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A general smooth and convex yield function is proposed, able to model the particular behavior of geomaterials, partic
rock materials that are characterized by a linear or parabolic Mohr’s envelope, and a particular shape in the deviatoric p
These characteristics are defined by two functions: the equation of the criterion in the meridian plane and the extension r
which are integrated in a general equation ensuring convexity and smoothness of the yield function, whatever the chara
functions. This expression is interesting, because it allows a straightforward development of a constitutive model based
triaxial tests, in extension and compression. It also allows the development of smooth criteria corresponding to the Mo
Coulomb criterion and the Hœk–Brown criterion, the latter typical of rock mechanics. 

Proposition d’une fonction de charge générale en géomécanique. Un critère général lisse et convexe est proposé pour 
modéliser le comportement particulier des géomatériaux, particulièrement les roches qui possèdent une enveloppe d
linéaire ou parabolique et une forme particulière dans le plan déviatorique. Ces caractéristiques sont définies par deux 
fonctions : l’équation du critère dans le plan méridien principal et le ratio d’extension. Ces deux fonctions sont intégrée
une équation garantissant le caractère régulier et convexe de la fonction de charge indépendamment des fonctions 
caractéristiques. Cette expression est intéressante car elle permet ainsi la constitution directe d’un modèle à partir de tes
triaxiaux, en extension et compression. Elle permet également le développement des formes régularisées corresponda
critère de Mohr–Coulomb et au critère de Hœk–Brown ce dernier étant propre à la mécanique des roches. 
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1. Introduction1,2

Apart from their inability to stand tensile conditions, one of the particularities of geomaterials, from a me
ical point of view, is the dependency of their strength on the confining pressure. The first criterion takin
account this property is known as the Mohr–Coulomb criterion whose intrinsic curve is a straight line. Ho
many rocks present a parabolic Mohr’s envelope. In order to take into account this characteristic many crite
be developed since the 1960s [1]; one of the best known is the Hœk–Brown criterion [2] (10), which ha
developed so it can be used for a wide range of rocks. Like Mohr Coulomb, it presents corners, making it
to implement.

Another experimental characteristic of soils, rocks, mortar and concrete, is a particular shape in the de
plane: triangular with smoothly rounded corners. Circular criteria, such as Drucker Prager, do not take into
this particular characteristic. Some smooth uncircular criteria, initially developed for cohesionless soils,
used in rock mechanics, such as the modified Lade model [3], and the Matsuoka–Nakai model; both are e
as functions of the polynomial invariants of the stress tensor.

The broad outline of this work is to realize a global smooth and convex yield function whose parameters
easily identified from experiments. Moreover, it should be of use on different type of rocks.

2. Polar decomposition of yield criterion

When the mean stressσm is constant, a yield surface can be reduced to its representation in the dev
plane: this shape generally reflects the smoothness of a criterion, sensitivity to extension, and convex
isotropic yield surface can be represented in a unique manner by the mean stress and the deviatoric stress
(J2 = 1

2 tr( s2), J3 = 1
3 tr( s3)). It can be useful to replace the third invariant, by the Lode angleθ :

−π

6
� θ = 1

3
arcsin

(−3
√

3

2

J3√
J2

3

)
� π

6
(1)

The set(
√

J2, θ) can define polar coordinates in one sixth of the deviatoric plane, which is sufficient. It turn
that a yield surface admits an equivalent polar expression [4]:

√
J2 = σ+gp(θ) (2)

• The deviatoric radius:σ+(σm) = √
J2/θ= π

6
, gives the yield function in the meridional plane(σm,

√
J2), for

θ = π
6 . This value of the Lode angle corresponds to the condition of a classical triaxial test, or comp

triaxial test(σI = σII > σIII );
• the functiongp(θ) is the shape function of the yield function in the deviatoric plane. We have(gp(π

6 ) = 1). It
gives directly the value of the extension ratiogp(−π

6 ) = LS which is discussed in more details in Section 3
This value is equal or lower to one for geomaterials.

The shape function of a smooth criterion must satisfy the following condition:

∂g

∂θ

(
π

6

)
= ∂g

∂θ

(
−π

6

)
= 0 (3)

1 Stress sign convention: Traction stresses are positive, and the principal stresses ordered as follows:σI � σII � σIII .
2 Software used: Mathematica® was used in Sections 4 and 5.
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In order to ensure the convexity of the criterion, some conditions must be verified. A simple graphic cond
thatLS must be greater than12 (for smooth criterions (3), we necessarily have:LS > 1

2). Assuming that condition
it should be verified that the shape function is convex:

J (θ) =
∣∣∣∣∣

d2g

d2θ
− g 2dg

dθ

dg
dθ

g

∣∣∣∣∣ � 0 (4)

Convexity of the deviatoric radius and of the shape function ensure convexity of the yield function [5].

3. Characteristic functions of the behavior of a rock material

These two functions are used to define important characteristics of rocks. They are supposed to be sm
convex.

3.1. Deviatoric radius

This function is easy to define, because it can be deduced from triaxial tests that are common in geo
Where the shape is straight or parabolic, the deviatoric radius function used can be the Mohr–Coulomb o
Brown.

3.2. Definition of the extension ratio

Its value is directly linked to the deviatoric shape of a yield surface. However, this ratio has also a p
meaning and can be determined from experiment: under a same average stress, the yield value of

√
J2 would

be lower in extension than in compression. The conditionθ = −π
6 corresponds indeed to extension triaxial te

(σI > σII = σIII ) (compressive stresses are negative), which can be performed with the same triaxial devic
compression triaxial test.

LS =
√

J2(θ = −π/6)√
J2(θ = π/6)

= (σI − σIII ) (extension)

(σI − σIII ) (compression)
(5)

While this value can be independent from the mean stress (like in Mohr–Coulomb), some rocks offer a s
their yield surface changing from triangular to circular as the mean stress increases [6], i.e.LS increases from 0.5
to 1. The ratio function must be chosen so thatLS(σm) ∈ ]0.5,1]. It is constant or an increasing function of−σm.

4. General yield function

The proposed yield function (6) was intended to be a smooth convex yield function, defined by the de
radius and an extension ratio(LS(σm) ∈]0.5,1]) (Fig. 1). Another requirement was to realize a simple yield fu
tion. So, it was decided not to define another shape function of the Lode angle, but to seek for a direct ex
of the mean stress and of the deviatoric stress invariantsJ2, J3. By the mean of the polar decomposition it giv
a third degree equation whose the shape function is solution. It was not necessary to give an explicit for
shape function, but to impose its value atπ

6 and−π
6 , and (3) and (4) lead to the value of the coefficient of t

equation. When the deviatoric radius and the extension ratio are known, the following equation defines a n
function, integrating the two characteristic functions:

f (σ ) = 3

2

√
3(1− LS)J3 + (L2

S + 1− LS)σ+J2 − σ+3
L2

S (6)
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(7)

Fig. 3),
e

e when
hedral
Fig. 1. Influence ofLS on the
shape of the yield function.

(a) (b)

Fig. 2. Mohr–Coulomb criterion and smooth version
(φ = 35◦). (a) Stress space representation, (b) shape functions.

(a) (b) (c)

Fig. 3. Hœk–Brown criterion and smooth version. (a)Pi = 0.01, (b) stress space representation, (c)Pi = 3
4 .

Considering the polar decomposition of the yield surface (2), we can say from (6) that the shape function is
of the following equation:

g3
p(θ)sin 3θ(−1+ LS) + (1− LS + L2

S)g2
p(θ) − L2

S = 0 (7)

The particular values(gp(π
6 ) = 1, gp(−π

6 ) = LS) of the shape functions are solutions of (7). Derivations of
permit to verify smoothness (3) and convexity forLS > 0.5 as (4) can be reduced toJ (θ) = (2−3LS −3L2

S +2L3
S).

5. Some particular forms of the criterion

The smooth versions of two common geomechanical criteria, Mohr–Coulomb (Fig. 2) and Hœk–Brown (
are proposed. As the principal stresses can be written as function of

√
J2 andθ , the polar decomposition of thos

function can be made, after having replaced the principal stresses by their expression as function ofσm,
√

J2, andθ

[4], giving their deviatoric radius, and extension ratios.

5.1. Mohr–Coulomb

The deviatoric radius and extension ratio in this case are the following, withH = C
tanφ

:

σ+ = 2
√

3 sinφ(H− σm)

3− sinφ
(8)

LS = 3− sinφ

3+ sinφ
(9)

In this case, the yield function is equal to the one of Matsuoka–Nakai criterion. It is interesting, becaus
using the notion of ‘spatially mobilized plane’ – which averages the friction angles, instead of the octa
4
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plane, the Matsuoka–Nakai criterion corresponds to the Mohr–Coulomb criterion, just as the Von Mises c
corresponds to the Tresca criterion [7].

5.2. Hœk–Brown

The Hœk–Brown criterion can be written as follows, withRc the uniaxial strength of the intact rock,mb the
value the Hœk–Brown constant for intact rock (value between 4 and 33), ands a positive parameter, equal to 1 f
intact rock, lower for fractured rock, which can be used as a softening variable.

f (σ ) = (σI − σIII ) − Rc

√
s − mb

σI

Rc

(10)

We consider the following functions to define the criterion, using the scaled internal pressure [8]:Pi = s/m2
b −

σm/(mbRc) whose value is strictly positive (for common stress states, it can be considered lower than one

σ+ = mbRc

4
√

3
2
−1+ √

1+ 36Pi

3
(11)

LS = 1− 0.49 e−1.25
√

P i (12)

This extension ratio is a sufficiently close approximation (Fig. 4) of the one from the original criterion(LHB
S =

2(−1+ √
1+ 9Pi )/(−1+ √

1+ 36Pi )). This permits to realize a smooth Hœk–Brown criterion, preservin
parabolic character, and its particular deviatoric stress (Fig. 3).

5.3. Comparison with explicit shape functions

The proposed yield function is a direct function of the third deviatoric invariant, and thus does not requ
calculation of the Lode angle, that explicit shape functions require. However, it is interesting here to com
with those forms.

The simplest explicit function [9] (13) is convex only forLS ∈ [7
9,1], which corresponds when seeking cor

spondence with a Mohr–Coulomb criterion, to values of the friction angle lower than 22 degrees.

gp(θ) = 2LS

(1+ LS) − (1− LS)sin 3θ
(13)
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The William–Warnke [10] shape function (14), used for concrete materials, is convex for any value ofLS greater
than 0.5, but is more complex. It is not solution of (7), but is relatively near, as the values obtained are a
than 0.02.

gp(θ) =
2(1− L2

S)cos(θ + π
6 ) + (2LS − 1)

√
4(1− L2

S)cos2(θ + π
6 ) + 5L2

S − 4LS

4(1− L2
S)cos2 (θ + π

6 ) + (2∗ LS − 1)2
(14)

Another explicit shape function has been proposed by Bigoni and Piccolroaz [5], which is not functionLS

but of two parametersβ andγ :

gp(θ) = cos(βπ/6− (arccos(−γ ))/3)

cos(βπ/6− (arccos(−γ sin 3θ))/3)
(15)

This shape function is a numerical solution of (7), forβ = 0, γ = cos(3 arccos(
√

3

2
√

1−LS+L2
S

)).

6. Conclusion

The general form of the proposed yield function ensures its ability to model different behavior of geoma
as has been shown for the correspondence with the criteria of Mohr–Coulomb or Hœk–Brown allowing u
last case to produce a smooth criterion for rocks, with a parabolic intrinsic curve, and a complex extensio
The characteristic functions: deviatoric radius and extension ratio, can be determined using a common
device. Its smoothness and convexity are also interesting, when using finite elements methods.
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