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Abstract

We show that the singular dissipative potential of the phenomenological rate-independent 
plasticity can be obtained by homogenization of a micro-model with quadratic dissipation. 
The essential ingredient making this reduction possible is a rugged energy landscape at the 
micro-scale, generating under external loading a regular cascade of subcritical bifurcations. 
Such landscape may appear as a result of a sufficiently strong pinning or jamming of defects, 
leading to elastic micro-metastability. The rate-independent plastic deformation emerges in 
this description as a continuous succession of infinitesimal viscous events; the limiting 
procedure presumes the elimination of small time and length scales. We present an explicit 
example of a simple viscoelastic mass-spring system whose macroscopic dissipative behavior is 
plastic, rate independent.

Keywords: Plasticity; Defects; Rate-independent hysteresis; Dry friction; Thermodynamics; Discrete

systems

1. Introduction

The phenomenon of rate-independent hysteresis appears in a variety of
applications ranging from dry friction to superconductivity (Mayergoyz, 1991).
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While the phenomenological description of quasi-static dissipative response based on
various memory schemes has been rather successful, the microstructural optimiza-
tion of the hysteretic behavior requires establishing a direct link between the
phenomenological coefficients of the macro-models and the microscopic parameters
of the material. The main formal difficulty is to connect the macroscopic rate-
independent dissipation with the rate-dependent dissipation operative at the micro-
level (Onsager and Machlup, 1953), a further task is to relate macroscopic
dissipation with the Hamiltonian dynamics at the atomic scales (Berdichevsky,
2003; Kresse and Truskinovsky, 2004).

Many important insights into the problem of bridging the viscous and plastic
dissipative constitutive structures at micro and macro scales were obtained in the
studies of pinning-depinning dynamics of various types of defects in driven
disordered systems (flux lines in type II superconductors, charge density waves in
anisotropic conductors, Bloch walls in ferromagnets, contact lines, crack fronts
(Fisher, 1998)). Characteristically, all such systems posses a large number of near
degenerate metastable configurations and exhibit a cascade of subcritical bifurca-
tions in monotone loading. The rate-independent hysteresis appears as a result of
discontinuous dissipative branch switching events known in magnetism as
Barkhausen jumps (Bertotti, 1996).

Similar ideas can be applied to the description of rate-independent perfectly plastic
deformation understood broadly either as metal plasticity or as transformational
plasticity of shape memory alloys (Rice, 1975). The conventional approach reduces
to establishing formal rules governing the response to a current load given the
history of prior loading. In the case of rate-independent plasticity the macroscopic
thermodynamic picture is in contradiction with the microscopic one (Bridgman,
1950; Kestin and Rice, 1970). In particular, the singular behavior of the macroscopic
dissipative potential at zero strain rates signals the existence of physical cut-offs.

The goal of the present paper is to show that in order to obtain a conventional
macroscopic plastic dissipative potential, represented by a homogeneous function of
degree one, from a micro-model with a quadratic (viscous or relaxational)
dissipation, it is necessary to homogenize out both small times and small lengths.
The main idea, which probably dates back to Prandtl (1928), is to consider rate
independence as a limit of rate dependence with zero and unbounded strain rates
finely mixed. Experimentalists know that during quasi-static plastic deformation of
metals the dislocation dynamics is not continuous but intermittent in space and time
with rest periods interrupted by brief moments of energetic activity (Rice, 1970;
Zaiser and Seeger, 2002). During these isolated bursts, associated with depinning or
nucleation of defect micro-structures, the instantaneous strain rate may exceed the
imposed strain rate by several orders of magnitude. Since practically all con-
version of mechanical energy into heat takes place during these fast events,
the overall dissipation depends only on the number of unstable episodes which
is invariant under time re-parametrization. The physical picture behind the
quasi-static transformational plasticity is very similar with a replacement of
dislocations by phase or domain boundaries (Rosakis and Knowles, 1999;
Bhattacharia, 1999).
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In order to develop a prototypical thermodynamical description of rate-
independent plasticity consistent with these microscopic observations, it is natural
to represent the ‘‘jerky’’ dynamics of the defects as a succession of switching events
between neighboring local minima in a sufficiently complex energy landscape where
the wells are associated with trapped configurations and ripples represent the
barriers between the pinning sites. The evolution inside each energy well can be
linked to elastic deformation while the slip can be associated with sudden transition
between the wells. In the quasi-static limit the rate effects disappear, but the overall
dissipation persists, due to the presence of a sequence of fast transitions between the
unstable and stable equilibrium branches. In the context of plasticity a related
qualitative pictures have been proposed by Ponter et al. (1979) regarding the activity
of Frank–Read sources and by Ortiz (1999) regarding forest hardening. It has also
been suggested that strongly interacting defects, constrained to remain on specific
crystallographic planes, may form metastable jammed configurations even in the
absence of immobile obstacles (Moretti et al., 2004).

To highlight the ideas, we begin with a simple schematization of a defect
microstructure as a point (described by a collective coordinate) in an effective energy
landscape (see also (Abeyaratne et al. (1996); Choksi et al. (1999) and Deseri and
Owen (2002)). We assume that the microscopic dynamics is of the gradient flow
(viscous) type and that pinning is sufficiently strong to generate micro-metastability.
This brings two dimensionless parameters: n—the ratio of the characteristic times
associated with external driving and internal relaxation and d—the ratio of the
pinning-induced and external length scales. We first show that in the quasi-static
limit n ! 0 the dissipation in such systems is localized in a sequence of time
discontinuities. To accommodate this effect in the thermodynamic formalism we
introduce an integral form of the Gibbs identity which takes into account that the
generalized derivative of the free energy is a measure with a non-trivial singular part.
We then consider the limit d ! 0 when the distribution of the discontinuous
dissipative events becomes dense while the dissipation associated with each event
tends to zero. In this limit the singular component of the equilibrium stress–strain
response disappears and we obtain the conventional constitutive structure of the
phenomenological plasticity.

To demonstrate that the phenomenological assumptions of such zero-dimensional
model regarding the structure of the energy landscape are realistic, we proceed with a
study of a simple one-dimensional mass-spring system generating an equivalent multi-
branch equilibrium response. This discrete mechanical model simulates a set of rigid
atomic planes interacting through bi-stable shear springs; it deals not only with the
total slip but also with its spatial distribution even if in a rudimentary manner. The
elemental bi-stability reflects the presence of two states—jammed and released; an
additional assumption of piece-wise linearity allows for an explicit separation of the
motion into adiabatic and jump parts. We focus on the consequences of gradient flow-
type dynamics in this system; the equilibrium properties have been previously studied in
(Müller and Villaggio, 1977; Fedelich and Zanzotto, 1992; Puglisi and Truskinovsky,
2000, 2002b). To simplify the picture we ignore long range interactions (Truskinovsky
and Vaichtein, 2004b), disorder (Sethna et al., 1993), and inertia (Balk et al., 2001).
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It is necessary to mention that viscous augmentation of the phenomenological
perfect plasticity (with convex potential) involving Yosida regularization and
implying the analog of our limit n ! 0 has been studied earlier by Suquet (1981) and
Anzellotti and Luckhaus (1987). The analysis of wiggly energies, implying our limit
d ! 0; have also been employed previously to obtain the threshold-type kinetics in
transformational plasticity (Abeyaratne et al., 1996; Menon, 2002). Our present
study, involving the concurrent limits n ! 0; d ! 0; represents an attempt of the
synthesis of the above approaches.

The paper is organized as follows. The main ideas are introduced heuristically in
Section 2 where we study a ‘‘toy’’ model with a periodic energy landscape. The main
purpose of this section is to capture the time behavior of the system while omitting
the issues related to the spatial distribution of slip. In the limit of infinitely slow
loading and infinitely fine scale of pinning we obtain an explicit description of the
macroscopic rate-independent plastic flow and show that the final picture does not
depend on the order of the limiting procedures. In Section 3 we consider a more
realistic discrete mechanical system whose behavior clarifies the assumptions of the
‘‘toy’’ model and generates specific relations between the macro and micro
parameters. A detailed study of the non-equilibrium energy landscape for this
model allows us to specify the (gradient flow induced) transformation mechanism
and obtain an explicit decomposition of the external work into dissipated and stored
energy. We then study in Section 4 an alternative dynamics when the system can
escape from a local minimum if the smallest barrier reaches below a given threshold.
A sketch of a fully thermodynamical version of the model containing a derivation of
the equation for temperature is presented in Section 5.

2. Heuristic ideas

Consider an isothermal, spatially homogeneous thermodynamical system char-
acterized by a free energy density f ¼ f ðe; aÞ; where e is the total strain and a is an
internal variable representing distributed slip. The second law of thermodynamics
requires that

dw� df ¼ dq0X0; (2.1)

where dw ¼ sde is the incremental work, s ¼ @f =@e is the stress, dq0 ¼ gda is the
irreversible entropy production, and g ¼ �@f =@a is the configurational force
(affinity). If the internal relaxation is of the gradient flow type and _a � g; the
dissipative potential, D :¼ g_a; is quadratic

D � _a2: (2.2)

The ensuing model is rate dependent and is not suitable for the macroscopic
description of rate-independent plasticity. To be appropriate, the dissipative
potential must be a homogeneous function of degree one (Lubliner, 1998):

D � _aj j: (2.3)
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The main problem is how to make the above constitutive structures compatible:
gradient flow-type, Eq. (2.2), operating at the micro-level, and plastic-type, Eq. (2.3),
operating at the macro-level.

We begin with the microscopic model and assume that a system with quadratic
dissipation is driven quasi-statically in a hard device at a constant strain rate _e ¼
v40 (loading). The dynamics is governed by the following system of equations:

_a ¼ �g
@f ðe; aÞ
@a

; _e ¼ v; (2.4)

where the positive parameter g characterizes the time of relaxation. In terms of the
slow time t ¼ vt (Cardin and Favretti, 2003) we can rewrite the first equation as
nda=dt ¼ �@f =@a; where

n ¼ v

g

is a non-dimensional measure of the external strain rate. If n ! 0 (quasi-static or
inviscid limit) the dynamic equations (2.4) can be replaced by a condition of
equilibrium @f ðe; aÞ=@a ¼ 0 defining the stationary locus. In the regular points this
procedure allows one to (adiabatically) eliminate the parameter a ¼ âðeÞ and to
compute the equilibrium free energy f̂ ðeÞ ¼ f ðe; âðeÞÞ: In the vicinity of a turning
point (or a point of subcritical bifurcation) where @2f ðe; aÞ=@a2 ¼ 0 the function âðeÞ
becomes multi-valued and the dynamical system (2.4) undergoes a transition to a
new equilibrium branch in the fast time scale t (Arnol’d, 1994).

Now assume that the system experiences a cascade of branch switching events at
regularly spaced internal thresholds. A representative structure of the stationary
locus âðeÞ is shown in Fig. 1. The thick line indicates the behavior of the dynamical
system (2.4) in the quasi-static limit n ! 0: One can see a succession of ‘‘slow–fast’’
transitions, represented as discontinuities, outside which the system remains in the
vicinity of one of the equilibrium branches. This scenario describes the ‘‘maximum

fast: A-B
slow: B-A

A

B
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A

A

B3

1

α̂
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Δε
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ε

Fig. 1. Schematic representation of a multivalued equilibrium response a ¼ âðeÞ containing a sequence of

turning points and a gradient flow-induced ‘‘maximum delay’’ trajectory exhibiting discontinuous

slow–fast transitions (bold line). The system evolves through a succession of elastic steps Bi ! Aiþ1;
interrupted by fast plastic steps Ai ! Bi :
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delay’’ strategy when the system remains in a given metastable state until it becomes
unstable.

During each slow–fast transition the dissipation is finite. Indeed, if we integrate
the dissipation rate D over the time required for the transition and neglect the
variation of e we obtain

R
dq0 ¼ � R ð@f =@aÞda ¼ �½jf̂ j�; where ½jf̂ j� is the

discontinuity of the equilibrium free energy associated with a jump of â at constant
e: On the contrary, the continuous evolution between two successive jumps can be
considered non-dissipative and we can write

R
dw ¼ R ð@f̂ =@eÞde ¼ Df̂ ; where Df̂ is

the increment of the equilibrium free energy between the two jumps. In the presence
of discontinuities the differential Gibbs relation (2.1) must be replaced by an integral
relationZ

dw�
Z

df̂ ¼
Z

dq0X0: (2.5)

Since the free energy f̂ is a discontinuous function of e its (distributional) derivative
is a measure with a non-trivial singular partZ

df̂ ¼
XZ

ð@f̂ =@eÞdeþ
X

½jf̂ j�: (2.6)

Given that all dissipation is associated with discontinuities, we obtain
R
dw ¼PDf̂

(absolutely continuous part) and
R
dq0 ¼ �P½jf̂ j� (singular part); the situation here

is reminiscent of nonlinear elasticity where in the inviscid limit dissipation takes
place exclusively on shocks.

The total amount of dissipation depends on the density of jump points. Suppose
that the jump point distribution is controlled by a small dimensionless parameter d;
since the spacing is regular, we may put d ¼ De; where De is the strain increment
associated with elastic deformation. We can then write

PnðtÞ
i ½jf̂ j�i ¼ nðtÞ½jf̂ j�; where

nðtÞ is the number of jumps and ½jf̂ j� is the magnitude of the elementary energy
discontinuity. In the limit d ! 0 we obtain de ¼ Dedn which gives

D ¼ �v lim
d!0

½jf̂ j�
De

: (2.7)

If the limit in Eq. (2.7) is finite we obtain the desired result that D � v: The only
remaining step is to relate the rate of dissipation to the rate of change of the internal
variable â: Suppose that the variation of â outside the discontinuities is negligible
and write âðtÞ ¼Pn

i ðtÞ ½jâj�i ¼ nðtÞ½jâj�; where ½jâj� is the elementary jump of â:
Then

_̂a ¼ v lim
d!0

½jâj�
De

(2.8)

and if again the limit in Eq. (2.8) is finite, we obtain _̂a � v: The macroscopic
dissipative potential along the loading path (v40) can then be written as

D ¼ g _̂a; (2.9)
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where the configurational force is

g ¼ � lim
d!0

½jf̂ j�
½jâj� : (2.10)

Since g is assumed to be a constant, the resulting macroscopic dissipation is rate
independent. Formula (2.10), replacing the classical g ¼ �@f =@a; is a consequence of
the underlying assumptions concerning the similarity of the statistical distributions
for ½jf̂ j�i and ½jâj�i:

To establish the balance between the stored and the dissipated energies we need to
compute the ratio b ¼ D= _w: In the expression for the work one can neglect the
contribution due to discontinuities and write wðtÞ ¼Pn

i Di f̂ ¼ nDf̂ ; which gives in the
continuum limit

b ¼ � lim
d!0

½jf̂ j�
Df̂

: (2.11)

Under the assumption that the equilibrium locus âðeÞ is symmetric for loading and
unloading, the analysis of the case vo0 (unloading) is straightforward.

2.1. Yield stress

The expected macroscopic behavior of the system in the continuum limit is
illustrated in Fig. 2 which shows the equilibrium energy f̂ ðeÞ and the associated
stress–strain relation sðeÞ:

Observe that since the function f̂ ðeÞ at finite d is only piece-wise continuous, the
equilibrium stress–strain relation f̂

0ðeÞ; formally extended to discontinuities, will
contain Dirac-function-type singularities located in the branch switching points. In
the limit d ! 0 the singular part of the derivative f̂

0ðeÞ converges (weakly) to an
absolutely continuous function limd!0 f̂

0ðeÞ which represents the equilibrium
stress–strain relation (path O–P–S–T). The singular contributions to the equilibrium

fel fel
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Fig. 2. Schematic representation of the effective stress–strain (a) and energy–strain (b) relations for a

plastic body under quasi-static loading: O–P–S–T equilibrium response; O–P–Q actual response.
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stress–strain relation are probably not experimentally detectable due to viscous and
inertial effects, so that the actual (measurable) stress–strain curve omits the
precipitous dissipation and represents the limit of only the regular part of the energy
function (path O–P–Q).

To make the distinction between the actual and the equilibrium stress–strain
relations quantitative, we notice that the actual yield stress sy enters the expression
for the increment of plastic work dw ¼ sy de; while the equilibrium yield stress sc
appears in the expression for the increment of the stored energy dc ¼ dw� dq0 ¼
sc de: Therefore in the continuum limit we obtain

sy ¼ lim
d!0

Df̂
De

and sc ¼ lim
d!0

Df̂ þ ½jf̂ j�
De

: (2.12)

Observe that sc ¼ ð1� bÞsy; meaning that if b ¼ 1 all plastic work is fully dissipated
making the equilibrium yield stress equal to zero (classical plasticity) while the actual
yield stress sy remains finite. If measurements recover even a portion of the singular
contribution to the stress, one can expect a nucleation peak on the stress–strain
curve. Although such a peak is indeed observed routinely in both metal and
transformational plasticity, it is probably of a different physical origin (e.g.
Truskinovsky and Vaichtein, 2004b).

2.2. Zero-dimensional model

To illustrate the general formulas obtained above we consider in the rest of this
section a ‘‘toy’’ model which has an advantage of being fully analytical. We define
the energy density as

f ðe; aÞ ¼ E

2
ðe� aÞ2 þ sMa� k d cos

a
d

� �
: (2.13)

The first term represents the elastic energy relative to the plastic reference strain a:
The second term is the energy of the reference state which is taken to be proportional
to a; the coefficient sM is the analog of the Maxwell stress in the theory of phase
transitions. The third term, mimicking a periodic pinning converges, in the
continuum limit to zero (though not its first derivative). As in the previous section,
we suppose that the total strain e is the controlling parameter and assume that the
strain rate is constant and positive v ¼ _e40 (loading). The relaxational dynamics
associated with energy (2.13) is governed by the equation

n_a ¼ Eðe� aÞ � sM � k sin
a
d

� �
; (2.14)

where the derivative is taken with respect to the slow time t: Energy functions closely
related to Eq. (2.13) have been employed in the modeling of a variety of phenomena
from friction (Heslot et al., 1994) to plasticity (Abeyaratne et al., 1996; Choksi et al.,
1999; Deseri and Owen, 2002; Bhattacharia, 1999). A new element in our analysis is
the consideration of the concurrent limits d ! 0 and n ! 0 taken in both orders.

Following the general methodology presented in the beginning of this section we
consider first, the limit n ! 0 and begin with identifying the jump points. The
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equilibrium locus can be found from the condition @f =@a ¼ 0 which can be written as

Eðe� aÞ ¼ sM þ k sin
a
d

� �
: (2.15)

It is natural to distinguish the case of weak pinning when E4k=d and the function
a ¼ âðeÞ solving Eq. (2.15) is monotone and the case of strong pinning Eok=d when
the system exhibits metastability and the function â ¼ âðeÞ is multivalued. When the
pinning is weak the viscous dynamics operates at both micro- and macro-levels and
in the quasi-static limit the motion may be considered non-dissipative. On the
contrary, in the case of strong pinning the macro and micro dissipative laws are
different and the macro dynamics remains dissipative even in the quasi-static limit.
Since our goal is the analysis of the case d ! 0; we can always assume that the
condition of strong pinning is satisfied.

To find the turning points of the equilibrium response we need to solve
simultaneously Eq. (2.15) and @2f =@a2 ¼ 0: We obtain the following parametric
representation:

e ¼ aþ sM
E

� k

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2d2

k2

s
; sin

a
d

� �
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2d2

k2

s
: (2.16)

The graphs of the equilibrium energy–strain f̂ ðeÞ and the actual (measurable)
stress–strain relation sðeÞ are shown in Fig. 3. One can see that they reproduce the
general structure of the graphs sketched in Fig. 2.

In the continuum limit d ! 0 the locus of the instability points (2.16) converges to
the straight lines

a�ðeÞ ¼ e� sM
E

� k

E
; (2.17)

with the two signs corresponding to loading and unloading, accordingly. Along the
loading path (v40) we obtain the following asymptotic values of the relevant micro-
parameters: Dâ ¼ 0; ½jâj� ¼ De ¼ 2pd; Df̂ ¼ 2pdðk þ sMÞ; and ½jf̂ j� ¼ �2pkd: Then

A3

A3

ε 
ε B3

B3

B2

B2

A2

A2

B1

B1

A1

A1

f̂

^ ^k
]f[ Δfσy

σ

σM

(a) (b)

Fig. 3. Equilibrium stress–strain (a) and energy–strain (b) relations for model (2.13). Thin solid lines

indicate metastable equilibria, thin dashed lines—unstable equilibria. The maximum delay trajectory is

shown by bold lines. Parameters: k ¼ 0:1; d ¼ 0:05; E ¼ 0:4; sM ¼ 0:02:
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we can apply the formulas from the previous subsections to show that the viscous
microscopic dynamics (2.14) generates at the macroscopic level rate-independent
plastic behavior with a dissipative potential

D ¼ k _̂a:

We also obtain automatically that the actual yield stress is sy ¼ sM þ k; the
equilibrium yield stress is sc ¼ sM ; and that the heat to work ratio is b ¼
k=ðk þ sMÞ:

2.3. Continuum dynamics

Next we can reverse the order of the limiting procedures and consider the
dynamics at d ¼ 0 and finite n: We first fix the loading parameter e and suppose that
the micro-solution aðt; dÞ of the equation (2.14) converges as d ! 0 to the macro-
solution āðtÞ: One can show (Fisher, 1985; Risken, 1989; Abeyaratne et al., 1996)
that for a�oāoaþ the limiting system is trapped and _̄a ¼ 0: For ā4aþ (the case
āoa� is symmetric) the dynamics is smooth but as the threshold ā ¼ aþ is
approached from above the motion becomes more and more jerky. Exactly at the
threshold the convergence should be understood in the weak sense because _̄a
oscillates between 0 and 1 and the motion is stick-slip. In the limit d ! 0 we can,
following Abeyaratne et al. (1996), explicitly homogenize out small scales and write
the macroscopic solution of Eq. (2.14) as a quadrature

�n
Z āðtÞ 1

p

Z 1

�1

ds

ð�Eðe� aÞ þ sM þ ksÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p da ¼ t: (2.18)

The integration in s is explicit and for ā4aþ we obtain (Fisher, 1985; Risken, 1989;
Abeyaratne et al., 1996)

n _̄a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEðe� āÞ � sMÞ2 � k2

q
: (2.19)

This macroscopic kinetic law can be interpreted phenomenologically as the
Bingham-type viscoelasticity with a threshold at ā ¼ aþ (see Fig. 4). To obtain the
rate-independent plasticity we need to consider an additional limit n ! 0: First
notice that the threshold corresponds exactly to the yield stress sy ¼ k þ sM ; so
when n ¼ 0 the system is confined to the regime where a ¼ aþ and s ¼ sy: One can
see that due to the square root singularity of the homogenized dynamics (2.19), the
limiting behavior of the system at n ! 0 takes place at constant yield stress sy and is
rate independent. If the loading is turned on and the total strain e is changing quasi-
statically, the threshold value aþ evolves according to Eq. (2.17), while the stress
remains fixed. The macro dynamics follows exactly the maximum delay strategy and
appears as a succession of infinitesimal jump discontinuities.

The emerging picture agrees with what we have obtained previously by taking the
limiting procedures in the reverse order. The advantage of first performing the
spatial homogenization is that in this way we are not constrained by the automation
model (emerging when we first consider the limit n ! 0) and are able to obtain a
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broader dynamical picture. The appearance of the square root singularity in the
kinetic law explains why phenomenological modeling of rate-independent hysteresis
requires power laws with singular exponents (Lubliner, 1998). In the framework of
the ‘‘toy’’ model such rate-dependent viscoplastic regularization of the rate-

independent plasticity can be obtained if the dynamical equation (2.14) is supplied
with an additional source of white noise (Risken, 1989).

3. One-dimensional model

To obtain the simplest mechanical system generating an energy landscape of the
desired complexity, consider N identical elastic elements in series. By introducing
discreteness, we assume that the system experiencing random pinning breaks into
correlated volumes that behave coherently (Fisher, 1998). Denote the displacements
of the nodes by ui and present the normalized elastic energy of the chain in the form

f ðe1; . . . ; eNÞ ¼ N�1
XN
i¼1

f 0ðeiÞ; (3.1)

where ei ¼ ðuiþ1 � uiÞ=a are the strains, a ¼ L=N is the reference length, and f 0ðeiÞ is
the normalized elastic energy of an element. The system is placed in a hard loading
device with a prescribed average strain e

e ¼ N�1
XN
i¼1

ei: (3.2)

We suppose that the microscopic dynamics is governed by a gradient flow

n _ei ¼ � @f
@ei

; (3.3)

α 
.

 
.

α 
α (ε)

+

α

σy σ

Fig. 4. Homogenized kinetics showing a rate-dependent viscoelastic response with a threshold. In the box

we show schematically a rate-independent response at small strain rates around the threshold.
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where

fðe1; . . . ; eN Þ ¼ N�1
XN
i¼1

ðf 0ðeiÞ � seiÞ (3.4)

and sðtÞ is the total stress (Lagrange multiplier due to the constraint (3.2)). Referring
to the discussion in the previous section, we can identify the vector e1; . . . ; eN with the
parameter a and assume that in quasi-static loading eðtÞ ¼ t: The two main
dimensionless parameters of the problem are n and d ¼ N�1:

To simulate plastic behavior we must assume that the elastic elements are (at least)
bi-stable. This means that the energy function f 0 is non-convex with a double-well
structure; for analytical simplicity we adopt the piece-wise parabolic approximation
(see Fig. 5)

f 0ðeÞ :¼

E0

2
ðeþ e0Þ2 þ sMe; eo� t;

E0

2

t� e0
t

e2 þ e0ðe0 � tÞ
� �

þ sMe; �tpept;

E0

2
ðe� e0Þ2 þ sMe; toe:

8>>><
>>>:

(3.5)

The two domains of convexity of f 0 (intervals eot and e4t) constitute stable energy
wells which are separated by an unstable spinodal domain; sM is the Maxwell stress
and the equilibrium strains are placed at �e0: The strength of the pinning/jamming is
expressed through the magnitude of the spinodal stress ss ¼ sM þ E0ðe0 � tÞ: We
assume that the condition of strong pinning toð1�N�1Þe0 (Puglisi and Truski-
novsky, 2000) is satisfied which is always appropriate in the continuum limit. In the
case of transformational plasticity the convex energy wells can be directly associated
with the stable phases of material.

Following the methodology presented in the previous section, we consider
first the limit n ! 0 and begin with the reconstruction of the equilibrium locus. The
strains inside the individual elements must satisfy the equilibrium equations f 00ðeiÞ ¼
s; i ¼ 1; . . . ;N: For a given s; each equilibrium equation may have up to three

 -t
t

t
 I

 ~ 

 

  

t

  

E0

E0fo fo

σs 

−ε0

−ε0ε0 ε0

ε ε

�M

�M

(a) (b)

′

Fig. 5. Energy–strain (a) and stress–strain (b) relations for an individual bi-stable element. Here sM is the

Maxwell stress, ss is the spinodal stress, �e0 are the equilibrium strains.
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different solutions

eI ¼ s� sM
E0

� e0; eII ¼ t

t� e0

s� sM
E0

; eIII ¼ s� sM
E0

þ e0: (3.6)

Due to the invariance of the energy under permutations of the elements, the
equilibrium state at a given e depends on the configuration only through the number
of elements of type I, II, and III and we can parameterize the iso-energetic
equilibrium branches by the phase fractions p; q; r; where Np; Nq;Nr are the numbers
of elements of type I, II, and III, accordingly. If the phase composition is prescribed,
the equilibrium stress–strain relation can be written as

sðeÞ ¼ sM þ Eðe� epÞ; (3.7)

where

E ¼ e0 � t

e0 � t� qe0
E0 and ep ¼ ðr� pÞe0: (3.8)

It is natural to refer to epðeÞ as plastic strain and to the remaining part eel ¼ e� ep as
elastic strain; notice that the total stress s is a function of the elastic strain only. The
normalized energy of the equilibrium configurations can be written as

f̂ ðeÞ ¼ 1

2
Eðe� epÞ2 þ sMeþ q

1

2
E0e0ðe0 � tÞ: (3.9)

The stability properties of the equilibrium branches (3.7) were studied by Puglisi and
Truskinovsky (2000) where it was shown that in the strong pinning regime all
branches with qa0 are unstable. The metastable branches are then parameterized
only by the plastic strain; each branch is defined in its own strain domain bounded
by e ¼ ep � ðe0 � tÞ: The energies of the metastable branches are represented by
displaced parabolas

f̂ ðeÞ ¼ 1

2
E0ðe� epÞ2 þ sMe: (3.10)

Observe that at each value of e; we obtain a finite number of local minima of the
energy. They are parameterized by epðeÞ which suggests the identification âðeÞ ¼ ep:
Since the so defined variable â takes only discrete values, the quasi-static dynamics
also becomes discrete: the corresponding automation model circumvents the fast
motions and represents the piece-wise adiabatic process as a succession of integer
steps. Since the branch switching takes place when the current branch terminates we
obtain again the maximum delay strategy.

Which particular stable state is selected when the system reaches the point of
instability cannot be determined from the analysis of equilibria only and requires the
reconstruction of the full non-equilibrium energy landscape. We shall discuss this
question in the next subsection while here, anticipating the result, we simply
postulate that the switching always takes place between branches which differ by the
phase state of only one element. The complete transition from one homogeneous
branch to the other can then be represented as a sequential combination of N

identical transitions inside individual elements.
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In the stress–strain space the maximum delay path is represented by a sawtooth
curve (see Fig. 6). Each incremental step consists of an elastic stage (Bi ! Aiþ1)
when the system follows a metastable branch and a plastic stage (Ai ! Bi) when the
system switches at fixed strain between two neighboring local minima. A
computation shows that during each elastic step Dâ ¼ 0 and De ¼ 2e0=N; while
during each plastic step ½jâj� ¼ 2e0=N ; ½jej� ¼ 0; observe that the plastic strain
increases exactly by the amount needed to relax the elastic strain. The stress drop
associated with each plastic step is equal to ½jsj� ¼ �2E0e0=N:

Next we analyze the energetics of the elastic and plastic steps. During an elastic
step the external work transforms into elastic energy and

Df̂ ¼ 2e0
N

ss � E0
e0
N

� �
:

During each plastic step the dissipation is equal to

�½jf̂ j� ¼ 2

N
e0 ss � sM � E0

e0
N

� �
:

After the completion of each incremental step, starting and ending at the same value
of the (spinodal) stress ss; the elastic energy of the elements that do not change phase
remains the same. The elastic energy of the element that does change phase increases
by the amount Df̂ þ ½jf̂ j� ¼ 2e0sM=N which is accumulated by the body as stored
energy. In the continuum limit d ! 0; the sawtooth path on the stress–strain plane
converges to a horizontal plateau at sy ¼ ss; representing the ‘‘actual’’ stress while
the limiting value of the ‘‘equilibrium’’ stress is equal to the Maxwell stress sc ¼ sM :
The configurational force converges to g ¼ ss � sM ; and the fraction of the
dissipated energy in the continuum limit is equal to b ¼ ðss � sM Þ=ss: Due to the
symmetry of the stress–strain diagram, the loading and unloading paths are
symmetric. Over the complete hysteresis cycle the number of individual dissipative
events is equal to 2N which gives for the total dissipation 2N½jf̂ j� ¼ �4e0ðss � sM �
E0e0=NÞ: The total plastic strain is equal to zero and the stored energy accumulated
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Fig. 6. Stress–strain (a) and energy–strain (b) relations for a chain with N ¼ 6; metastable locus—solid

line, maximum delay path—bold line, global minimum—dashed line. Also shown are the incremental

stored energy ½jcj� ¼ Df þ ½jf j� and the dissipated energy ½jqj� ¼ �½jf̂ j� for a single step. The parameters are:

E0 ¼ 1; t ¼ 0:15; e0 ¼ 1; sM ¼ 0:3:
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during the direct path is fully returned on the reverse path. In the continuum limit
the total dissipation in a cycle is equal to the area inside the hysteresis loop

H
Ddt ¼

4e0ðss � sM Þ:

3.1. Energy landscape

To understand the branch selection process along the path of maximal delay it is
necessary to reconstruct the non-equilibrium energy landscape f ðe; aÞ: We begin with
a simple example of a system with N ¼ 3; assuming that the strong pinning condition
to2e0=3 is satisfied.

A generic configuration of a chain with three elements placed in a hard device can
be described by two coordinates: symmetry considerations (Puglisi and Truskinovs-
ky, 2000) suggest the use of the barycentric-type variables x and c defined as e1 ¼
eþ xþ

ffiffiffi
3

p
c; e2 ¼ eþ x�

ffiffiffi
3

p
c; and e3 ¼ e� 2x: In terms of the new variables the

energy of the system can be written as

f ¼ 1

3
ðf 0ðeþ xþ

ffiffiffi
3

p
cÞ þ f 0ðeþ x�

ffiffiffi
3

p
cÞ þ f 0ðe� 2xÞÞ:

To visualize this energy function we choose four particular values of the average
strain e; specified on the equilibrium stress–strain and energy–strain diagrams in
Fig. 7. The corresponding energy landscapes are presented in Fig. 8.

At e5ea (see Fig. 7) the only equilibrium configuration is the minimum m1

representing the trivial branch ð3; 0; 0Þ; where in parentheses we indicate the phase
configuration ðpN ; qN; rNÞ: At e ¼ ea we see an additional set of non-trivial local
minima m2; corresponding to the two-phase configurations ð2; 0; 1Þ: According to
Fig. 8a,b the minimal barrier paths leading away from m1 go trough saddles s1;
(configurations ð2; 1; 0Þ with one element in the spinodal region). These paths are
represented in Fig. 8a,b by the straight lines c ¼ 0 ðe1 ¼ e2Þ; c ¼

ffiffiffi
3

p
x ðe2 ¼ e3Þ; and

Fig. 7. Equilibrium energy–strain (a) and stress–strain (b) diagrams for a bi-stable chain with N ¼ 3: The
numbers in parentheses give the phase configuration ðpN; qN; rNÞ: Solid lines indicate metastable states

(local minima mi), dashed lines—unstable states (saddle points si and local maxima Mi). Parameters:

t ¼ 0:2; E0 ¼ 1; e0 ¼ 1; and sM ¼ 0: The energy landscapes at the four indicated values of e are shown in

Fig. 8.
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c ¼ �
ffiffiffi
3

p
x ðe1 ¼ e3Þ: Along the corresponding trajectories two elements out of three

remain mechanically equilibrated and stay in the same energy well, while the third
one changes phase. The extensions of these trajectories beyond the saddles s1 provide
the paths of steepest descent to the local minima m2:

As the average strain e increases the saddles s1 collapse on the local minimum m1

making it unstable. Implying the presence of fluctuations, one can argue that at this
bifurcation point the paths m1 � s1 �m2 are preferred as securing the minimal
barriers already before the bifurcation point is reached. Therefore we postulate that
the branch switching event is the transition m1 �m2:

After the transition the system remains in the two-phase configuration m2 until the
corresponding local minimum ceases to exist. According to Fig. 8b,c,d the minima
m2 and m3 are connected by the straight trajectories c ¼ �

ffiffiffi
3

p
x� ð2=

ffiffiffi
3

p
Þ; c ¼

�
ffiffiffi
3

p
x� ð2=

ffiffiffi
3

p
Þ; and c ¼ �ð2=3Þ; passing through the saddles s2: Along these paths

two elements remain mechanically equilibrated while the third one changes phase.
These trajectories provide the minimum barrier paths leading away from the basin of
m2; they are also the paths of steepest descent from the saddles s2 to the minima m3:

Fig. 8. (a–d) Energy landscapes for a bi-stable chain with three elements (N ¼ 3) at the four values of the

total strain e indicated in Fig. 7. Local minima are denoted by mi ; saddle points by si ; local maxima byMi:
The dashed lines are minimum energy barrier paths. Parameters: t ¼ 0:2; E0 ¼ 1; e0 ¼ 1; and sM ¼ 0:
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At the next bifurcation point the saddles s2 merge with the local minima m2 making
them unstable and we can again argue that the paths m2 � s2 �m3 are preferred
meaning that the system will undergo the transition m2 �m3: Finally, the minimal
barrier trajectories leading away from the local minima m3 pass through the saddles
s3 as the last element changes its phase; their extension links these saddles to the
trivial minimum m4:

The above analysis suggests that along the minimal barrier trajectory the
incremental plastic deformation is always localized in a single element and that the
elements transform in sequence, one after another. This means that at each threshold
there is one slow manifold (up to the symmetries) which dominates the motion and
that the system behaves as a ‘‘toy’’ model inside the effective elastic potential of the
other elements (generalized Peierls–Nabarro (PN) potential). In the automation
model presented in the previous section the internal variable took only discrete
values representing the positions of the minima of the PN potential and the
continuous dynamics was replaced by a map between the metastable configurations.

To reconstruct the PN potential for the case of arbitrary N, consider a generic
local minimum A, characterized by the phase fractions rN ¼ k̂; pN ¼ 0; qN ¼
N � k̂: Due to the symmetry of the energy we can always assume that the first k̂
elements are in the first energy well while the rest are in the second energy well.
Following the above example, consider the path connecting A with another local
minimum B of the type ðk̂ � 1; 0;N � k̂ þ 1Þ and passing through the saddle S of the
type ðk̂ � 1; 1;N � k̂Þ: By using the stress t in the non-transforming springs as a
parameter we can write an explicit representation for the elemental strains along this
trajectory

eiðtÞ ¼

t� sM
E0

� e0; i ¼ 1; . . . ; k̂ � 1;

êðt; eÞ; i ¼ k̂;
t� sM
E0

þ e0; i ¼ k̂ þ 1; . . . ;N:

8>>>><
>>>>:

(3.11)

The strain in the transforming element êðt; eÞ can be found from the constraint

Ne ¼ ðk̂ � 1Þðt� sM
E0

� e0Þ þ êðt; eÞ þ ðN � k̂Þ t� sM
E0

þ e0

� �
: (3.12)

The proof of the fact that the saddle S indeed corresponds to the minimal barrier
outside the basin of attraction of the local minimum A and that path (3.11) is the
trajectory of steepest descent from the saddle S to the new metastable state B can be
reconstructed from the similar proof in the case of soft device (Puglisi and
Truskinovsky, 2002b).

To define the collective coordinate which links different segments of the
PN landscape and which can be identified with the global internal variable a; we
write

aðt; eÞ ¼ e� t� sM
E0

: (3.13)
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The advantage of this new parameterization is that a increases monotonically from A

to B and is equal to epðeÞ (plastic strain) in both metastable configurations. In terms
of a the energy variation along trajectory (3.11) can be written in the form

f ða; eÞ ¼ 1

N
ðk̂ � 1Þf 0

tða; eÞ � sM
E0

� e0

� ��

þ f 0ðêðtða; eÞ; eÞÞ þ ðN � k̂Þf 0
tða; eÞ � sM

E0
þ e0

� �
:

Here tða; eÞ is the inversion of Eq. (3.13). One can see that @f ða; eÞ=@a ¼ ð1�
N�1Þðf 00ðêÞ � tða; eÞÞ; which confirms that the equilibria of the original energy are the
critical points of f ða; eÞ at constant e: Along the segment of the trajectory from A to S

the stress f 00ðêÞ in the transforming element k̂ is larger then the stress t in the
equilibrated elements giving @f ðaÞ=@a40; similarly, along the path going from S to
B, we obtain @f ðaÞ=@ao0: The path A� S � B provides a generic switching
mechanism and by linking the successive A� S � B segments one can reconstruct
the complete PN potential. An example for a chain with N ¼ 7 is presented in Fig. 9.

In addition to providing the energies of the metastable equilibria mi (analogs of
points A and B above) the PN potential contains information about the minimal
energy barriers si separating these metastable equilibria (analogs of points S). This
information is important if one considers the possibility of fluctuation-induced
barrier crossing and, for instance, replaces the maximal delay strategy by an
alternative strategy allowing the escape from a local minimum when the smallest
barrier in the corresponding basin of attraction reaches below a given threshold h.
To investigate this possibility we can express the normalized height of the minimal
barrier for each individual transition h ¼ ðf ðSÞ � f ðAÞÞ=a as a function of the stress s

hðsÞ ¼ E0e0
2L

ððs� sM Þ=E0 þ t� e0Þ2
ðe0 � e0=N � tÞ : (3.14)

Fig. 9. Peierls–Nabarro (PN) energy landscape at a fixed total strain for a chain with N ¼ 7 (b); the

relevant section of the equilibrium stress–strain diagram is shown in (a). Parameters: t ¼ 0:2; E0 ¼ 1;
e0 ¼ 1; and sM ¼ 0:
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Observe that if h is fixed the transformation governed by this new strategy takes
place at a constant stress which is independent of the current phase configuration
and is constant during the complete transition from one trivial branch ðN; 0; 0Þ to the
other ð0; 0;NÞ: The barrierless yielding (maximum delay strategy) discussed in
the previous section corresponds to the case h ¼ 0 and takes place at the spinodal
stress ss:

If the possibility of both forward and reverse transitions is taken into
consideration, the total rate of transformation becomes a function of the
configurational force

gðsÞ ¼ hA!S � hB!S

a½jêj� ¼ Nðs� sMÞ � E0e0
N � 1

: (3.15)

The configurational force is equal to zero at s ¼ sM þ E0e0=N (discrete analogs of
the Maxwell stress) where the barriers are the highest and takes the largest value at
the spinodal stress ss where the barriers are absent. This shows that the ‘minimal
barrier’ criterion is equivalent to the condition of a ‘‘maximal driving force’’. The
driving force for the simultaneous transition of n elements is a decreasing function of
n, which means that any given ‘‘friction threshold’’ g will first be reached for the
transition with n ¼ 1 and that in the model with a prescribed threshold (see, for
instance, Mielke et al. (2002)) the elements will be switching one at a time at a fixed
transition stress.

In the continuum limit d ! 0 (or N ! 1) the absolute size of the energy barriers
decreases to zero while the configurational force remain finite. If the normalized
barrier size h is prescribed, the actual yield stress in the limiting problem can be
found from

sy ¼ sM þ E0 e0 � t�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lhðe0 � tÞ

E0e0

s !
:

Alternatively, in terms of the critical configurational force g the actual yield stress
can be expressed as

sy ¼ sM þ g:

3.2. Continuum dynamics

The next problem is to revert the order of the limiting procedures and to
reconstruct the dynamics of the system at d ¼ 0 and finite n: Here we cannot simply
reproduce the methodology used in the ‘‘toy’’ model because the limiting problem is
infinite dimensional and the PDE analog of (2.19) is not straightforward.

The general character of the dynamics for a chain with bi-stable elements at finite
d can be seen from the analysis of the travelling waves in the discrete
Frenkel–Kontorova (FK) model which becomes equivalent to Eq. (3.3) in the
overdamped limit if linear next to nearest neighbor (NNN) interactions are taken
into consideration (Truskinovsky and Vaichtein, 2003). The kinetic relation for the
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FK model at small average velocities (around the depinning threshold) is similar to
what we obtained for the ‘‘toy’’ model exhibiting the same characteristic square root
singularity. The motion is continuous at large velocities but becomes stick slip
around the depinning threshold with periods of almost static evolution interrupted
by sudden discontinuous advances of the transformation front (Carpio and Bonilla,
2003). The main deficiency of the model (J.J), which can be fixed by adding NNN
interactions, is its permutational degeneracy in statics leading to nonphysical effects
in dynamics (Truskinovsky and Vaichtein, 2004a, b).

To illustrate the complexity of the limiting problem, consider the structure of the
metastable configurations at d ! 0: If we formally replace in the energy the finite
differences by derivatives and sums by integrals, we obtain the problem: find
infu2A

R L
0 f 0ðuxÞ; where A :¼ fu 2 W 1;pðð0;LÞÞ : R L0 uxðxÞdx ¼ dg: The local minima

in this continuum setting satisfy the Euler–Lagrange equation f 00ðuxðxÞÞ ¼ s; whose
weak solutions are exactly (3.6). For the given phase configuration the stress and the
energy take the form (3.7), (3.9), provided that we define the phase fractions p; q; r as
measures, for instance pL :¼ mfx 2 ð0;LÞ : uxðxÞo� tg: Also, exactly as in the
discrete case, the Legendre–Hadamard stability condition f 000ðu0ðxÞÞ40 restricts the
set of metastable phase configurations to the ones with q ¼ 0; the energy for
the metastable configurations can then be read from Eq. (3.10). A peculiarity of the
infinite-dimensional case is that depending on the topology, the meaning of the
local minima may be different. Thus, taking the standard integral norm jjujjW 1;p

with pp1 we obtain that the Weierstrass necessary condition excludes all
local minima that are not also the global ones (Ericksen, 1975). Exactly the same
local minimizers as in our discrete problem with N ¼ 1 are recovered if, instead, we
choose the norm jjujjW 1;1 :Most of the recovered local minima, however, do
not belong to a potential well (Ball et al., 1978). This makes the energy landscape
‘‘flat’’ in the sense that it is possible to escape from the basin of attraction of each
of these metastable states without overcoming an energy barrier. To deal with
this situation the phenomenological continuum models have been proposed by
Faciu and Suliciu (1994) and Vainchtein and Rosakis (1999); while they were
shown numerically to exhibit rate-independent hysteresis (with discretization-
induced serrations), their formal relation to the discrete model (3.3) remains to be
established.

4. Non-isothermal case

In the previous sections we considered only isothermal systems. This was
appropriate because the rate-independent dissipation is in many respects an
athermal phenomenon for which non-trivial information can be already obtained
from a purely mechanical description. The isothermal setting allowed us to avoid the
explicit introduction of the entropy function for the plastically deformed body. To
understand the associated difficulties we can consider a spatially homogeneous, non-

isothermal system. To capture the discontinuities, we write the first and second laws
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of thermodynamics in the integral formZ
de ¼

Z
dwþ

Z
dq;

Z
ydZ ¼

Z
dqþ

Z
dq0: (4.1)

Here y is the temperature, eðe; a; yÞ is the internal energy density Zðe; a; yÞ is the
entropy density, and _q is the rate of external heat supply. By adiabatically
eliminating the internal variable a and taking into consideration singular
components of the derivative of the internal energy we can writeZ

dê ¼
XZ

@ê

@e
deþ

XZ
@ê

@y
dyþ

X
½jêj�: (4.2)

If we additionally assume that the jump discontinuities are isothermal, we obtain the
following equation for the entropy:XZ

y
@Ẑ
@e

deþ
XZ

y
@Ẑ
@y

dyþ
X

y½jẐj� ¼
Z

dqþ
Z

dq0; (4.3)

where the dissipative term remains the same as beforeZ
dq0 ¼ �

X
ð½jêj� � y½jẐj�Þ ¼ �

X
½jf̂ j�: (4.4)

In the continuum limit we can localize (4.3) and obtain an equation for the
temperature

c_yþ y
@Ẑ
@e

þ lim
d!0

½jẐj�
De

� �
_e ¼ rðyÞ � lim

d!0

½jf̂ j�
De

 !
_e: (4.5)

Here c ¼ y@Ẑ=@y is the specific heat and rðyÞ is the rate of convection or radiation;
heat conduction can be added in the standard way for spatially inhomogeneous
systems. The last term on the right-hand side of (4.5) is due to plastic dissipation; it
has been discussed in detail in the previous sections. The two terms in parentheses on
the left-hand side represent reversible elastic heating. The first term comes from the
classical thermo-elasticity and is related to thermal expansion (Rosakis et al., 2000).
The second term corresponds to the latent heat due to the discontinuous variation of
the internal variable â: In order to compute the associated entropy discontinuity we
need to assume that a defect can move from one pinned configuration to another
through a sequence of constrained equilibrium states (Rice, 1970).

The purely mechanical model relies significantly on the presence of metastable
configurations which is relevant only when elementary units have barriers to flipping
large enough that thermal activation can be ignored. Therefore, our system does not
come to thermal equilibrium even in the quasi-static limit meaning that the
temperature y is essentially equal to zero. If ya0 then in addition to the two
characteristic times: t—associated with gradient flow dynamics and t—associated
with external loading, we have a new time scale t̄—associated with the thermally
activated relaxation involving a possibility of barrier crossing. For instance, in a
system with a representative barrier size h, we have 1=t̄ � expð�h=ðkyÞÞ and t̄ ¼ 1
only if y ¼ 0: The quasi-static mechanical model discussed in the previous sections is
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appropriate in the case when t̄btbt: If, on the contrary, tbt̄ and the loading is
much slower than thermal relaxation, the maximum delay strategy will be replaced
with the global energy minimization.

Here it is also appropriate to address the issue of cold work. It is known that in
metal plasticity b � 0:8� 0:9 because of the accumulation of metastable defects. The
associated energy decays by thermal activation (Bever et al., 1972), which makes it
different from our stored energy of completely equilibrium nature. Such equilibrium
stored energy is relevant, for instance, in transformational plasticity where even in
the absence of cold work bp1 due to the difference in chemical energies of the
phases. The equilibrium stored energy can also be linked to the energy of the slip-
induced steps on the surface of plastic crystals that cannot be removed by annealing.
The incorporation of the non-equilibrium energy of cold work into our model would
require introduction of at least one additional internal variable with its own
relaxational kinetics (Rosakis et al., 2000). By neglecting this phenomenon we tacitly
assume that the rate of loading is slower than this relaxational process while it is still
sufficiently fast to make the internal metastability possible.

5. Conclusions

The main objective of this paper was to demonstrate that classical plasticity can be
in principle derived from a model with viscous dissipation as a result of a judicial
elimination of small spatial scales and fast times. The singular dissipative structure
emerges in this approach as a consequence of time averaging and spatial
homogenization in a system with regular dissipative behavior.

The ingredient making such a reduction possible is the micro-metastability due to
the presence of random imperfections. While these imperfections are small and
hardly affect the mechanical properties of the crystal, they can change qualitatively
the properties of the defect dynamics making breakaway from barriers rather than
the force velocity relation for isolated defects a rate controlling mechanism; a quasi-
static inelastic deformation may then be characterized as ‘‘punctuated equilibrium’’
(Cottrell, 2002). This explains why all attempts to describe rate-independent
plasticity by smooth ‘‘state variables’’ were unsuccessful: the trajectories of the
actual state variables turn out to be non-differentiable in any point. The situation is
similar in classical brittle fracture, where the dissipation is controlled only by the
number of broken bonds (Rice, 1978).

To illustrate the general ideas we analyzed in some detail a simple mechanical
system whose microscopic dynamics is of a gradient flow type and whose
homogenized macroscopic behavior is rate-independent plastic. The basis of the
model is a one-dimensional lattice of interacting elastic elements with non-convex
energies; the analytic transparency is due to the (mean field type) assumption that the
elements interact exclusively through the average strain. The main conceptual
limitation of the model is its low-dimensionality and the neglect of disorder. The
uneven distribution of the elemental metastability thresholds would produce
hardening Sethna et al. (1993); Puglisi and Truskinovsky (2002a) and replace the
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regular stick slip motion with random distribution of avalanches and self-organized
criticality (Moretti et al., 2004; Bharathi et al., 2001).
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