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Identification of Poroelastic Constants of “Tight” Rocks
from Laboratory Tests

Brice Lecampion’; Andrei Constantinescu?; and Laurent Malinsky®

Abstract: This paper discusses the identification of poroelastic constants and hydraulic conductivity from two transient laboratory tests
performed on cylindrical core: drained isotropic confinement and pulse test. The combination of the two tests allows us to estimate all
poroelastic parameters with the exception of the shear modulus. Despite the lack of analytical solutions for the fully coupled case, closed
form solutions of the forward problems are obtained for a slender specimen. The validity of these solutions for a realistic aspect ratio of
the core is assessed by a comparison with a finite element model. The identification problem is solved by minimizing a least square
functional using an explicit gradient computed using the direct differentiation of the closed form solution and a Levenberg—Marquardt
algorithm. The uniqueness of this inverse problem as well as the effect of noise on input data are fully discussed. The identification
procedure is then applied to tests performed on a deep argillaceous rock (argillite of Meuse Haute—Marne).
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Introduction

This paper presents a method for the identification of porolastic
constants of rocks with very low permeability, also denoted as
“tight rocks.” As the concept of very low permeability often de-
pends on the intended applications, we specify here that “tight”
rocks refer to materials having an intrinsic permeability k under
1072° m?. Typical applications are hydro-mechanical responses of
rock masses for geological modeling, design of underground
waste repositories, or others rock engineering projects involving
large time scales.

These extreme values of permeability reach actually the physi-
cal possibilities of direct measurements. In these ranges, it is not
possible to accurately measure the flow output of the sample or to
control the inside pore pressure. It is known (Hart and Wang
2001), that classical steady state tests are not appropriate for this
type of rocks. Therefore, several experimental methods and inter-
pretation (Escoffier et al. 2001; Hart and Wang 2001) of the cor-
responding results have been developed to solve this problem.

Our main interest in this work lies, on the one hand, in inter-
preting the hydromechanical coupling during drained isotropic
confinement and pulse tests performed on cylindrical specimens
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and, on the other hand, in determining the poroelastic parameters
from these experiments.

Both tests can be performed on rocks with extremely low hy-
draulic conductivity and are of transient nature spanning several
days. As presented in the next sections, the measurements of ra-
dial and/or axial displacements during a drained isotropic con-
finement test permit us to identify the drained and undrained bulk
moduli as well as a diffusivity coefficient D lumping the hydrau-
lic conductivity and the poroelastic parameters. The decrease of
the reservoir pressure recorded during a pulse test is governed by
two constitutive parameters: a lumped dimensionless coefficient x
of the poroelastic parameters and the same diffusivity coefficient
D. A combined interpretation of these two tests should permit us
to completely identify the poroelastic constants.

The main difficulty in the interpretation is the lack of simple
closed-form solutions for such experiments (Adachi and
Detournay 1997). Even in the framework of linear poroelasticity
(Biot 1941; Detournay and Cheng 1993; Coussy 2004), no such
solutions are known. In order to overcome this type of difficulty,
it is common to interpret such transient tests with tabulated charts
(Neuzil et al. 1981; Escoffier et al. 2001), sometimes neglecting
the poroelastic coupling. As both tests are fully two dimensional,
we shall first show that one-dimensional closed form solutions
can be derived and applied providing the. specimen is slender
enough. The validity of the one-dimensional solution for the two-
dimensional field is checked using fully coupled finite element
simulations.

A complete identification method for the pulse and drained
isotropic confining test is proposed. The parameter identification
is here formulated as an inverse problem. The poroelastic con-
stants are obtained by minimization of a cost functional
measuring the discrepancy between computed predictions and
measurements.

Finally, experiments performed on deep argillaceous rocks are
analyzed using the proposed method and several details related to
the modeling and the identification procedure are discussed.
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Fig. 1. Boundary conditions (left) and evolution of radial and axial displacements (right) for drained isotropic confinement test

Tests Procedure

Both the pulsed and the drained isotropic confining test are per-
formed on a cylindrical core [(r,z) €[0,R]X[0,L] with
R=1.8 cm, L=7.2 cm] under axisymmetric conditions.

The specimen is set between two porous end caps in a triaxial
cell. The cell allows us to apply a confining pressure and the end
caps permit us to impose the pore pressure at the top and bottom
of the sample. The complete experimental setup is based on an
extremely rigid servo-controlled frame. Precise details of the ex-
perimental setup can be found in Malinsky et al. (2002). How-
ever, let us simply highlight here several important aspects of the
test facility:

1. The cylindrical surface of the specimen is lined with an im-
permeable jacket. The validity of this system for extremely
low hydraulic conductivities rocks has been assessed by tests
performed on steel cores with a rough cylindrical surface.

2. The compressibility of the pore pressure injection system has
been reduced to a minimum.

3. The effect of thermal variations are corrected dynamically
using a reference circuit.

4. The injected water is a reconstructed formation water.

5. Radial and axial displacements are measured via extensom-
eters, while pressure-volume controllers are placed in the top
and bottom hydraulic circuit.

Prior to the tests, the sample is resaturated under isotropic
confinement for several weeks. After this preparation, the sample
is in an homogeneous and isotropic hydromechanical state which
can be considered as a reference initial state with regards to the
linear theory of poroelasticity.

The drained isotropic confinement test consists of the sudden
application at =0 of an isotropic confining normal stress ¢ on all
the surfaces of the specimen. The surface tractions are given by

o -n=0,H(t)

where o =stress tensor; and n=outside unit normal and H(¢) de-
notes the Heavyside step function. The cylindrical surface
(r=R) of the sample remains undrained, i.e., the fluid flux through
the surface is zero

q-n=0

while the top and bottom surfaces (z=0,L) are drained (see
Fig. 1)

p=0

where p=pore pressure.

The recorded axial and radial displacements measure the evo-
lution of the specimen from the undrained to the drained values.

The pulse test consists of the instantaneous injection of a water
volume Vj, in a deformable reservoir of stiffness C,., connected to
the porous sample (see Fig. 2). This injection produces an instan-
taneous pressure increment p in the reservoir. After a transient
phase, the system reservoir specimen reaches an equilibrium state
where the specimen pore pressure and the reservoir pressure are
equal. The decrease of the reservoir pressure from p, toward its
equilibrium value depends on both the poroelastic coefficients
and the permeability of the specimen, as well as on the reservoir
stiffness.

This transient method has been proposed first by Brace et al.
(1968) for rocks with a negligible storage coefficient. The method
has been extended afterward to other types of rocks by Hsieh et
al. (1981) and is actually largely used (Zeynaldi-Andabily and
Rahman 1995; Escoffier et al. 2001). However, in the case of a
poroelastic coupling, special care has to be taken with respect to
the real boundary condition. The cylindrical surface (r=R) of the
specimen is kept undrained during the test. The pore pressure on
the boundary between the reservoir and the specimen, I', at the
top and bottom surfaces, equals the fluid pressure in the reservoir
Pres(?) at all time instants. The evolution of the reservoir pressure
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Fig. 2. Boundary conditions for pulse test (left) and typical decay of
the reservoir pressure
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Fig. 3. Isovalue contours of shear component of stress tensor during
transient phase of isotropic confining test. Finite-element model
Cast3M, axisymmetry, poroelastic coupling.

is governed by the fluid volume balance. The balance is written,
after taking into account the reservoir stiffness Cy, as

1 d t
g ndl'=—— Pres(t)
r Cs dt

res

(1)

where g=fluid flux vector flowing in the specimen.

The confining stress ¢ is kept constant during the test and is
equal to the one of the reference state. However, as the pore
pressure cannot be applied on a porous material without applying
a mechanical pressure, the top and bottom sufaces (z=0,L) of the
samples are also subject to a compression

O-(t) ‘n= _pres(t)n

If this last boundary condition is ignored, then the Skempton ef-
fect will be equally ignored. As a consequence the estimation of
the poroelastic parameters will be incorrect.

Modeling and Parameter Identification

Closed Form Solutions

The poroelastic fields describing the tests are fully two-
dimensional. As an illustration of this fact, we have displayed
spatial distribution of the shear stress component during a drained
isotropic confinement test in Fig. 3.

As explained by Adachi and Detournay (1997), the poroelastic
coupling does not allow to obtain a closed form solution for these
particular configurations. This stems essentially from the hydro-
mechanical boundary conditions on the cylindrical surface: no

€ %

Fig. 4. Relative error on axial strain between closed form and
coupled finite-element solution for different aspect ratios m=R/L

hydraulic flux and an applied radial stress. In spite of the apparent
simplicity of these boundary conditions, the theory of linear po-
roelasticity yields to nonhomogeneous hydromechanical fields in
the core during the transient phase. It has also been shown
(Adachi and Detournay 1997), that for the limiting case of a very
slender specimen (m=R/L<1), the continuity equation govern-
ing the pore pressure evolution in the sample, and the balance
equation uncouple. In the limiting case, stress and pore pressure
fields are homogeneous in the sample, which finally translates
into a one-dimensional closed-form solution. The expressions of
the closed form solutions for both tests are given in the Appendix.

We have first addressed the validity of the slender assumption
in the case of our specimen, which has a given aspect ratio
m=R/L=0.25. A series of axisymmetric finite element simula-
tions using the object oriented finite element code Cast3M (2005)
have been performed for different aspect ratios in order to inves-
tigate the hypothesis of slender specimen (m=R/L<1).

We have analyzed the relative error between the axisymmetric
FEM and one-dimensional solution for different quantities mea-
sured during the experiments. As a typical example in Fig. 4, we
have plotted for the case of the drained isotropic confinement test
the relative error on the vertical displacements for a series of
different aspect ratios. We remark that the error is only significant
during the transient phase and decreases with the value of the
aspect ratio m=R/L. Similar patterns have also been observed for
the pulse test. We also note that computations for different values
of the shear modulus did not show a major influence on this
relative error.

As a consequence, we can conclude that for the aspect ratio of
the specimen used in our experiments (m=0.25), the coupled ef-
fect is negligible. The relative error € on the axial strain is at most
of 1% and will therefore permit the usage of the one-dimensional
closed-form solution in the sequel. This fact simplifies the com-
putional effort for the identification process, saving both program-
ming and computation time compared to a finite element solution.

Parameter Identification

The question of the parameter identification problem is: “How to
invert the displacements and the reservoir pressure measured dur-
ing the tests in order to obtain an estimation of some poroelastic
parameters?”’



Table 1. Identifiable Coefficients and Corresponding Tests

Dimensions Test

[ML-! T-2]

Coefficient

K,K, drained and
undrained bulk moduli

Drained isotropic
confinement

kMK = . [L21!] Drained isotropic
b= EZ diffusivity confinement/pulse test
__ MK { B [] Pulse test
X= e KaRL 3

Note: B=Skempton’s Coefficients; M=Biot's modulus; k=intrinsic
permeability of the sample; C.,=reservoir stiffness; and w,=water
viscosity.

A direct interpretation of the solutions of both test shows that
different parameters are related to one or the other solutions (see
Table 1). The drained K, the undrained K, bulk moduli, and the
diffusivity coefficient D [expression (3)] can be identified from
the recorded evolution of the axial [u,(z=L,7)] and/or radial
[u,(z=L/2,1)] displacements during the drained isotropic con-
finement test [see Eq. (5) in the Appendix]. From the pulse test,
the dimensionless parameters x [expression (6)] and the diffusiv-
ity coefficient D can be identified from the recorded reservoir
pressure decay p,.(f) [see Eq. (5) in the Appendix].

A close inspection of the expressions for displacements and
pressure show that they involve infinite series and Laplace trans-
forms. As a consequence, we do not possess a simple expression
relating directly the unknown parameters to the measurements.
The proposed solution of the identification problem will be there-
fore based on the minimization of a least square cost functional
measuring the distance between predictions and measurements.
The minimization of this functional is performed using a
Levenberg-Marquardt gradient based algorithm (see Gill et al.
1982 for details)

One of the important technical requirements of gradient based
optimization algorithms is the accuracy of the gradient compo-
nent. In the case where the direct problems are solved numeri-
cally, special numerical techniques such as the adjoint state
method and the direct differentiation needs to be used in order to
obtain precise estimation of the gradient (see Lecampion and
Constantinescu 2005 for a derivation of the poroelastic case).
However, here the knowledge of the closed form solutions per-
mitted the computation of the exact gradients of the solution
in the directions of the unknown parameters, the so-called
sensitivities

du du - dp  dp
dK dK, M’ dy

The sensitivities of the axial displacement with respect to differ-
ent parameters in the case of the isotropic confinement test are
displayed in Fig. 5. We should note that the experimental re-
sponse contains information on the undrained modulus K at early
times, but the information fades later. At large times, the displace-
ment depends, as expected, mainly on the drained modulus. The
sensitivity on the diffusivity coefficient is maximum during the
transient phase. Similar patterns can be observed for the pulse test
and could be used for fine tuning of the identification algorithm.

We recall that the estimation of unknowns parameters from
measurements is an inverse problem and that it may not have a
unique solution (Vogel 2002). However, for both tests considered
here, algebraic manipulations of the closed form solutions permit
us to show that uniqueness and stability are assured at least for
the ideal mathematical problem (see Lecampion 2002 for details).
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Fig. 5. Dimensionless total axial displacement u./L and associated
sensitivity coefficient on K,K,, and D during drained isotropic
confinement test

In the case of real data, where the poroelastic model may not be
adequate, the identification can prove to be difficult and unstable.
The validity of the results can be simply assessed by running the
minimization algorithm with several different starting points for
the initial guess of the parameters.

Results and Discussion

The drained isotropic confinement and the pulse test have been
performed on several argillaceous rock samples. The tested argi-
lite belongs to the Callovo—Oxfordian formation of Meuse Haute-
Marne (Bure, France) (Malinsky et al. 2002). The samples are
taken from cores at a depth of about 500 m, and its properties of
this rock are extensively described in ANDRA, Direction Scien-
tifique (1999). In this section, we present some of the identifica-
tion results for the poroelastic constants obtained using the tests
and the identification procedure described previously.

Drained Isotropic Confinement

Fig. 6 and 7, display the measured and fitted responses of an
argilite sample submitted to a drained isotropic confinement. As a
first remark, one can note the high level of anisotropy between the
axial and radial deformation. The identification performed using
only the axial displacement of the isotropic drained consolidation
on an argilite sample gives a perfect fit (Fig. 6). For different
initial guesses the same set of identified parameters is obtained

K=1.04 GPa; K,=9.82GPa; D=4.02X 10 m?s~!

The identification performed using only the radial displace-
ment recorded at the middle of the specimen yields the following
values of the parameters:

K=2.12GPa; K,=169GPa; D=1.74X10"° m?s™!

Comparing the experimental and computed responses one can
observe a certain misfit (see Fig. 7). A close inspection of this
figure shows on the one hand that the measured radial displace-
ment has not reached its asymptotic value after 15 days, whether
the computed one already tends to its asymptotic value. On the
other hand, at early times the measured initial delay due to the
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Fig. 6. Experimental and identified response (axial strain)
to isotropic confinement test performed on argilite of Meuse
Haute—Marne

diffusion process is rather small when compared to the computed
one. In this case, using the knowledge of the uniqueness result for
the identification problem one can state that the mismatch is not
an artifact of the identification. The linear poroelastic model is
probably not suited to represent the material behavior. This has
later been confirmed by swelling observed on the same sample.

The anisotropy is clearly straightforward when looking at the
parameters estimated with either axial or radial displacement.
This anisotropy can be explained by the high level of damage
of the sample, which most probably occurred during sample
preparation.

Knowing K, K,, and D, it is possible to compute the intrinsic
permeability assuming reasonable value for Biot’s modulus M.
Table 2 presents the results for different values of M. An intrinsic
permeability on the order of magnitude of 1X 107! m? matches
the expected values for this argilite.

Pulse Test

The identification method has also been applied to pulse tests.
The experimental as well as the identified response are displayed
in Fig. 8. Table 3 presents the identified parameters as well as the
value of the cost functional for different initial guesses. The best
fit has been obtained for the following set of values:
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0.1e~-3 T T T T T T T
2 4 6 8 10 12 14

t (Days)

Fig. 7. Radial strain (isotropic confinement)

Table 2. Estimation of Intrinsic Permeability for Different Values of Biot
Modulus with K=1.04 GPa, K,=9.82 GPa, and D=4.02X 107" m?s™!
(Identification Performed on Axial Displacement)

M k
(GPa) (m?)

5 7.5% 1072
10 3.7x 1072
15 2.5%107%!

x=0.653; D=1.65%10"° m>s™!

However, the match between the measured and computed re-
sponses is far from perfect. As before, taking into account the
stated uniqueness of the identification procedure, one can con-
clude that this relative misfit is attributed to the poroelastic model,
which is not able to capture the complex behavior of this rock
sample.

At this point it is important to note that the exact value of the
reservoir stiffness C,., intervenes directly in the identification pro-
cess and has to be known with precision in order to extract accu-
rate values of the poroelastic parameters. The reservoir stiffness
can be estimated by additional tests on the reservoir. Unfortu-
nately, in our case, this estimation was far from perfect.

In Table 5, we have displayed the value of the coefficient
MK/K, and that of the intrinsic permeability k£ for a range of
acceptable values of the reservoir stiffness C,.,. We should note
that all the obtained values are in a standard range for an argilite.

Discussion

As a first conclusion, we note that all the identified values of the
parameters lies in the physical range known from the literature
(see Table 4). Previous laboratory experiments (Vincké et al.
1998; Escoffier et al. 2001) suggest a value around 107! m? for
the intrinsic permeability of these rocks. The value that we can
deduce (Tables 3 and 5) tends to be slightly lower: 1072> m2. The
values of the elastic undrained moduli found are around known
values. The drained values obtained here are lower than the one
reported previously (Escofier et al. 2001). This may be partly due
to the high level of damage to the sample observed after the test.

Despite the reported misfit between model predictions and
measurements we can conclude that the first order response of the
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0.7+
0.61
05 M T T M U T 1
0 2 4 6 8 10 12
t (Days)

Fig. 8. Pulse test on argilite from Meuse Haute-Marne




Table 3. Pulse Test on Argilite. Results of Identification for Different
Initial Guesses

X D (m*s7") J
Initial 0.8 5.184% 107 0.21
Final 0.6531 1.65162% 107 0.09084
Initial 1.8 5.184% 1078 2.872
Final 0.653 1.6537% 107 0.09084
Initial 0.1 7776 % 10710 16.65
Final 0.6537 1.65629 X 107 0.0906

rock to the experiments is clearly of linear poroelastic nature. The
knowledge of the uniqueness of the identification for perfectly
poroelastic materials is practically important as it can quantify the
deviation of the specimen from a purely poroelastic behavior.
Such information can guide further modeling of the hydrome-
chanical behavior of such rocks.

One should not be mislead by the obtained experimental re-
sults. The technical difficulties of performing tests on such
argillaceous materials are enormous and the values of the param-
eters should be taken with precaution as preliminary estimations.
Several experimental and modeling issues regarding the chemi-
cally reactive and swelling behavior of this argilite should also be
investigated in more details.

An important advantage has been obtained by performing the
two tests, drained isotropic confinement and pulse test, together.
By combining the identified coefficients from the two tests
(K,K,,D, and x), it is possible to estimate all the poroelastic
parameters and the permeability with only the exception of the
shear modulus. Moreover, as the diffusivity coefficient D is esti-
mated twice in two different ways, it ensures the robustness of the
estimation. Complete results of this procedure could not be dis-
played here due to confidentiality agreements.

Finally, we note that the closed form solution used for the
pulse test is similar to the one proposed by Hsieh et al. (1981) for
the uncoupled case. The difference is that we explicitly take into
account the presence of a mechanical pressure on the reservoir
surface. The presence of this boundary condition largely affects
the identified parameters in the coupled case.

Conclusions

In this paper, we have discussed the identification of several po-
roelastic parameters from drained isotropic confinement and pulse
tests. We have shown that for specimens with an aspect ratio
R/L<0.25, we can use the one-dimensional closed form solu-
tions obtained for a slender specimen. This permits us to speed up
the identification procedure. The proposed identification method
has been shown to provide robust and efficient solutions to this

Table 4. Summary of Identified Values of Parameters for
Collovo—Oxfordian Argilite

Coefficient Value Test

K 1-2 GPa Drained confinement
K, 9-16 GPa Drained confinement
D 1.7-4 107° m? 57! Drained confinement
D 3.5x10° m?s7! Pulse test

X 0.653 Pulse test

Table 5. Estimation of Coefficient MK/k, and Intrinsic Permeability for
Different Values of Reservoir Compressibility and Skempton’s
Coefficient (x=0.653, D=3.53 10~ m?s7!)

MK

B Cres (MPam™) &, MPa) k)
0.0 8 X 10* 15.536 227X 10722
0.0 410 7.76 454X 10722
0.0 1.33%x10% 2.58 2,654 10721
1.0 8 x 10* 234 1.5X 10722
1.0 4x10* 11.7 3.01x 10722
1.0 1.33 X 10* 3.9 9.07 X 10722

inverse problem. Note that the induced mechanical loading during
a pulse test greatly affects the estimated value of the poroelastic
parameter as it induces a Skempton’s effect.

The identified values of the constitutive parameters for the
argilite of Meuse Haute-Marne are within the expected range. The
partial mismatches between the poroelastic model and the experi-
ment show that probably other physical phenomena (swelling,
chemical reaction . . .) should also be taken into account.

We can conclude that the combination of the drained isotropic
confinement and the pulse test permits a complete identification
of the poroelastic parameters and hydraulic conductivity with the
exception of the shear modulus. The methodology presented here
can be extended to other porous materials such as tight sandstone
or granite.

Acknowledgments

The authors would like to thank Professor E. Detournay and Dr.
J. I. Adachi for the benefit of useful discussions. This research
was funded by the French Agency for Radioactive Waste Man-
agement (ANDRA) through a Ph.D. Grant for B.L. The experi-
mental campaign was run for ANDRA under Contract No.
ANDRA 017079-Contract-cadre AQL. The experimental tests
were performed at G3S, Ecole Poly Y technique, France by Serge
Chanchole and Frangois Coste.

Appendix. Closed-Form Solutions for Slender Case

For the slender case (R/L<1), the problems are one dimensional
and the continuity and balance equations uncouple. The diffusion
equation governing the pore pressure now reduces to

ap #p Bd

=D == [ur 2
ot 97 3 dt[ (@)] @
where tr(o)=0,=volumetric part of the stress tensor; and
B[-]=Skempton dimensionless coefficient (between brackets [-]
we indicate the physical dimensions of the parameters). The dif-
fusivity D[L? T~'] is given by (Detournay and Cheng 1993; Wang
2000)

D=M—— (3)
574 Ku
where k[L?*]=intrinsic permeability; p{ML™' T~*]=fluid viscos-
ity; M[ML™! T-?]=Biot modulus; K[ML™!' T~?]=drained bulk
modulus; and K,[ML~!' T-?]=undrained bulk modulus.



The right hand side of the continuity equation is different for
each test

30,8(¢) for the isotropic confinement

dir(o) L dp
- Ires

dt

for the pulse test

where 8(7)=Dirac distribution.
We use a similar set of dimensionless variables for both tests

* Dt *

I=P, z

_Zz
L

for the isotropic confinement test

for the pulse test

S|t QIS

Drained Isotropic Confinement Test

The boundary conditions are homogeneous

(z"=L,)=11(z"=0,/)=0

Iz, '=0)=0

The dimensionless pore pressure is easily obtained from the so-
Iution of the diffusion equation in a bounded one-dimensional
domain with an instantaneous volumetric source term at ¢'=0
(Carslaw and Jaeger 1959)

H(Z*’t*) == BIC(Z*7I*)
with K(z,1)

n=1

From the linear poroelastic constitutive equations in cylindri-
cal coordinates (Biot 1941; Detournay and Cheng 1993; Wang
2000), one obtains the overall axial, and the radial displacement
at the middle of the specimen. These displacements are recorded
during an experimental test

=1, K,-K_ .,
Mz<2>=0[1_1(1,t )]
L 3K K,

(2 =172t K,-K i}
wlz =12.1) o), K=K mr)
R 3K K,

where Z(1,1")= [(K(&,17)dE is given by the following series:

w2 - (1 cosnm\?
I(l,t):zzexp(—nzwzt)<— w)
L — n

Series (4) and (5) are precisely estimated even for early times
(£*~0.01) when keeping the first ten terms of the series.

Pulse Test

This solution is similar to the classical one given by Hsieh et al.
(1981) with the difference that we take into account the effect of
the mechanical loading on the specimen due to the reservoir
pressure.

The initial and boundary conditions (1) give the following
additional equations to the pressure equation (2):

Mz =(0,1), ' =0]=1

Iz, =0)=0
dll oIl 0 inso01
T x — mn =Y,
ydt 9z <

Another dimensionless parameter related to the constitutive
parameters and the reservoir compressibility is introduced

MK

YT K mRL

The Laplace transform of the solution I is given in the Laplace
domain by

x cosh[Vs(1/2 = 2]

L (5)
h(“) +s sinh(\s)
Xs COos > \ 2

B KM VM(K, - K)
x=y\1-7|= ol (6)
3] K,CowmRL 3K,

u

(z",s) =

with

Note that if we do not take into account the mechanical pressure,
the solution has a similar form but with x=v: the Skempton’s
effect is ignored. No simple analytical expression of the inverse
Laplace transform exists for expression (5). The inversion can be
performed numerically using Stehfest algorithm, for example
(Cheng et al. 1994).
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