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Quasicontinuum modeling of short-wave instabilities
in crystal lattices

LEV TRUSKINOVSKY†

Laboratoire de Mechanique des Solides, CNRS-UMR 7649, Ecole Polytechnique,
Palaiseau, 91128, France

and ANNA VAINCHTEIN‡

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

We propose a hybrid quasicontinuum model which captures both long and short-wave insta-

bilities of crystal lattices and combines the advantages of weakly nonlocal (higher gradient) and

strongly nonlocal (integral) continuum models. To illustrate the idea, we study the simplest one-

dimensional lattice exhibiting commensurate and incommensurate short-wave instabilities. We

explicitly compute stability limits of the homogeneous states using both discrete and quasicon-

tinuum models. The new quasicontinuum approximation is shown to be capable of reproducing

a detailed structure of the discrete stability diagram.

Keywords: Crystal lattice; Short-wave instability; Quasicontinuum model

1 Introduction

Lattice instabilities are responsible for various transformations of crystal structures. Macro-
scopic or long-wave instabilities give rise to martensitic phase transformations, which pro-
ceed through the formation of finite-size domains of the new phase [1, 2]. Microscopic
or short-wave instabilities lead to the formation of multi-lattices and modulated “tweed”
patterns [2, 3, 4]. Both micro and macroinstabilities are detectable in the phonon disper-
sion spectra. The loss of stability takes place when when the minimum of the dispersion
curve touches the zero frequency level [5, 6, 7]. Macroscopic instabilities correspond to
infinitely long waves and can be linked to the softening of the appropriate combinations of
macroscopic elastic moduli. Typical microscopic instabilities occur at finite wave lengths
associated with special points in the Brillouin zone corresponding to modulations com-
mensurate with the lattice. Less frequent microinstabilities with the generic wave vectors
give rise to incommensurate phases [8].

Classical continuum description of lattice instabilities is provided by the Landau the-
ory. When the unstable wave vector is equal to zero, the order parameter can be chosen to
coincide with a component of the macroscopic strain (e.g. [9]). If the unstable wave vector
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is different from zero, the macroscopic order parameter can be identified with the am-
plitude of an unstable normal mode (e.g. [10]). The resulting coarse-grained description
remains adequate until external length scales become comparable with the lattice spacing
as in the cases of ultra-thin layers, boundaries with singularities or strongly interacting
defects.

To preserve the fine structure of the elastic fields in the continuum setting we pro-
pose a new quasicontinuum model which captures both long and short-wave instabilities
associated with the acoustic branch of the phonon spectrum. The model is obtained by
a long-wave expansion of the lattice energy and it shares with the discrete model the
property that strain is the only order parameter. To make the truncated gradient ex-
pansion well-posed, we extend the polynomial dispersion relation by zero outside the first
Brillouin zone. The model therefore restricts modulations in the physical space to length
scales larger than lattice spacing. The suppression of the gradient model outside the
Brillouin zone allows one to avoid the unphysical small-scale instabilities; a similar hard
cutoff procedure is routinely used in coarse-grained continuum field theories [11]. As we
show, the cutoff makes the gradient model equivalent to a fully nonlocal model with a
slowly decaying oscillatory kernel.

To illustrate the idea, we consider a one-dimensional lattice involving interactions of
up to third nearest neighbors which can be either of ferromagnetic or antiferromagnetic
type. The discrete model is shown to generate both commensurate and incommensurate
short-wave instabilities (e.g. [12, 13]). We show that the quasicontinuum model captures
all unstable modes exhibited by the discrete model and provides good quantitative bounds
for the instability thresholds.

2 Discrete model

Consider an infinite chain of interacting particles with the total energy

W = ε
∞

∑

n=−∞

q
∑

p=1

pφp

(

un+p − un

pε

)

. (1)

Here φp(w) is the energy density of an effective spring with reference length pε (repre-
senting interaction of pth nearest neighbors) and un(t) is the displacement of nth particle.
The equilibria in this system satisfy the following infinite system of difference equations:

q
∑

p=1

[

φ′
p

(

un+p − un

pε

)

− φ′
p

(

un − un−p

pε

)]

= 0. (2)

To access stability of a homogeneous equilibrium state u0
n = nεw, where w is the

average strain, we need to introduce perturbations vn = un − u0
n and study the positive
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definiteness of the quadratic part of the energy expansion. This leads to the following
eigenvalue problem:

−ω2vn =

q
∑

p=1

Kp(vn+p − 2vn + vn−p), (3)

where Kp = φ′′
p(w)/p and ω2 is the square of the characteristic frequency. By representing

the normal modes (phonons) in the form vn = exp(ink), where k is a real wave number,
we obtain the dispersion relation

ω2(k) = 4

q
∑

p=1

Kp sin2
pk

2
. (4)

By symmetry and periodicity it suffices to consider the wave numbers in the interval
0 ≤ k ≤ π (Brillouin zone). A uniform deformation is then stable if and only if ω2(k) > 0
for all k ∈ (0, π]. This condition is the far reaching generalization of the Legendre-
Hadamard condition of strong ellipticity in continuum elasticity [14].

One can obtain some immediate necessary conditions for stability by requiring that

d2ω2(0)

dk2
> 0 and ω2(π) > 0.

The first condition, written as

E =

q
∑

p=1

p2Kp > 0, (5)

means physically that the effective elastic modulus along the homogeneous branch of
equilibria is positive; the corresponding eigenmode, vn = 1, is infinitely long wave. The
second condition,

q
∑

k=1, k odd

Kp > 0, (6)

is less transparent: the corresponding unstable eigenmode vn = (−1)n is microscopic,
commensurate and has the smallest possible wave length.

To characterize the complete set of stability conditions (necessary and sufficient) ex-
plicitly, we need to specify the number of interactions. One can show that the first generic
case is q = 3, when nearest (NN), next to nearest (NNN) and next to next to nearest
(NNNN) neighbors interact. The corresponding dispersion relation reads

ω2(k) = 4 sin2 k

2

(

K1 + 4K2 + 9K3 − 4(K2 + 6K3) sin2 k

2
+ 16K3 sin4 k

2

)

(7)
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A straightforward analysis of the positive definiteness of the right hand side produces the
following necessary and sufficient conditions of stability:

K1 + 4K2 + 9K3 > 0

K1 + K3 > 0

K2
2 < 4K3(K1 + K2) if − 6 <

K2

K3

< 2

(8)

The first two of these conditions have been already obtained as necessary (see (5), (6))
and can be identified with macroinstabilities (k = 0) and commensurate microinstabilities
(k = π), respectively. The third condition (8)3 is associated with the incommensurate
mode 0 < k = 2 arcsin

√

(K2 + 6K3)/(8K3) < π. The full stability diagram in the plane
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Figure 1: Stability diagram for the discrete model with q = 3 and K1 > 0. Regions of stability
are shown in gray. Dispersion relations corresponding to different modes of stability loss are
shown in inserts. Stability boundaries: (i) commensurate microinstability, β = −1 (to the
right of N); (ii) macroinstability, 1 + 4α + 9β = 0 (between N and M); (iii) incommensurate
microinstability, α2 = 4β(1+α) (above M and below R). Classical continuum stability boundary
is given by a gray line, 1+ 4α+9β = 0. Dashed lines with numbers indicate deformation paths:
γ2 = γ3 = 1 (path 1); γ2 = 1, γ3 = 0.4 (path 2); γ2 = 0.4, γ3 = 0.2 (path 3); γ2 = γ3 = 0.4
(path 4). In all cases µ1 = µ2 = µ3 = γ1 = 1.

of the nondimensional parameters

α =
K2

K1

, β =
K3

K1

(9)
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Figure 2: Stability diagram for the discrete model with q = 3 and K1 < 0. Stability boundaries:
(i) commensurate microinstability, β = −1 (to the left of R); (iii) incommensurate microinsta-
bility, α2 = 4β(1 + α) (below R). Dashed line indicates deformation path 3 which is also shown
in figure 1.
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Figure 3: Stress-strain relations along the deformation paths shown in figures 1 and 2. Points
Ai mark the loss of stability of the homogeneous deformation.
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is presented in figures 1 for K1 > 0 and 2 for K1 < 0.
To relate the microscopic stability limits with the macroscopic stress-strain relation,

consider a family of homogeneous configurations un = wnε parametrized by the strain
w. Assume that all three interactions (NN, NNN and NNNN) are governed by the Morse
potentials

Up(r) =
µpε

2γ2
p

(

1 − exp

[

−γp

(

r

ε
− 1

)])2

, 1 ≤ p ≤ 3. (10)

The energy density associated with pth interaction in the homogeneous state is

φp(w) = Up(pε(w + 1))/(pε); (11)

the elastic moduli are given by:

Kp(w) = µp exp[−pγpw](2 exp[−pγpw] − 1), 1 ≤ p ≤ 3. (12)

Using (9) and (12), we can compute the strain dependence of the dimensionless parameters
α(w) and β(w). Depending on the choice of the microscopic parameters µp and γp we
obtain different paths in the α-β plane; each path starts in the stable region and eventually
reaches the instability threshold. If the potentials are identical for NN, NNN and NNNN
interactions (µ1 = µ2 = µ3, γ1 = γ2 = γ3), the resulting homogeneous equilibrium branch
(path 1 in figure 1) crosses the macroinstability boundary MN , activating the instability
mode vn = 1. The corresponding macroscopic stress-strain relation σ(w) is shown in
figure 3. In this case the bifurcation point A1 correspond to the failure of the Legendre-
Hadamard conditions for the macroscopic energy (σ ′(w) = 0).

Suppose next that the three considered interactions (NN, NNN and NNNN) are gov-
erned by different Morse potentials. For instance, we may assume that U ′

1(r) = U ′
2(r) but

that the force associated with the NNNN interaction U ′
3(r) decays at large r slower than

U ′
1(r). If γ3 is sufficiently smaller than γ1 = γ2, the corresponding equilibrium branch

(path 2 in figure 1) crosses the incommensurate microinstability boundary. The stability
is lost at point A2 where σ′(w) > 0, i.e. before the macroscopic threshold.

Now suppose that U ′
2(r) decays slower than U ′

1(r) but faster than U ′
3(r) (e.g. γ1 = 1,

γ2 = 0.4, γ3 = 0.2). The corresponding equilibrium path 3 starts in the stable region where
all three elastic moduli are positive (see figure 1). As w increases, K1(w) approaches zero
faster than the other two moduli, so that α and β both tend to infinity. When K1 changes
sign, parameters α and β become infinite and the path re-emerges in the stable region
with K1 < 0 (figure 2). The failure of the homogeneous state at A3 takes place via
incommensurate microinstability before the macroinstability threshold.

Finally, assume that NNN and NNNN interactions potentials are identical and that
the corresponding forces decay slower than U ′

1(r) (γ1 = 1, γ2 = γ3 = 0.4). Then we
obtain path 4 which crosses the commensurate microinstability boundary at point A4 to
the right of point N in figure 1. The corresponding microinstability again precedes the
macroinstability (see figure 3).
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Figure 4: (a) Stability diagram for the discrete model with q = 2. The trivial solution is
stable in the gray area. Stability boundaries: (i) commensurate microinstability, K1 = 0; (ii)
macroinstability, K1 + 4K2 = 0. In the classical continuum model the trivial solution is stable
above the gray line K1 + 4K2 = 0. The dotted curves show deformation paths: γ2 = 1 (path
1) and γ2 = 0.4 (path 2). In both cases µ1 = µ2 = γ1 = 1. (b) The corresponding stress-strain
curves.

In the special case when the only two interactions are NN and NNN (q = 2, K3 = 0),
the stability conditions (8) reduce to K1 + 4K2 > 0, K1 > 0 [15]; see the shaded region
in figure 4a. In this case the microinstability is necessarily commensurate, and it takes
place at K1 = 0. As before, the path with identical Morse potentials for NN and NNN
interactions (path 1) leads to macroinstability. If U ′

2(r) decays slower than U ′
1(r), the

instability becomes microscopic (see figure 4b).

3 Quasicontinuum approximation

A higher gradient quasicontinuum approximation of a lattice model is obtained by re-
placing the discrete dispersion relation (4) by the first few terms of its Taylor expansion
around k = 0 [16, 17]. To capture all three types of instabilities (long-wave, commensu-
rate and incommensurate) exhibited by the discrete model with q ≥ 3, it is necessary to
consider a polynomial expansion of at least sixth order:

ω2(k) ≈ k2(E + A1k
2 + A2k

4), (13)
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where the Taylor coefficients are

E = K1 + 4K2 + 9K3

A1 = −
K1 + 16K2 + 81K3

12

A2 =
K1 + 64K2 + 729K3

360
.

(14)

The quadratic part of the continuum energy function corresponding to (13) takes the form

W =
1

2

∫ ∞

−∞

[Eu2
x + A1ε

2u2
xx + A2ε

4u2
xxx]dx. (15)

To access stability of the homogeneous state in the continuum problem we need to solve
the following eigenvalue problem:

−ω2v = Evxx − A1ε
2vxxxx + A2ε

4vxxxxxx. (16)

One can immediately see that if A2 < 0 the energy is unbounded from below (ω2(k) < 0
for sufficiently large |k|). This short-wave instability is unphysical if the unstable wave
length is shorter than the lattice spacing. To eliminate this possibility we can limit the
class of perturbations by imposing a constraint |k| ≤ π. This is achieved by replacing
(13) with ω2(k) = 0 outside the first Brillouin zone (for |k| > π). The resulting dispersion
relation with a short wave cutoff is compared in figure 5 with the dispersion relation for
the exact quasicontinuum model [18] obtained by replacing discrete dispersion by zero at
|k| > π.

Despite its appearance, the proposed higher gradient approximation with a cutoff is
essentially a continuum model with long-range spatial memory. Indeed, if we compute
inverse Fourier transform of the truncated dispersion relation (13), we obtain the integral
model

W =

∫ ∞

−∞

∫ ∞

−∞

Φ(x − ξ)u(x, t)u(ξ, t)dxdξ (17)

with the kernel

Φ(x) =
1

πx7
[2πx((E + 2A1π

2 + 3A2π
4)x4 − 12(A1 + 5A2π

2)x2 + 360A2) cosπx

+ (π2x6(E + A1π
2 + A2π

4) + 2(E + 6A1π
2 + 15A2π

4)x4

+ 24(A1 + 15A2π
2)x2 − 720A2) sin πx].

(18)

Meanwhile, the exact quasicontinuum model has the kernel (e.g. [18])

ΦD(x) =
4 sin πx

πx

(

K1

x2 − 1/2

x2 − 1
−

2K2

x2 − 4
+ K3

x2 − 9/2

x2 − 9

)

(19)
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Figure 5: (a) Dispersion relations ω(k) for the exact quasicontinuum model (thick solid
line) and the cutoff polynomial approximation (dashed). (b) The kernels Φ(x) of the
exact quasicontinuum (solid) and cutoff polynomial (dashed) nonlocal models in physical
space. Parameters: K1 = 1, K2 = 0.5, K3 = −0.02.

The two kernels are compared in figure 5b; one can see that the nonlocal interactions
decay in both cases as a power of distance which is characteristic for the models with
long-range interactions.

The proposed quasicontinuum model can be used to study stability of the homogeneous
state. Following the same procedure as in the discrete case, we obtain the following
necessary and sufficient conditions of stability:

E > 0

E + A1π
2 + A2π

4 > 0

4A2E − A2
1 > 0 if 0 < −

A1

2A2

< π2.

(20)

The first condition, indicating macroinstability, coincides with (8)1. The second condition
is the analog of (8)2, and the unstable mode is again k = π. The last inequality in (20)
is analogous to (8)3; its failure corresponds to incommensurate microinstability with the
wave number

k = k∗ =

√

−
A1

2A2

. (21)

A combined stability diagram illustrating conditions 20 is presented in figure 6 where it
is compared with the stability diagram for the discrete model.

Observe first that in the discrete and quasicontinuum models at K1 > 0 the stability
boundaries are tangent at point M where the unstable wave is infinitely long (k = 0).
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Figure 6: Stability diagram for the quasicontinuum polynomial model with the cutoff compared
with the discrete stability diagram. Regions of stability are shown in gray, the corresponding
graphs of ω2(k) (dispersion relations) are shown in the inserts. Dashed curves indicate stability
bounds for the discrete model. The two main diagrams correspond to the cases (a) K1 > 0 and
(b) K1 < 0. Stability boundaries: (i) commensurate microinstability, E + A1π

2 + A2π
4 = 0

(PQ); (ii) macroinstability, E = 0 (MQ); (iii) incommensurate microinstability, 4A2E −A2
1 = 0

(above M , below P and entire boundary of K1 < 0 stability region in (b)). Classical continuum
model predicts stability above the gray line in (a) and below it in (b). In (c) we present stress-
strain relations along the deformation paths (the same as in figure 1) shown by the dotted curves
in (a) and (b), with bifurcation points for quasicontinuum model shown by gray circles and for
the discrete model by black circles.
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Above point M the quasicontinuum model reproduces the main qualitative features of the
discrete diagram. Between points M and Q = (−4(π2−3)/(13π2−30), (π2−6)/(3(13π2−
30)) the instability mode is macroscopic in both models; this interval, however, is much
shorter in the quasicontinuum model. Between points Q and P = (−(120 − 80π2 +
3π4)/(10(30− 26π2 + 3π4)),−(30π2 − π4 − 90)/(45(30− 26π2 + 3π4)) the stability loss is
via microscopic mode with k = π. Below P the instability mode is again incommensurate;
such transition from commensurate to incommensurate instability is not observed in the
discrete case. Overall, the quasicontinuum theory underestimates stability domains in
the region {K1 > 0, K2 > 0, K3 < 0}. This is due to the larger contribution of the
oscillation-producing K3 terms in the polynomial model compared to the discrete case.

At K1 < 0 the quasicontinuum approximation has the opposite effect: it overestimates
the stability of the homogeneous state. This is again caused by the very nature of the
polynomial approximation: for positive K2 and K3 (which at K1 < 0 result in negative
α and β) the smoothening quadratic and quartic terms in the dispersion relation easily
dominate the unstable contribution due to K1. Notice also that while in the discrete case
the boundary of the stable domain contains a segment corresponding to commensurate in-
stability (which at point R becomes incommensurate), in the polynomial quasicontinuum
model the whole instability boundary is due to incommensurate mode.

It is instructive to compare the instability mechanisms along the four deformation
paths considered earlier for the discrete model with the predictions of the quasicontin-
uum models (see figure 6). Along path 1 the quasicontinuum approximation predicts a
commensurate microinstability (at point B1), whereas the discrete model predicts macro-
scopic instability. Both models predict incommensurate instability along paths 2 and
3, with stability failure somewhat delayed in the quasicontinuum model. Finally, path
4 is predicted to pass through microinstability boundary by both models; the mode of
instability is, however, commensurate in the discrete case and incommensurate in the
quasicontinuum approximation. The analysis of the relative position of the bifurcation
points on the stress-strain curves, presented for both models in figure 6c, shows a reason-
able quantitative agreement.

4 Conclusions

It has been long recognized that higher gradient approximations of lattice models gener-
ate in the continuum limit either unbounded or nonpositive definite operators leading to
ill-posed mathematical problems (e.g. [19, 20]). To overcome this difficulty we propose to
regularize such operators by restricting them to a finite sphere in the Fourier space. At
short wave lengths the resulting quasicontinuum model effectively replaces partial differ-
ential equations by integral equations. The dual nature of such cutoff polynomial models
may be used to design hybrid computational schemes filtering parasitic small-scale oscilla-
tions while taking full advantage of the availability of simple partial differential equations
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for slowly varying fields. As we showed, the new quasicontinuum model combines the
analytical simplicity of the gradient models at long waves with the physically correct de-
scription at small scales provided by models with long spatial memory. In particular, the
approximation was shown to be sufficient to capture the whole spectrum of short-wave
instabilities exhibited by the prototypical lattice model.
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and DMS-0137634 (A.V.).

References

[1] M. Pitteri and G. Zanzotto, Continuum theories for phase transitions and twinning

in crystals (Chapman and Hall, 2004).

[2] P. Toledano and V. Dmitriev, Reconstructive phase transitions: in crystals and

quasicrystals (World Scientific, Singapore, 1996).

[3] T. Castan, A. Planes, and A. Saxena, Phys. Rev. B, 67, 134113 (2003).

[4] S. Kartha, J. Krumhansl, J. Sethna, and L. Wickham, Phys. Rev. B, 52, 803 (1995).

[5] X. Huang, C. Bungaro, V. Godlevsky, and K. M. Rabe, Phys. Rev. B, 65, 014108
(2002).

[6] D. C. Wallace, Thermodynamics of crystals (Dover Publications, 1998).

[7] N. Triantafyllidis and S. Bardenhagen, J. Mech. Phys. Solids, 44, 1891 (1996).

[8] T. Janssen and A. Janner, Adv. Phys., 36, 519 (1987).

[9] G. Fadda, L. Truskinovsky, and G. Zanzotto, Phys. Rev. B, 66, 174107 (2002).

[10] W. Cao, G. R. Barsch, Phys. Rev. B, 41, 4334 (1990).

[11] P. M. Chaikin, T. C. Lubensky, Principles of condensed matter physics (Cambridge
University Press, 2000)

[12] B. Houchmandzadeh, J. Lajzerowicz, and E. Salje, J. Phys.-Condens. Mat., 4, 9779
(1992).

[13] T. Janssen and J. Tjon, Phys. Rev. B, 25, 3767 (1982).

[14] R. Hill, J. Mech. Phys. Solids, 10, 1 (1962).

12



[15] L. Truskinovsky and A. Vainchtein, J. Mech. Phys. Solids, 52, 1421 (2004).

[16] G. R. Barsch and K. Krumhansl, Metall. Trans. A, 19, 761 (1988).

[17] R. D. Mindlin, Int. J. Solids Struct., 1, 417 (1965).

[18] I.A. Kunin, Elastic Media with Microstructure I: One-Dimensional Models, Vol. 26
of Solid-State Sciences (Springer-Verlag, Berlin-Heidelberg-New York, 1982).

[19] C. I. Christov, G. A. Maugin, and M. G. Velarde, Phys. Rev. E, 54, 3621 (1996).

[20] P. Rosenau, Phys. Let. A, 311, 39 (2003).

13


