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to isotropic constituents
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New prescriptions are proposed for the ‘reference’ fields in the context of the ‘second-order’ nonlinear homogenization method 
[P. Ponte Castañeda, Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I—Theory, 
J. Mech. Phys. Solids 50 (2002) 737–757], and are used to generate estimates for the effective behavior and first moments of the 
local fields in nonlinear composites. The new prescriptions yield simple, analytical expressions not only for the effective potentials, 
but also for the macroscopic stress-strain relation, as well as for the phase averages of the strain and stress fields. For illustrative 
purposes, ‘second-order’ estimates of the Hashin–Shtrikman type are provided for two-phase, transversely-isotropic composites 
with power-law phases, and are compared with exact results available for power-law, multiple-rank, sequential laminates. The 
agreement is found to be quite good for all ranges of nonlinearities and inclusion concentrations considered. 

Méthode du « second ordre » pour les composites non linéaires et applications aux matériaux isotropes. On utilise la mé-
thode d’homogénéisation non linéaire proposée par Ponte Castañeda [P. Ponte Castañeda, Second-order homogenization estimates 
for nonlinear composites incorporating field fluctuations: I—Theory, J. Mech. Phys. Solids 50 (2002) 737–757], dite du « second 
ordre », pour générer des estimations pour le comportement effectif et les premiers moments des champs locaux dans des compo-
sites non-linéaires. Des expressions analytiques simples sont données non seulement pour les potentiels effectifs mais également 
pour la relation contrainte-déformation macroscopique, aussi bien que pour les moyennes par phase des champs de contrainte et de 
déformation. Des estimations du type de Hashin–Shtrikman sont données pour des composites biphasés, isotropes avec des phases 
suivant une loi puissance, et sont comparées aux résultats exacts disponibles pour les matériaux laminés. L’accord s’avère bon pour 
toutes les valeurs de la non-linéarité et de concentration d’inclusion considérées. 
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1. Introduction

This work is concerned with the problem of estimating the effective (or homogenized) behavior of nonlinear com-
posites [1]. The so-called ‘second-order’ homogenization method [2] is used to generate estimates for the effective
potentials of nonlinear composites with isotropic constituents. In addition, simple expressions of practical importance
are provided for the resulting effective stress-strain relations and the first moments of the local fields in each con-
stituent. The accuracy of these estimates is then assessed by comparing them with exact results available for a special
class of nonlinear composites.

We consider composite materials made of N different homogeneous constituents, or phases, which are assumed
to be randomly distributed in a specimen occupying a volume Ω , at a length scale that is much smaller than the size
of Ω and the scale of variation of the loading conditions. The constitutive behavior of each phase is characterized by
isotropic incompressible strain potentials w(r) (r = 1, . . . ,N ) such that

σ = ∂εw
(r)(ε), w(r)(ε) = φ(r)(εe) (1)

where the von Mises equivalent strain is defined in terms of the deviatoric strain tensor by

εe = √
(2/3)εd · εd

∂ε denotes differentiation with respect to ε, and trε = 0. This constitutive relation can be used within the context of the
deformation theory of plasticity, where σ and ε represent the infinitesimal stress and strain, respectively. Relation (1)
applies equally well to viscoplastic materials, in which case σ and ε represent the Cauchy stress and Eulerian strain
rate, respectively.

We are concerned with the problem of finding the effective behavior of the composite, which is defined as the
relation between the average stress σ = 〈σ 〉 and the average strain ε = 〈ε〉, and can also be characterized [1] by an
effective strain potential W̃ , such that

σ = ∂εW̃ (ε), W̃ (ε) = min
ε∈K(ε)

N∑
r=1

c(r)
〈
w(r)(ε)

〉(r) (2)

Here, 〈·〉 and 〈·〉(r) denote the volume averages over the composite (Ω) and over phase r (Ω(r)), respectively, c(r) is
the volume fraction of phase r , and K(ε) = {ε | there is u such that ε = (1/2)[∇u + (∇u)T ] in Ω , u = εx on ∂Ω} is
the set of kinematically admissible strain fields.

A relation completely equivalent to (2)1 results from a dual formulation which makes use of stress potentials u(r),
such that locally ε = ∂σ u(r)(σ ). For materials characterized by (1), the stress potentials are of the form u(r)(σ ) =
ψ(r)(σe), where the von Mises equivalent stress is σe = √

(3/2)σ d · σ d . The effective behavior is then given in terms
of an effective stress potential Ũ , such that ε = ∂σ Ũ (σ ) (see for instance [1]). Thus, the problem of estimating the
effective behavior of the composite reduces to that of estimating the effective potentials W̃ or Ũ .

2. Second-order homogenization method

A fairly general nonlinear homogenization method has been introduced by Ponte Castañeda [2], which delivers es-
timates for the effective potentials W̃ and Ũ which are exact to second order in the heterogeneity contrast. The central
idea behind this method is the introduction of a linear comparison composite (LCC), with the same microstructure as
the nonlinear composite, and with phase potentials w

(r)
L given by second-order Taylor-type expansions of the nonlinear

potentials w(r),

w
(r)
L

(
ε; ε̌(r)

,L(r)
0

) = w(r)
(
ε̌(r)

) + ∂εw
(r)

(
ε̌(r)

) · (ε − ε̌(r)
) + 1(

ε − ε̌(r)
) · L(r)

0

(
ε − ε̌(r)

)
(3)
2

2



where the ε̌(r) are reference strains, and L(r)
0 are symmetric, fourth-order tensors (of moduli), uniform in each phase.

For isotropic, incompressible phases characterized by potentials of the form (1), the (anisotropic) tensors L(r)
0 are

assumed to be of the form:

L(r)
0 = 2λ

(r)
0 E(r) + 2μ

(r)
0 F(r), with E(r) = 2

3

ε̌
(r)
d

ε̌
(r)
e

⊗ ε̌
(r)
d

ε̌
(r)
e

, F(r) = K − E(r) (4)

where K denotes the standard, fourth-order, isotropic, shear projection tensor, and the subscript d denotes the devia-
toric part. Then, the second-order method delivers the following estimate for the effective strain potential of a general
N -phase composite with isotropic constituents:

W̃ (ε) = stat
λ

(s)
0 ,μ

(s)
0

{
W̃L

(
ε; ε̌(s)

,L(s)
0

) +
N∑

r=1

c(r)V (r)
(
ε̌(r)

,L(r)
0

)}
(5)

where the stationary operation consists in setting the partial derivative of the argument with respect to the variable
equal to zero. In this expression, W̃L is the effective potential of the above mentioned LCC, and the functions V (r) are
defined as

V (r)
(
ε̌(r)

,L(r)
0

) = stat
ε̂(r)

{
w(r)

(
ε̂(r)

) − w
(r)
L

(
ε̂(r); ε̌(r)

,L(r)
0

)}
(6)

where the ε̂(r) are uniform (strain) tensors in each phase. Making use of the symmetry of the tensors L(r)
0 , we can

define two components of the tensors ε̂(r) that are ‘parallel’ and ‘perpendicular’ to the corresponding reference tensor

ε̌(r), respectively, ε̂
(r)
‖ =

√
(2/3)ε̂(r) · E(r)ε̂(r) and ε̂

(r)
⊥ =

√
(2/3)ε̂(r) · F(r)ε̂(r). The stationary operation in (6) then

leads to the following two conditions in each phase:

3λ
(r)
0

(
ε̂
(r)
‖ − ε̌(r)

e

) = φ(r)′(ε̂(r)
e

) ε̂
(r)
‖

ε̂
(r)
e

− φ(r)′(ε̌(r)
e

)
, 3μ

(r)
0 = φ(r)′(ε̂(r)

e )

ε̂
(r)
e

(7)

Relations (7) state that the tensors L(r)
0 correspond to ‘generalized secant’ approximations to the nonlinear stress-strain

relations. In turn, the stationary operations in (5) lead to the conditions

ε̂
(r)
‖ − ε̌(r)

e = ±
√√√√2

3

1

c(r)

∂W̃L

∂λ
(r)
0

= ±
√

2

3

〈(
εL − ε̌(r)

) · E(r)
(
εL − ε̌(r)

)〉(r)
(8)

ε̂
(r)
⊥ = ±

√√√√2

3

1

c(r)

∂W̃L

∂μ
(r)
0

= ±
√

2

3

〈
εL · F(r)εL

〉(r) (9)

where εL denotes the strain field in the LCC. The sign of the square roots in these expressions should be taken to be
positive if ε̌

(r)
e � ε

(r)
Le , and negative otherwise, for consistency of (10) with the case of uniform fields (e.g., laminate,

homogeneous limit). It is worth noting that the right-hand sides of these relations depend on the (intraphase) field
fluctuations in the LCC, through certain projections of the phase covariance tensors C(r)

εL
= 〈εL ⊗ εL〉(r) − ε

(r)
L ⊗ ε

(r)
L .

Then, using the fact that (5) is stationary with respect to the moduli λ
(r)
0 and μ

(r)
0 , we can rewrite the estimate (5)

in the simpler form

W̃ (ε) =
N∑

r=1

c(r)
[
w(r)

(
ε̂(r)

) − ∂εw
(r)

(
ε̌(r)

) · (ε̂(r) − ε
(r)
L

)]
(10)

where the ε
(r)
L = 〈εL〉(r) are the phase averages of the strain in the LCC. Relations (7)–(9) determine the variables

ε̂(r) and L(r)
0 , for any choice of the reference tensors ε̌(r), which remain to be specified. Unfortunately, enforcing

stationarity of (5) with respect to the tensors ε̌(r), as suggested in [2], leads to conditions that cannot be satisfied
together with (7)–(9), in general. Motivated by the findings of Idiart and Ponte Castañeda [3], we propose here the
following prescription:

ε̌(r) = εd, for all r (11)
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where the subscript d has been used to denote deviatoric part. In addition to giving sensible results in the case of
isotropic composites, as will be seen in the next section, this prescription has the advantage of simplicity. In fact, with
this choice of reference tensors, the ‘second-order’ estimates for the effective behavior, which follow from differenti-
ation of (10), can be shown [4] to be given by

σ = ∂εW̃ (ε) = σL +
N∑

r=1

c(r)ρ(r) (12)

where σL denotes the macroscopic stress in the LCC, and the (incompressible) tensors ρ(r) are

ρ(r) = (
L(r)

0 − L(r)
t

)(
ε̂(r) − ε

(r)
L

) + 4

3

λ
(r)
0 − μ

(r)
0

ε2
e

× [〈
(εLd

− εd) ⊗ (εLd
− εd)

〉(r) − (
ε̂

(r)
d − εd

) ⊗ (
ε̂

(r)
d − εd

)]
εd (13)

In this last expression, L(r)
t = ∂2

εεw
(r)(ε) are the tangent moduli of the phases, evaluated at ε. Thus, while the LCC

is subjected to the same macroscopic strain as the nonlinear composite, the macroscopic stress exhibits a ‘correction’
term due the fact that the estimates (5) are not stationary with respect to the variables ε̌(r). In addition, corresponding
estimates for the phase averages of the local fields are given by

ε(r) = ε
(r)
L , σ (r) = σ

(r)
L + ρ(r) (14)

where the subscript L denotes quantities in the LCC. These results follow from the rigorous procedure described
in [4], making use of suitably perturbed phase potentials to extract estimates for the pertinent phase averages via
differentiation. Again, while the estimates for ε(r) coincide with those in the associated LCC, the estimates for σ (r)

do not. However, it is emphasized that these estimates are entirely consistent with (12), in the sense that they satisfy
the relations σ = ∑N

r=1 c(r)σ (r).
Completely analogous expressions may be developed [2] starting from the dual formulation in terms of the stress

potentials u(r). This formulation involves a LCC with phase potentials u
(r)
L , given by second-order Taylor approxima-

tions to u(r) of the same form as (3), in terms of reference stresses σ̌ (r) and compliance tensors M(r)
0 , and generates

the following estimate for the effective stress potential

Ũ (σ ) =
N∑

r=1

c(r)
[
u(r)

(
σ̂ (r)

) − ∂σ u(r)
(
σ̌ (r)

) · (σ̂ (r) − σ
(r)
L

)]
(15)

where σ
(r)
L = 〈σL〉(r) are the phase averages of the stress in the associated LCC, and the tensors σ̂ (r) and M(r)

0 depend

on the reference tensors σ̌ (r) and the second moments of the stress fluctuations (in the LCC) through equations
analogous to (7)–(9). (The same sign convention should also be used for the equivalents of relations (8) and (9).)
Again, the reference stresses σ̌ (r) need to be specified, and prescription [3] is proposed:

σ̌ (r) = σ d, for all r (16)

which is the counterpart of (11) in this context. Note that, in spite of the symmetry of the prescriptions (11) and (16),
the corresponding homogenized estimates are not expected to give identical results.

Finally, it is worth emphasizing that nonlinear homogenization methods based on LCCs involve two different levels
of approximation [5,6]. The first level consists in the generation of the LCC by linearizing the behavior of each phase
in the nonlinear composite, while the second level consists in the computation of the effective behavior of the LCC,
which in general cannot be done exactly and therefore requires the use of suitable linear homogenization estimates.
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3. Two-phase, power-law composites

We consider here two-phase, fiber composites with random microstructures exhibiting overall transversely isotropic
symmetry that are loaded in transverse shear. The phases are characterized by isotropic, incompressible, power-law
potentials

φ(r)(εe) = ε0σ
(r)
0

1 + m

(
εe

ε0

)1+m

, ψ(r)(σe) = ε0σ
(r)
0

1 + n

(
σe

σ
(r)
0

)1+n

(17)

where σ
(r)
0 is the flow stress of phase r , m = 1/n is the strain-rate sensitivity, such that 0 � m � 1, ε0 is a reference

strain rate. Note that m = 1 and m = 0 correspond to linear and rigid-ideally plastic behaviors, respectively. For
simplicity, both phases are assumed to have the same exponent m and reference strain ε0. It then follows that, under
isochoric plane-strain conditions, the effective potentials can be written as

W̃ (ε) = ε0σ̃0

1 + m

(
εe

ε0

)1+m

, Ũ(σ ) = ε0σ̃0

1 + n

(
σe

σ̃0

)1+n

(18)

where σ̃0 is the effective flow stress of the composite, and εe and σe are the equivalent macroscopic strain and stress.
The effective behavior is thus completely characterized by σ̃0.

The extreme cases of infinite contrast are of particular interest, and are given in Figs. 1 and 2 corresponding
respectively to porous and rigidly reinforced composites. The matrix phase, labeled 1, has flow stress σ

(1)
0 = σ0,

and the randomly distributed voids or rigid fibers (phase 2) have circular cross-section, and volume fraction c(2) =
c. ‘Second-order’ estimates are generated by making use of the Hashin–Shtrikman (HS) estimates of Willis [7] to
determine the effective behavior of the associated LCC. The HS estimates are known to be appropriate for (linear)
particulate media at low to moderate concentrations, and are exact to second-order in the heterogeneity contrast. Both
the strain (W ) and the stress (U ) versions of the ‘second-order’ (SO) estimates of the previous section are provided,
making use of the simple prescriptions (11) and (16). In addition, the earlier ‘variational’ (VAR) bounds of Ponte
Castañeda [8], also of the HS type, are included for comparison purposes.

It should be mentioned at this stage that for the cases considered here, i.e., incompressible, transversely isotropic
composites under plane-strain loadings, expression (13) for the tensor ρ(1) in the matrix phase simplifies to

ρ(1) = (2/εe)
(
λ

(1)
0 − λ

(1)
t

)(
ε̂
(1)
‖ − ε

(1)
Le

)
εd (19)

where 2λ
(1)
t = E(1) · L(1)

t = (2/3)φ(1)′′(ε), while in the inclusion phase, ρ(2) = 0. Because the tensor ρ(1) is ‘aligned’
with the macroscopic strain ε, so is then the macroscopic stress given by (12), as it should be for transversely isotropic
composites under in-plane loading.

In order to assess the accuracy of these estimates, exact results have been generated for power-law composites with
a special class of transversely isotropic, ‘particulate’ microstructures known as multiple-rank sequential laminates
(LAM), following the procedure described by deBotton and Hariton [9]. The rank of these laminates has been set
sufficiently high so that the effective behavior exhibits transverse isotropy up to a certain tolerance. The interest in
composites with this type of microstructures is that, in the linear case, their effective behavior is given exactly by the
HS estimates, for any modulus tensors of the phases. For this reason, LCC-based homogenization estimates of the
HS type are particularly appropriate for nonlinear composites with this class of microstructures, since the effective
behavior of the LCC is being computed exactly in that case, and therefore there is only one level of approximation
involved, namely, in the linearization. In addition, since this holds for any linearization, exact results for nonlinear
composites with this class of microstructures provide an ideal test bed to compare different LCC-based homogeniza-
tion methods. A peculiarity of these nonlinear composites is that, by construction, the fields in the inclusion phase are
uniform, independently of the behavior of the phases.

Figs. 1 and 2 present results for the effective flow stress σ̃0 as functions of the strain-rate sensitivity m and con-
centration c, for both the porous and rigidly reinforced composites. They also present results for the averages of the
strain ε

(2)
e and stress σ

(2)
e over the inclusion phase for the porous and rigidly reinforced composites, respectively. (Note

that σ
(2)
e = 0 in the pores, and ε

(2)
e = 0 for rigid particles.) The main observations from these figures are: (i) The agree-

ment of the SO estimates—both W and U versions—with the LAM exact results is quite good, and certainly much
5



Fig. 1. Estimates and exact results for power-law porous materials subject to in-plane shear. Effective flow stress σ̃0, normalized by the flow stress
of the matrix σ0, (a) as a function of the power m, for several porosities c, and (b) as a function of the porosity c, in the case of an ideally-plastic

matrix. (c) and (d) Corresponding equivalent average strains in the porous phase ε
(2)
e , normalized by the equivalent macroscopic strain εe .

better than the VAR estimates. (ii) Globally speaking, the two versions of the SO estimates perform equally well
(sometimes the W version is better, sometimes, the U version is better). (iii) While the improvement in the predic-
tions for the effective behavior of the SO estimates over the VAR estimates is relatively modest, the corresponding
improvement in the phase averages of the fields in the inclusion phase can be quite significant. This is especially
the case for small concentrations of pores or rigid fibers, where huge differences in the predictions are observed. In
particular, for the case of a porous materials with an ideally plastic matrix (m = 0) (see Fig. 1d), the SO predictions
and LAM results for the average strain in the pores blow up as the porosity c tends to zero, while the corresponding
VAR estimates remain finite. (In fact, the SO estimates behave as ε

(2)
e /εe ∼ c−1/3 as c → 0.)

4. Concluding remarks

It has been shown that the use of the macroscopic strain and stress as references in the context of the ‘second-
order’ homogenization method leads to simple and accurate estimates for the effective response and field averages in
the phases of nonlinear composites, even at large heterogeneity contrast and nonlinearity. One advantage of the new
prescription is that the phase averages of both the strain and stress fields can be computed explicitly using only one
version (W , or U ) of the method. This is in contrast with the methodology proposed recently by Idiart et al. [6], which
requires the computation of both the W and U versions of the second-order estimate (and closing the gap between
them) to be able to generate consistent estimates for the phase averages of the stress and strain fields. Although
comparisons between these two approaches were not shown here, both approaches give similar predictions, but the
new approach is much simpler from a computational point of view.
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Fig. 2. Estimates and exact results for power-law rigidly-reinforced materials subject to in-plane shear. Effective flow stress σ̃0, normalized by the
flow stress of the matrix σ0, (a) as a function of the power m, for several fiber concentrations c, and (b) as a function of the fiber concentration c,

for a power m = 0.1. (c) and (d) Corresponding equivalent average stresses in the rigid phase σ
(2)
e , normalized by the equivalent macroscopic

stress σe .
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