edges of the face sheets as well as the intersection
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Fig. 5. Incompatibility of in-plane deformation. The solid curves show the Poisson deformation of the face sheets

under uniaxial loading (prescribed strain), whereas the dashed lines depict the low-resistance-mode in-plane strain

interaction curve for the idealized honeycomb core structure.
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lines between the top face sheet and the honeycomb cell walls. The comparison of Fig. 7a
(compression along L-axis) and Fig. 7c (compression along the W-axis) reveals that uni-
axial loading along the L-axis transforms the hexagonally-shaped cell into a rectangle.
On the other hand, uniaxial loading along the W-direction produces an elongated hexag-
onal cell. It is speculated that the rectangular shape facilitates the dimpling of the face
sheets. Regarding the orthotropy of the sandwich material, we note that the mechanical
response to uniaxial in-plane loading along the W- and L-axis is fairly similar.

2.2.2. Out-of-plane shear loading

Out-of-plane shear loading corresponds to the relative motion of the sandwich face
sheets in the L- and W-direction. In order to investigate the effect of in-plane loading his-
tory, we subject both initially undeformed and previously-deformed honeycomb sandwich
configurations to shear loading.

2.2.2.1. Shear loading in the T–L-plane. A moderate macroscopic shear strain of ELT = 0.1
is applied to the initially undeformed sandwich material. Furthermore, shear loading is
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applied to configurations which have been previously subject to large uniaxial compressive
and tensile loading along the W-direction (EWW = �0.4 and EWW = 0.4). Fig. 8 shows the
final configurations after shear loading along the L-direction. The solid curves in Fig. 10a
show the corresponding shear stress versus shear strain curves. In Fig. 10a, the macro-
scopic (engineering) shear stress is defined as SLT = FL/(DW)(DL), where FL denotes the
total shear force acting on the top face sheet. The curve for EWW = 0 (i.e., initially unde-
formed unit cell) exhibits a well-defined yield point at about 14 MPa, while the pre-
deformed microstructures (EWW = ±0.4) responded in a non-linear manner even for fairly
small macroscopic shear strains. Clearly, the deformation history has a strong influence on
the shear response of the honeycomb core, both quantitatively and qualitatively. The ini-
tially undeformed material (EWW = 0) exhibits the lowest shear force level. Observe that
the force level for the pre-tensioned (EWW = 0.4) and the pre-compressed (EWW = �0.4)
sandwich material are respectively up to 5 and 20 MPa higher. These differences are due
to the local strain hardening of the cell wall material as well as geometrical changes which
have been introduced by the preceding in-plane deformation.

2.2.2.2. Shear loading in the T–W-plane. Fig. 9 shows the honeycomb microstructures after
out-of-plane shear loading along the W-direction. Here, a macroscopic shear strain of
EWT = 0.1 is applied to the initially undeformed microstructure (ELL = 0) and to two
pre-deformed microstructures which have been subject to in-plane compression and
tension along the L-direction (ELL = �0.4 and ELL = 0.4). The corresponding shear
stress–strain curves are depicted by the solid lines in Fig. 10b. The initially undeformed
microstructure yielded at a macroscopic shear stress of about SWT = 9 MPa which is sig-
nificantly lower than the yield stress for shear loading in the L-direction. Recall that the
sandwich material exhibited only little orthotropy in its mechanical in-plane behavior,
whereas the orthotropy of the honeycomb core becomes more dominant when subject to
out-of-plane shear.

Fig. 7. Microstructural evolution under uniaxial in-plane loading: (a) ELL = �0.4; (b) ELL = 0.4; (c)

EWW = �0.4; (d) EWW = 0.4.
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In a first approximation, it may be assumed that the shear loads in the W-direction are
primarily carried by the single-thickness cell walls which are oriented at some angle with
respect to the loading direction. When the sandwich structure has been pre-deformed

Fig. 8. Out-of-plane shear loading along the L-direction: (a) without deformation history (EWW = 0); (b) after

uniaxial tension along the W-direction (EWW = 0.4); (c) after uniaxial compression along the W-direction

(EWW = �0.4).
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under in-plane compression (Fig. 7a), these cell walls are almost aligned with the W-direc-
tion. This geometrical change is expected to contribute to the observed increase in the
macroscopic out-of-plane shear resistance (Fig. 10b). In the case of the pre-tensioned

Fig. 9. Out-of-plane shear loading along the W-direction: (a) without deformation history (ELL = 0); (b) after

uniaxial tension along the L-direction (ELL = 0.4); (c) after uniaxial compression along the L-direction

(ELL = �0.4).
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microstructure (ELL = 0.4), the shear force level is increased even further which may be
attributed to substantial cell wall material hardening. Recall that the face sheet-core
incompatibility causes cell wall stretching during in-plane tensile loading.

3. Continuum model

In this section, an equivalent continuum model is developed to simulate the macro-
scopic behavior of the honeycomb sandwich material. In the continuum model, the sand-
wich core is represented by solid elements along with an appropriate macroscopic
constitutive model of the core material. The sandwich facings on the other hand are still
modeled using shell elements (Fig. 3b). No attempt will be made at the continuum level to
describe local face sheet deformation modes such as wrinkling or dimpling.

A micromechanics-based approach is used to obtain the macroscopic constitutive equa-
tions. It is fairly difficult to come up with a computationally-efficient constitutive model
for the core material when the honeycomb is considered as a shell structure at the
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microscale (such as the detailed finite element model). Here, the idea is to consider each
cell wall as membrane which significantly reduces the complexity of the modeling
approach. From a physical point of view, this strong simplification is motivated by the fol-
lowing observations:

(1) The cell walls of a thick-walled honeycomb remain more or less flat when subject to
large macroscopic deformations (see Figs. 8 and 9).

(2) The plastic dissipation due to the relative rotation of the cell walls appears to be neg-
ligible as compared to the work required to uniformly stretch or compress the flat
cell walls. This assumption is supported by the observation that the core resistance
may be neglected when its bending-dominated mode is compatible with the face
sheet kinematics (e.g., in-plane compression), whereas considerable work is required
when compatibility is achieved through cell wall stretching (e.g., macroscopic in-
plane tension, see Fig. 6).

The model development involves two scales: at the macroscopic scale, the honeycomb
material is considered as a homogeneous medium, whereas at the microscale, the discrete
cell (membrane) structure is taken into account. Given a macroscopic deformation gradi-
ent, we will solve the so-called ‘local problem’ and then translate the results from the
micro- to the macroscale.

Throughout this presentation, we use the notation of modern continuum mechanics
(e.g., Gurtin, 1981). Specifically, a Æ b denotes the scalar (inner) product of two vectors a
and b; the same symbol is used to denote the inner product of two second-order tensors;
a � b denotes the dyadic (tensor) vector product, that yields a linear transformation (sec-
ond-order tensor) defined as (a � b)c = (c Æ b)a, where c is a vector of the same dimension
as a and b. Vectors with components ½ 1 0 0 �T, ½ 0 1 0 �T, and ½ 0 0 1 �T are denoted
as e1, e2, and e3, respectively. (Note. The superscript ‘T’ denotes the transpose of a vector
or matrix, whereas the subscript ‘T’ indicates the coordinate axis T).

3.1. Kinematics

When considering each honeycomb cell wall as flat membrane, the basic Y-unit cell may
be used to estimate the macroscopic material behavior. The schematic in Fig. 11 illustrates
the deformation of a Y-element subject to a macroscopic deformation field. At the macro-
scale, we introduce the deformation gradient F to describe the one-to-one mapping of an
infinitesimal vector from the initial configuration, dX, to the deformed configuration, dx,

dx ¼ FðdXÞ ð8Þ
At the microscale, the initial configuration of the honeycomb microstructure is uniquely
defined by four unit vectors: the vector e0T , which is aligned with the T-direction, and
the three vectors n0r , r = 1, 2, 3, which define the in-plane orientations of the cell walls
(Fig. 11). Observe that n03 is associated with the double-thickness cell wall. To describe
the evolution of the microstructure, it is convenient to introduce the affine configuration
defined by the four (non-unit) vectors êT , n̂1, n̂2, and n̂3, where

êT ¼ Fe0T ; n̂r ¼ Fn0r for r ¼ 1; 2; 3 ð9Þ
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The affine configuration is depicted by dashed lines in Fig. 11b. Next, we introduce the
vector û ¼ Fu0 to denote the in-plane translation of the cell wall intersection line with re-
spect to the affine configuration (Fig. 11b). With the displacement û at hand, the four vec-
tors defining the current microstructural configuration, eT, n1, n2, and n3, are expressed as
follows:

nr ¼ n̂r þ û ¼ Fðn0r þ u0Þ for r ¼ 1; 2; 3

eT ¼ êT ¼ Fe0T
ð10Þ

Thus, knowing the macroscopic deformation gradient F and the internal displacement u0,
the current microstructural configuration is uniquely defined by Eq. (10). While F is typ-
ically prescribed in macrostrain-driven computations, the displacement vector u0 is a priori
unknown; it will be determined from the equilibrium equations at the microscale, which
are part of the local problem. In this context, it is important to note that u0 is an in-plane
vector which may be written as a linear combination of any two in-plane vectors, e.g.,

u0 ¼ uW e
0
W þ uW e

0
L ð11Þ

where e0W and e0L denote the in-plane unit vectors aligned with the W- and L-direction,
respectively. Therefore, the determination of the current microstructural configuration re-
duces to the computation of the displacement components uW and uL.

3.2. Strain concentration

It follows from the three-membrane unit cell assumption that the micro-strain fields are
uniform within each cell wall. The current configuration of the cell wall r is defined by two
vectors: nr and eT (Fig. 11a). In close analogy with non-linear shell element formulations
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Fig. 11. Kinematics of the three-membrane unit cell: (a) 3D view; (b) in-plane deformation. The affine

configuration is only shown in ‘b’ (dotted lines).
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(e.g., Belytschko et al., 1984), co-rotational, local coordinate systems are introduced to
evaluate the membrane strains. For each cell wall (r = 1, 2, 3), we define three coordinate
vectors srx, s

r
y , and srz, where

srx ¼
nr

jnrj
ð12Þ

srz ¼
nr � eT

jnr � eT j
ð13Þ

and

sry ¼ srz � srx ð14Þ

The unit vector srx is always aligned with the current in-plane direction of cell wall r in the
deformed configuration, whereas srz defines the unit normal to the deformed membrane. In
Fig. 11a, the directions of the local coordinate vectors have been indicated for the cell wall
r = 1 (grey-shaded). Observe that the vectors sry do not coincide with the T-direction when
out-of-plane shear deformation is applied. Using the local coordinate vectors, we define
the local deformation gradients, Fr,

Fr ¼ ðnr � srxÞd1 � d1 þ ðeT � srxÞd1 � d2 þ ðeT � sryÞd2 � d2 ð15Þ

with d1 ¼ ½ 1 0 �T and d2 ¼ ½ 0 1 �T. For each cell-wall r, the corresponding two-dimen-
sional second-order tensor Fr describes the locally homogeneous deformation field of
the membrane plane. Using the right Cauchy–Green deformation tensors (Fr)TFr, we com-
pute the local logarithmic strain tensors er. Formally, we write

e
r ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðFrÞTFr

q

for r ¼ 1; 2; 3 ð16Þ

where both the square root and the log-operation are applied to the eigenvalues of the ten-
sor argument. The objectivity of the local strain tensors may be shown as follows. For a
macroscopic rotation Q, QQT = 1, we have the transformations: F ! QF, nr ! Qnr,
eT ! QeT, srj ! Qsrj, but nr � srj ! Qnr �Qsrj ¼ nr � srj and eT � srj ! QeT �Qsrj ¼ eT � srj, in
what follows the frame invariance of the local deformation gradients Fr ! Fr and of the
strain tensors er ! e

r.

3.3. Constitutive behavior at the microscale

The material model at the microscale must be chosen in accordance with the cell wall
base material. Here, we briefly recall the finite strain plane-stress constitutive equations
for Levy-von Mises materials with isotropic strain-hardening. For ease of notation, the
symmetric strain tensors er are rewritten in the form of strain vectors,~e r, r = 1, 2, 3

e
r ¼

erx erxy

erxy eryy

" #

and ~er ¼ ½ erx ery 2erxy �T ð17Þ

Similarly, the energy-conjugate Cauchy stress tensors rr are represented by the vectors~r r.
Introducing the vector of local plastic strains~e rp, the local elastic stress–strain relationship
reads

~r r ¼ Cð~e r �~e rpÞ ð18Þ
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C is the plane-stress stiffness matrix for the isotropic base material of modulus Es and elas-
tic Poisson’s ratio ms:

C ¼ Es

1� m2s
e1 � e1 þ e2 � e2 þ msðe1 � e2 þ e2 � e1Þ þ

1

2
ð1� msÞe3 � e3

� �

ð19Þ

For each membrane, the local von Mises yield function fr reads

f rðrr; srÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðrr
xÞ

2 þ ðrr
yÞ

2 � rr
xr

r
y þ 3ðrr

xyÞ
2

q

� sr ð20Þ

where sr denotes the deformation resistance at the microscale. The evolution of sr is gov-
erned by the non-linear hardening law

dsr ¼ hðsrÞdar ð21Þ

with the hardening modulus h = h(sr) and the non-negative plastic multiplier dar. The
direction of plastic flow at the microscale is described by the associated flow rule

derp ¼
of r

orr
dar ð22Þ

In addition to the evolution equations, the Kuhn–Tucker complementary conditions must
be satisfied locally,

dar P 0; f r
6 0; ðdarÞf r ¼ 0 ð23Þ

along with the consistency condition

ðdarÞðdf rÞ ¼ 0 when f r ¼ 0 ð24Þ
In order to take plastic membrane thickness changes into account, we evaluate the plastic
normal strains erz;p along the local srz-directions:

erz;p ¼ �ðerx;p þ ery;pÞ ð25Þ

3.4. In-plane force equilibrium

The local in-plane displacements uW and uL are chosen such that force equilibrium is
satisfied in the T–W-plane. It follows from local force equilibrium that the sum of in-plane
forces along the cell wall intersection line must be zero. Recall from the local coordinate
system definition that the coordinate vectors srx lie in the deformed T–W-plane and point
away from the intersection line. Thus, evaluation of force equilibrium yields the following
vector equation:

2ð1þ e3z;pÞr3
xs

3
x þ

X

2

r¼1

ð1þ erz;pÞrr
xs

r
x ¼ 0 ð26Þ

The factor 2 in front of the first term accounts for the difference in initial thickness among
the cell walls, i.e., the double-thickness of cell wall r = 3. The mathematical problem de-
fined by Eqs. (8)–(26) may be solved numerically. As a result, the in-plane displacements
uW and uL are obtained along with the entire solution of the local problem, notably the
local stress tensors rr.
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3.5. Stress homogenization

In a final step, the macroscopic Cauchy stress tensor R is estimated based on the solu-
tion of the local problem. For this, we make use of the mean value theorem for the stress
field,1

R ffi 1

X

Z

X

rðyÞdX ð27Þ

where X denotes the current unit cell volume. The integrand r = r(y) corresponds to the
stress field at the microscale, expressed as a function of some local coordinate y. For the
three-membrane system, the microstructural stress field is piecewise constant and we may
rewrite Eq. (27) as

R ¼
X

3

r¼1

r
r
g

Xr

X
; cr ¼ 1

X

Z

Xr

dX ¼ Xr

X
ð28Þ

cr denotes the current volume ratio of membrane r, while the three-dimensional second-or-
der tensor rr

g describes the corresponding constant local stress field in global coordinates:

r
r
g ¼ rr

xs
r
x � srx þ rr

ys
r
y � sry þ rr

xyðsrx � sry þ sry � srxÞ ð29Þ

Neglecting elastic volume changes at the microscale, i.e., dXr = 0, we have

cr ¼ cr0
detF

ð30Þ

The initial cell wall volume ratios cr0 are directly related to the relative density q* of the
honeycomb material,

4c10 ¼ 4c20 ¼ 2c30 ¼ q� ð31Þ
Thus, the final approximate expression for the macroscopic Cauchy stress tensor reads

R ffi q�

4 detF
ðr1

g þ r
2
g þ 2r3

gÞ ð32Þ

3.6. FE-implementation

This constitutive model for stable honeycombs has been implemented into the finite
element code ABAQUS/explicit using the user-material subroutine interface for solid
elements (Abaqus, 2005). For a given deformation gradient Fn+1, the computational ver-
sion of the constitutive model provides the macroscopic stress tensor Rn+1 and the vector
of state variables vn+1 at time t + Dt, based on the state variables vn at time t. For the pres-
ent macroscopic constitutive model, the vector of internal state variables, v, comprises 12
components: the plastic strains e1x;p, e

1
y;p, e

1
z;p, e

2
x;p, e

2
y;p, e

2
z;p, e

3
x;p, e

3
y;p, e

3
z;p, and the deformation

resistances s1, s2, s3. Since a strain-driven approach has been chosen for the model

1 In the present formulation, the local problem is not solved exactly (the shear stresses along the intersection

line are not always in static equilibrium). Thus, the local stress fields are not divergence-free for any macroscopic

loading condition in what follows that Hill’s macrohomogeneity equation may no longer hold. However, the

mean value theorem may still be used to obtain an approximation of the macroscopic stress field.
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development, it is fairly straightforward to formulate the corresponding computational
scheme for the stress and state variable update based on the deformation gradient at
t + Dt. The overall computational procedure is schematically shown in Fig. 12. It basically
reduces to finding the roots of the two-dimensional vector function G = G(uW, uL),

G ¼ G1 þG2 þ 2G3 ð33Þ
where

Gr ¼ ½Gr
W Gr

L �
T ð34Þ

Gr
W ¼ ð1þ erz;pÞrr

xs
r
x � eW ð35Þ

GL ¼ ð1þ erz;pÞrr
xs

r
x � eL ð36Þ
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This solution (uW, uL) is obtained using a Broyden algorithm (e.g., Press et al., 1992). The
subroutine MEMBRANE (Fig. 12) performs the stress update at the microscale using a
standard plane-stress J2-plasticity algorithm (e.g., Simo and Hughes, 1998).

4. Model calibration and verification

In this section, all previously performed virtual experiments on sandwich sheets are sim-
ulated using the new continuum model for the honeycomb core material. Using a practical
engineering approach, the material model is calibrated based on a single virtual experi-
ment and then validated by the remaining experimental results.

4.1. Calibration

According to the model formulation, the honeycomb material model behavior is deter-
mined by the relative density q* and by the function h(s) which characterizes the isotropic
hardening behavior of the cell wall material. Furthermore, the initial orientation of the
orthotropy axes L and W must be specified. The relative density of a honeycomb material
can be easily measured and is typically known, while the hardening function h(s) is usually
a priori unknown. From a theoretical point of view, the function h(s) corresponds to the
first derivative of the uniaxial stress–strain curve for the cell wall material, h(s) = ds/da,
and thus, it may be determined from uniaxial tensile tests on the cell wall material. How-
ever, from an engineering perspective, it is recommended to determine h(s) indirectly from
an out-of-plane shear test on the honeycomb sandwich which guarantees optimal model
predictions for this specific loading case. In the present virtual experiments, the honey-
comb has a relative density of q* = 12.5%. The out-of-plane shear test along the W-direc-
tion on the initially undeformed sandwich material is chosen to calibrate the hardening
function h(s). For this specific loading condition, close agreement of the continuum model
with the detailed finite element model (virtual experiments) is obtained when using the
slope of the dashed stress–strain curve labeled s(a) in Fig. 2. Note that this curve lies above
the ‘real’ stress–strain curve of the cell wall material (Hastelloy X) which indicates that the
continuum model would underestimate the core strength if the ‘‘real’’ stress–strain curve
was used. Recall that the continuum model has been developed such that it provides a suit-
able mathematical structure to describe first-order effects. For instance, the above used
model of the sandwich structure satisfies the compatibility between the core and face sheets
at the macroscopic level, but not locally. Satisfying local compatibility (i.e., displacement
continuity between the honeycomb cell walls and the face sheets) requires additional plas-
tic work which is not captured by the continuum model. In most practical applications, it
is fairly difficult to obtain the ‘real’ stress–strain curve directly from experiments on the cell
wall material. Instead, the dashed curve labeled s(a) will be obtained indirectly through
macroscopic experiments such as the out-of-plane shear test described above.

4.2. Verification

It is emphasized that only the W-shear test on the undeformed honeycomb material
(ELL = 0) has been used for calibration. In this subsection, the predictive capabilities of
the continuum model for in-plane loading along the W- and L-direction as well as for
shear along the L-direction (including history effects) are evaluated.
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As far as in-plane loading is concerned, excellent agreement is observed of the model
predictions and the detailed FEA results (Fig. 6). For both in-plane loading along the
W- and L-direction, the continuum model estimates (open circles) follow closely the solid
curves of the detailed FE simulations. The good accord for compressive loading indicates
that the continuum model captures the low-resistance deformation modes of the core
material. At the same time, the model provides reasonable predictions of significant inter-
nal energy variations within the honeycomb core material for in-plane tensile loading.
Observe that the response curves of the detailed and continuum model nearly coincide
for tensile loading (Fig. 6).

The continuum model which has been calibrated for shear loading along the W-direc-
tion also provides a good estimate for the material response to shear loading along the
L-direction (Fig. 10). The accurate agreement for both cases demonstrates the model’s
capability to represent the pronounced orthotropy of hexagonal honeycombs. Fig. 10 also
shows the model predictions of the out-of-plane shear response after in-plane loading. In
the case of a tensile loading history along the L-direction (ELL = 0.4), the model prediction
of the out-of-plane shear stress along the W-direction is still very accurate, while it over-
predicts the increase in shear resistance due to compressive in-plane loading (ELL = �0.4).
Similar observations are made regarding the effect of the W-in-plane loading history on
the out-of-plane shear resistance in the L-direction (Fig. 10a). In this loading case, the
maximum differences between the results of the continuum and detailed model are even
considerably smaller.

5. Yield surface evolution

The constitutive model accounts for the macroscopic hardening/softening due to both
true strain-hardening of the base material and geometrical changes at the microscale. In
this section, we discuss the evolution of the anisotropic macroscopic yield surface to illus-
trate this important model property. Our attention is limited to the subspace of pure out-
of-plane shear loading, where RWW = RLL = RTT = RWL = 0. In this subspace (the
RWT � RLT-plane), the otherwise six-dimensional yield surface of the honeycomb core
material may be represented by a closed two-dimensional envelope.

The evolution of the initial shear yield surface (RWT � RLT-plane) is investigated for the
aforementioned in-plane loading histories: uniaxial compression and tension along the
L- and W-direction, respectively. For these specific loading conditions, the microstructure
remains orthotropic and the change of cell wall orientation may be described by the evo-
lution of some selected components of the normalized cell wall orientation vectors s1x and
s2x , respectively. When the three-orthotropy axes are aligned with the global coordinate
directions, i.e., eW = e1, eL = e2, and eT = e3, we have s3xðtÞ ¼ e2 and sry ¼ e3, r = 1, 2, 3.
Furthermore, the cell wall orientation vectors may be written as

s1x ¼ ½�a1 �a2 0 � ð37Þ
s2x ¼ ½ a1 �a2 0 � ð38Þ

where the two non-negative scalar functions a1(t) > 0 and a2(t) > 0 are introduced to de-
scribe the evolution of the normalized in-plane orientation vectors.

In order to obtain macroscopic yield conditions for out-of-plane shear, the local stress
tensors rr

g are expressed as a function of the macroscopic shear stresses RWT and RLT. For
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infinitesimal deformations (initial yield of the orthotropic microstructure), out-of-plane
shear loads generate pure shear at the microscale, i.e.

r
r
g ¼ rr

xyðsrx � sry þ sry � srxÞ while rr
xx ¼ rr

yy ¼ 0 ð39Þ

Now, consider shear loading along the positive W-direction, RWT P 0. We have r3
xy ¼ 0

and sðwÞs :¼ �r1
xy ¼ r2

xy > 0, where sðW Þ
s denotes the shear stress in a single-thickness cell

wall due to macroscopic W-shear loading. Upon evaluation of Eq. (39), we find

r
1
g þ r

2
g ¼ 2a1s

ðwÞ
s ðe1 � e3 þ e3 � e1Þ ð40Þ

Using this expression in Eq. (32) yields

sðW Þ
s ¼ 2 detF

q�a1
RWT . ð41Þ

Next, consider shear loading along the L-direction, RLT P 0. This type of loading gener-
ates local shear stresses in the single-thickness walls, sðLÞs :¼ �r1

xy ¼ �r2
xy > 0, and in the

double-thickness wall, s
ðLÞ
d :¼ r3

xy > 0. It follows from evaluating Eqs. (39) and (32) that:

RLT ¼ q�

2 detF
a2s

ðLÞ
s þ s

ðLÞ
d

� �

. ð42Þ

For shear loading in L-direction, the continuum model (which does not generally satisfy
equilibrium for the shear stresses along the intersection line) suggests the following rela-
tionship between the shear stresses at the microscale:

sðLÞs ¼ a2s
ðLÞ
d . ð43Þ

Combining Eqs. (41) and (42) yields

sðLÞs ¼ 2 detF

q�
a2

a22 þ 1
RLT ð44Þ

s
ðLÞ
d ¼ 2 detF

q�
1

a22 þ 1
RLT ð45Þ

For combined out-of-plane shear loading, the maximum local shear stresses at the micro-
scale are given by superposition. In other words, the highest shear stress in a single-thick-
ness wall (either r = 1 or r = 2) is

max jssj ¼ sðwÞs þ sðLÞs ¼ 2
ffiffiffi

3
p

detF

q�
jRWT j
a1

þ a2jRLT j
a22 þ 1

� �

ð46Þ

while for the double-thickness wall (r = 3), we have

max jsdj ¼
2

ffiffiffi

3
p

detF

q�
jRLT j
a22 þ 1

ð47Þ

At the microscale, the elastic domain is enclosed by the von Mises yield surfaces of the cell
wall material. For pure shear loading, the local yield conditions are (r = 1, 2, 3)

f r ¼
ffiffiffi

3
p

jrr
xy j � sr ¼ 0 ð48Þ

Recall that our attention is limited to the effect of uniaxial in-plane loading histories on the
macroscopic yield surface, where we have s1(t) = s2(t). Thus, using expressions (46) and
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(47) for the shear stresses in Eq. (48), we obtain two conditions in terms of RWT and RLT

which determine the onset of yield of the honeycomb material. Formally, we write

F IðRWT ;RLT Þ :¼
jRWT j
KI

WT

þ jRLT j
KI

LT

� 1 6 0 ð49Þ

F IIðRLT Þ :¼
jRLT j
KII

LT

� 1 6 0 ð50Þ

where FI and FII may be considered as macroscopic yield functions which are determined
by the macroscopic deformation resistances KI

WT , K
I
LT , and KII

LT :

KI
WT ¼ a1q

�s1

2
ffiffiffi

3
p

detF
; KI

LT ¼ ð1þ a22Þq�s1

2
ffiffiffi

3
p

a2 detF
; KII

LT ¼ ð1þ a22Þq�s3

2
ffiffiffi

3
p

detF
ð51Þ

It is emphasized that the macroscopic yield functions FI and FII account for microstruc-
tural evolution due to

(i) true strain-hardening of the base material: s1(t) and s3(t);
(ii) geometrical changes: a1(t), a2(t), detF(t).

In the first quadrant of the RWT � RLT-plane, the macroscopic yield envelope corre-
sponds to two intersecting straight lines (Fig. 13). The yield condition FI = 0 associated
with the yielding of the thin cell walls is a straight line intersecting both the RWT and
RLT axes. The condition FII = 0 imposes a restriction on the shear stress RLT only, since
shear along the W-direction does not cause any stresses in the double-thickness cell walls.

The history of the model parameters a1, a2, detF, s
1 and s3 has been extracted from

the continuum model simulations. Subsequently, the macroscopic deformation resis-
tances have been determined for uniaxial in-plane loading along the W-direction (at
EWW = �0.4 and EWW = 0.4) and along the L-direction2 (at ELL = �0.25 and
ELL = 0.4). The corresponding yield envelopes are depicted in Fig. 14. Irrespective of
the loading direction, in-plane loading causes an elongation of the shear yield locus along
either coordinate axis, which may be considered as an evolution of the material ortho-
tropy. As mentioned before, the orientation of the cell walls has a significant effect on
the out-of-plane shears strengths. From a geometrical point of view, an increase of the
cell wall orientation angle h (Fig. 1), increases the macroscopic shear strength along
the L-direction while the shear resistance in the W-direction decreases. Thus, since both
tension along the L-direction and compression in the W-direction lead to an increase of h
(Fig. 7b and c), we observe an elongation of the shear yield surface along the RLT-axis
for ELL = 0.4 or EWW = �0.4 (Fig. 14). Conversely, a pronounced elongation along
the RWT-axis is observed when the sandwich material is preloaded in the opposite direc-
tions, i.e., ELL = �0.25 or EWW = 0.4. In addition to geometrical effects, the yield surface
changes due to material hardening at the microscale. Recall that the unconstrained defor-
mation modes of the core material and face sheets are more compatible for compressive
than for tensile in-plane loading (Fig. 5), which results in more pronounced base material

2 Note that a2 becomes negative for ELL < �0.25. The macroscopic shear strength may also be calculated for

negative a2. However, we limit our attention to the limiting case of ELL = �0.25 in order to omit additional

derivations of the same type as those shown above.
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hardening in the latter case. Therefore, for similar orthotropy evolution directions, the
resultant yield surfaces for uniaxial compression loading histories (EWW = �0.4 and
ELL = �0.25) lie inside those for uniaxial tension (ELL = 0.4 and EWW = 0.4). Another
interesting feature of the yield surface evolution is observed for in-plane compression
along the L-direction. At ELL = �0.25, we have a2 @ 0 which means that the initially hex-
agonal cell structure has transformed into a square honeycomb. As a result, the line
FI = 0 becomes perpendicular to FII = 0 because shear along the L-direction no longer
generates stresses in the thin-walls. A more detailed discussion of the interaction between
microstructural changes and the macroscopic yield surface evolution is beyond the scope
of this paper. However, it is concluded that the macroscopic out-of-plane shear yield sur-
face changes dramatically due to in-plane loading. This evolution involves both changes
in size and shape of the yield surface.
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Fig. 14. Macroscopic yield surface for pure out-of-plane shear and its evolution due to uniaxial in-plane loading

along the W- and L-direction, respectively.
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Fig. 13. Macroscopic yield surface for pure out-of-plane shear (initially undeformed microstructure).
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6. Conclusions

The large deformation behavior of a sandwich material with a thick-walled metallic
honeycomb core has been studied by means of detailed finite element analysis. Motivated
by the simulation results, a simple unit cell comprised of three intersecting membranes has
been proposed and used to develop a macroscopic constitutive model of the honeycomb
core material. The material model has been validated for large in-plane loading and
out-of-plane shear loading. Unlike phenomenological constitutive models, the present
micro-mechanics-based model exhibits some predictive capabilities. Due to the universal
applicability of the underling microstructural model, it is expected to yield reasonable
results for arbitrary loading histories.

The macroscopic plasticity of metallic honeycombs appears to be fundamentally differ-
ent from solid materials, which requires the development of a suitable mathematical
framework. Here, a micromechanical approach has been chosen which includes conven-
tional constitutive equations at the microscale along with strain localization and stress
homogenization relationships. This two-scale nature of the model is maintained, in partic-
ular due to the ease of its computational implementation. The macroscopic yield surface
has been derived for pure shear loading. The results have demonstrated that microstruc-
tural changes due to in-plane loading have a considerable influence on the macroscopic
yield locus, both its shape and size.
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