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Sensitivity analysis for parameter identification
in quasi-static poroelasticity

Brice Lecampion1 and Andrei Constantinescu2,n,y

1CSIRO Petroleum, Melbourne Office, Bag 10, Clayton South, Vic 3169, Australia
2Laboratoire de M !eecanique des Solides, CNRS UMR7649, Ecole Polytechnique, 91128 Palaiseau Cedex, France

This paper is devoted to the formulation of the direct differentiation method and adjoint state method in
quasi-static linear poroelasticity. We derive the strong and weak formulation of both methods and discuss
their solutions using the finite element method. The techniques are illustrated and tested on two numerical
examples for the case of isotropic and homogeneous material. The presented formulations can be extended
to more complex behaviour in poromechanics.

KEY WORDS: poroelasticity; parameter identification; sensitivity analysis; adjoint state method; direct
differentiation method; inverse problems

INTRODUCTION

Studies of poroelastic materials are encountered in several fields ranging from petroleum
geomechanics [1, 2] to biomechanics [3]. In all these problems, there is a need for parameter
identification from measured responses to known solicitations.

The complexity of the poroelastic system of equations is such that only a small number of
closed form solutions is available in the literature. Parameter identification based on closed-
form solutions have been presented for some laboratory experiments [4] and in situ tests [5]. As a
consequence, in most cases, one has to rely on a numerical approximate solution of the
particular configuration which has to be coupled with a parameter identification algorithm. This
parameter identification process is based in many cases on the minimization of a cost functional
measuring the mismatch between simulations and measurements. In order to speed up the
minimization, one generally uses gradient algorithms. Gradient-based algorithms, are
constructed to converge rapidly to the nearest local minimum. However, let us recall a series
of algorithms like simulated annealing, simplex method, genetic algorithms, etc. which are far
slower than gradient methods, but might also detect other local minima when the cost functional
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happens to be non-convex. In the examples discussed next, we only consider the use of gradient-
based method for the solution of parameter identification problems and shall present some
methods to compute the gradient.

A straightforward way of computing the gradient is the finite difference technique which is
easy to apply but presents a series of drawbacks: large computational cost and uncontrolled
accuracy. The accuracy depends, on the one hand, on the precision of the numerical simulation
and, on the other hand on the parameter step chosen to compute the gradient, which cannot be
estimated in advance.

The purpose of this work is to extend the direct differentiation method (DDM) and
the adjoint state method (ASM) to the linear quasi-static poroelastic problem. Without
entering into much details, we can state that the DDM computes the complete local fields
of sensitivities: partial derivative of the poromechanical fields with respect to the parameters
to be identified. The ASM computes directly the gradient of a cost functional with respect
to the parameters using Lagrangian techniques. Both methods require the solution of
auxiliary problems. A general presentation of these techniques can be found in References
[6, 7].

These two methods (DDM and ASM) have recently been applied to a series of mechanical
problems closely related to poroelasticity. The DDM for semi-coupled poro-plastic materials
has been presented in Reference [8] and applied to a synthetic parameter identification problem.
For thermal problems, both methods have been discussed in Reference [9], while the ASM has
been presented in Reference [10] for the case of thermo-elasticity.

In this paper, we shall derive the strong and weak formulation of both methods in
poroelasticity and discuss their solutions using the finite element method. For a general
presentation of a solution based on finite element in space and finite difference in time see
References [1, 11] and references therein. However, the presented formulations can also be
used in relation to the numerical solution of poroelastic problems by other techniques, for
example boundary elements [12, 13], displacement discontinuity method [14] for fracture
problems, etc.

The paper starts by recalling the strong and weak form of the forward problem. Then, a
general formulation of parameter identification problem is given. The next two sections are
devoted to the formulation of the DDM and ASM as well as their numerical programming.
Finally, the methods are illustrated and tested on two numerical examples.

THE FORWARD POROELASTIC PROBLEM P

We shall recall in this section the classical forward problem of quasi-static poroelasticity as
described by Biot [15, 16], Detournay and Cheng [1] and Coussy [11]. We restrict the
presentation to the case of small strain, small displacements and small fluid flow vector.
Moreover, for the sake of clarity, we shall consider that the pores are saturated and that the
pore fluid is incompressible. The mass conservation therefore reduces to volume conservation
(see Reference [11] for the general case and its implications). These hypothesis leads to the
classical form of the initial and boundary value problem in poroelasticity [15]. We shall present
the strong and weak form of the problem and recall the main lines of its numerical solution
using the finite element method.
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Strong formulation of the forward problem

The porous medium O of boundary G (see Figure 1) is described by two stress-like quantities: its
stress state r; pore pressure field p; and two strain-like quantities, the solid strain tensor e and
the fluid volume content z: These strain quantities are related to kinematic variables,
respectively, the solid displacement vector u and the fluid flow vector q: We consider that during
the time interval T ¼ ½0; tf �; a quasi-static hydro-mechanical loading is applied on the boundary
G: The governing equations of the problem can be expressed as follows.

The balance equation is

div rþ F ¼ 0 in O� T ð1Þ

where F denotes the total volumetric force.
The compatibility relation between displacements and strains under the assumption of small

strains is defined as

eðuÞ ¼ 1
2
ðruþrTuÞ in O� T ð2Þ

The fluid volume balance is given by

’zzþ g ¼ �div q in O� T ð3Þ

where the time derivatives are denoted by a dot and g is the fluid source.
Equations (1)–(3) are universal, i.e. they do not depend on the intrinsic behaviour of the

porous material. In order to complete the formulation of the linear poroelastic problem, one
needs a constitutive relation relating the stress to the strain as well as a transport law relating the
fluid flow vector to the pore pressure. In linear poroelasticity, this last relation is given by
Darcy’s law

q ¼ �k � ðrp� fÞ in O� T ð4Þ

where f is the fluid volumetric force, k is the hydraulic tensor ½M�1L3T �z, related to the intrinsic
permeability j ½L2� as follows k ¼ j=mf ; where mf is the dynamic fluid viscosity ½ML�1T�1�:

Figure 1. Porous domain O and the two distinct partition of its boundary G:

zBetween brackets, we recall the dimensions of the coefficient.
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The linear poroelastic constitutive law can be written in different forms. Here, we choose to
express the stress quantities ðr; pÞ as function of the strain ones ðe; zÞ

r ¼ ðCþ b� bMÞ : eðuÞ �Mbz

p ¼ Mðz� b : eðuÞÞ
ð5Þ

where C is the tensor of drained elastic moduli ½ML�1T�2�; b is the tensor of Biot coefficients ½��
and M the Biot’s modulus ½ML�1T�2�: We will also use the tensor of undrained elastic moduli
Cu ¼ Cþ b� bM:

Boundary conditions: Four types of different boundary conditions can be applied on G: forces
and fluid fluxes corresponding to Neumann type boundary conditions, displacement and pore
pressure corresponding to Dirichlet boundaries conditions.

r � n ¼ tg on Gt � T

q � n ¼ qg on Gq � T
ð6Þ

u ¼ ug on Gu � T

p ¼ pg on Gp � T
ð7Þ

We have introduced several subsets of the boundary G of the porous medium on which the
different boundary conditions are applied during the interval of interest. It is known (see
References [1, 11]) that the forward problem is well posed if and only if the subsets Gu and Gt;
respectively, Gq and Gp form two distinct partitions of G at each time t (Figure 1)

G ¼ Gt [ Gu; Gt \ Gu ¼ |

G ¼ Gp [ Gq; Gp \ Gq ¼ |

Also, note, that in the case where only Neumann boundary conditions are applied to the porous
solid, the solution of the forward problem is defined up to a rigid body displacement and
constant pore pressure field.

Initial conditions: The description of the problem would not be complete without the initial
conditions. The initial state can be described by an initial stress r0 and pore pressure p0 fields.
These fields should satisfy the balance equation and fluid continuity equations

div r0 þ F0 ¼ 0 in O

r0 � n ¼ tgð0Þ on Gt

ð8Þ

for the initial stress field, and

div k � ðrp0 � f0Þ ¼ 0 in O

q0 � n ¼ �ðk � ðrp0 � f0ÞÞ � n ¼ qgð0Þ on Gq

p0 ¼ pgð0Þ on Gp

ð9Þ

for the initial pore pressure field.
Such an initial poroelastic state can be taken as a reference such that the variables of the linear

poroelastic problem can be defined as the variation from this initial state.
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Weak formulation of the problem

Taking the time derivatives of the balance equation (1), the use of the divergence theorem
enables to write the following equation for any vector v 2 H1ðOÞ during the time interval T :Z

O
eðvÞ : ’rr dx ¼

Z
G
v � ð ’rr � nÞ dxþ

Z
O
v � ’FF dx ð10Þ

In a similar manner, from the fluid volume balance equation (3) one obtains for any scalar
field r 2 H1ðOÞ during TZ

O
rr � q dx�

Z
O
r’zz dx ¼

Z
G
rq � n dxþ

Z
O
rg dx ð11Þ

The weak form of the poroelastic problem is obtained by adding the last two equations:
(10) + (11). Then, the constitutive (5) and transport laws (4) allow to express this weak form
as function of one set of variables, for example ðu; pÞ or ðr; zÞ: In the following, we use
the expression of the weak form of the problem using the variables ðu; pÞ: This is the classical
choice made towards the numerical solution by the finite element method.

For sake of clarity, let us introduce the following bi-linear operators:

* The elasticity operator:

Eðu; vÞ ¼
Z
O
eðuÞ : C : eðvÞ dx ð12Þ

* The storage operator:

Sð p; rÞ ¼
Z
O
p
1

M
r dx ð13Þ

* The diffusivity operator:

Að p; rÞ ¼
Z
O
rp : k : rr dx ð14Þ

* The coupling operator:

Cð p; uÞ ¼
Z
O
p b : eðuÞ dx ¼

Z
O
eðuÞ : b p dx ð15Þ

We can see that due to material symmetry together with the symmetry of the small strain and
stress tensors, all the previously defined bi-linear operators are symmetric, i.e. . ða; bÞ ¼ . ðb; aÞ:

The weak form of the quasi-static poroelastic problem can now be expressed as

Find u 2 U and p 2 P such that at all time t 2 T :

Eð’uu; vÞ � Cð ’pp; vÞ � Cðr; ’uuÞ �Sð ’pp; rÞ �Að p� p0; rÞ

¼
Z
Gt

v � ’ttg dxþ
Z
Gq

rqg � n dxþ
Z
O
ðv � ’FFþ rgÞ dx ð16Þ

for any tests fields v 2 U0 and r 2 P0:
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where we have defined the functional spaces for the following Dirichlet boundary conditions:

U ¼ fu 2 H1ðOÞ ju ¼ 0 in O at t ¼ 0; u ¼ ug on Gu � Tg

P ¼ fp 2 H1ðOÞ jp ¼ p0 in O at t ¼ 0; p ¼ pg on Gp � Tg

U0 ¼ fv 2 H1ðOÞ jv ¼ 0 in O at t ¼ 0; v ¼ 0 on Gu � Tg

P0 ¼ fr 2 H1ðOÞ jr ¼ 0 in O at t ¼ 0; r ¼ 0 on Gp � Tg

ð17Þ

Finite element solution

The previous form of the forward problem (16) can be directly discretized using finite element in
space and finite difference in time in order to obtain a numerical solution to a particular set of
initial and boundary conditions. Classically, the poroelastic system can be solved numerically in
a fully coupled manner using ðu; pÞ as the main variables. This is the scheme programmed in
Cast3M [17], the code used for all the numerical examples in this paper (for details see any finite
element textbook such as Reference [18]).

Using an implicit finite difference scheme for time integration, one has to solve at each time
step a linear system of equations

ðK� Dtnþ1PÞUnþ1 ¼ KUn þ Fnþ1 ð18Þ

where U is the vector containing the nodal unknowns: U ¼
�
u
p

�
: The subscripts n and nþ 1

denote the known and unknown fields at time tn and tnþ1; respectively. F is the vector of applied
forces. The boundary conditions involving the displacements and pore pressure are taken into
account via Lagrange multipliers and are not represented here for the sake of simplicity. K and
P denote, respectively, the poroelastic stiffness matrix and the permeability matrix.

K ¼
Z
O
DT

C �b

�b �1=M

" #
D dx; P ¼

Z
O
ET

0 0

0 K

" #
E dx

where

D ¼
B 0

0 N

" #
; E ¼

0 0

0 r

" #

The matrix B; N; r are, respectively, the finite element approximation to the small strain
operator, the shape function and the gradient matrix.

THE INVERSE POROELASTIC PROBLEM P�1

A large number of inverse problems can be investigated in poroelasticity such as the
identification of poroelastic constants (homogeneous, inhomogeneous, isotropic, anisotropic
materials), the identification of unknown boundary conditions etc. Also several types of
measurements during the time interval T ¼ ½0; tf � can be considered: pore pressure, flux, stresses,
displacements on the boundary or in points inside the domain.

We shall assume that the unknowns of the inverse problems can be reduced to a real vector
denoted by m ¼ ðm1; . . . ;mi; . . .Þ: The solution of such inverse problems is then obtained by the
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minimization of a cost functional with respect to m measuring in some sense the mismatch
between the measurements and the predictions obtained for a given set of parameters. In order
to include all possible measurements, we can schematically write the cost functional as

Jðm; u;r; p; qÞ ¼
Z
Gt�T

j1ðuÞ dx dtþ
Z
Gu�T

j2ðr:nÞ dx dtþ
Z
Gq�T

j3ð pÞ dx dt

þ
Z
Gp�T

j4ðq � nÞ dx dtþ
Z
O�T

gðu; pÞ dx dt ð19Þ

where j1ðuÞ; j2ðr:nÞ , j3ð pÞ; j4ðq:nÞ and gðu; pÞ are functions of observations and predictions
for a given value of the parameters m: Typically, a simple least square form is used for j;
but other norms can be used. Note that, for boundary measurements, the displacements
can be measured on the part where tensions are applied, pore pressure where flux is
prescribed etc.

Also the functions can be viewed as distributions such that they take into account
measurements on a smaller part of the boundary, or several points inside the domain. For
example, the measurements may be recorded in a single point x0 in the domain. Therefore, we
can define g on the whole domain using the Dirac delta function.

This form of the cost functional (19) embodies all possible measurements on the boundary or
inside the porous domain.

THE DIRECT DIFFERENTIATION METHOD

Let us denote dmi
u; dmi

z; dmi
r and dmi

p as the first-order sensitivities with respect to the
parameter mi (i.e. the partial derivatives with respect to mi) of, respectively, the displacement
field, the fluid content, the stresses and pore pressure. These sensitivity fields have the same
tensorial rank as the original fields. They are solutions of a poroelastic problem with additional
force terms depending on the solution of the direct problem. This problem, is obtained by simple
differentiation with respect to mi of the forward problem. In general, mi can be any parameter
entering the formulation of the original problem: loading, constitutive parameters, initial
stresses. For simplicity, we do not consider the problem of shape parameters, the reader is
referred to Reference [19] for more details regarding shape sensitivity.

Differentiated field equations

The forward poroelastic problem is linear, its differentiation is therefore straightforward. We list
the governing equations of the sensitivity problem.

* Balance equation:

divðdmi
rÞ þ

@F

@mi
¼ 0 in O� T ð20Þ

* Compatibility relation on dmi
u:

eðdmi
uÞ ¼ 1

2
ðrdmi

uþrTdmi
uÞ in O� T ð21Þ
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* Fluid volume balance equation:

dmi
’zzþ

@g

@mi
¼ �div dmi

q in O� T ð22Þ

* Differentiated Darcy’s law:

dmi
q ¼ �k � rdmi

p�
@f

@mi

� �
�

@k

@mi
� ðrp� fÞ in O� T ð23Þ

* Differentiated constitutive relations:

dmi
r ¼ Cu : eðdmi

uÞ �Mbdmi
zþ

@Cu

@mi
: eðuÞ �

@Mb

@mi
z

dmi
p ¼ Mðdmi

z� b : eðdmi
uÞÞ þ

@M

@mi
z�

@Mb

@mi
: eðuÞ ð24Þ

The boundary conditions for the sensitivity problems become

dmi
r � n ¼

@tg
@mi

on Gt � T

dmi
u ¼

@ug
@mi

on Gu � T

ð25Þ

and

dci p ¼
@pg
@mi

on Gp � T

dmi
q � n ¼

@qg
@mi

on Gq � T

ð26Þ

Initial conditions: The initial conditions may eventually be a function of mi: In that case, the
equations that should satisfy the initial stresses and pore pressure fields (Equations (8) and (9))
have to be differentiated in order to obtain the corresponding initial sensitivities fields. The
initial sensitivities stress field is the solution of the following boundary value problem:

divðdmi
r0Þ þ

@F0

@ci
¼ 0 in O

dmi
r0 � n ¼

@tgð0Þ
@mi

on Gt

ð27Þ

and the pore pressure field is the solution of

div k � rdmi
p0 �

@f0
@mi

� �� �
þ

@g0
@mi

¼ �div
@k

@mi
� ðrp0 � f0Þ

� �
in O

dmi
q0 � n ¼

@qgð0Þ
@mi

on Gq

dmi
p0 ¼

@pgð0Þ
@mi

on Gp

ð28Þ
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Similar to the forward problem, the initial sensitivities can be taken as a reference state and the
unknown sensitivities for the evolution problem can be taken as variations from this initial state.

Equations (20)–(23) together with the initial conditions completely described the initial and
boundary value problem on the sensitivities on parameter mi: We can already notice that the
difference between the original poroelastic problem and the sensitivity is very small. Only
additional forces coming from the differentiation of the constitutive relations and the initial
conditions appear. These force terms are functions of the solutions of the direct problem. In the
case where mi is a constitutive parameter, the initial and boundary conditions of the sensitivity
problem are homogeneous, only the time-dependent force terms appear in the sensitivity
problems.

Weak form

The weak form of the sensitivity problem can be obtained directly from the previous strong
formulation following the same lines as that for the forward problem. Taking dmi

u and dmi
p as

principal variables, we obtain

Find dmi
u 2 dmi

U and dmi
p 2 dmi

P such that at all time t 2 T :

Eðdmi
’uu; vÞ � Cðdmi

’pp; vÞ � Cðr; dmi
’uuÞ �Sðdmi

’pp; rÞ �Aðdmi
ð p� p0Þ; rÞ

¼ C@bðr; ’uuÞ þS@Mð ’pp; rÞ þA@kðdmi
ð p� p0Þ; rÞ � E@Cð’uu; vÞ þ C@bð ’pp; vÞ

þ
Z
Gt

v
@’ttg
@mi

dxþ
Z
Gq

r
@qg � n

@mi
dxþ

Z
O

v
@ ’FF

@mi
þ r

@g

@mi

� �
dx

for all test fields v 2 U0 and r 2 P0:

The functional space dmi
U and dmi

P results simply from the differentiation of U and P with
respect to mi

dmi
U ¼ dmi

u 2 H1ðOÞ jdmi
u ¼ 0 in O at t ¼ 0; dmi

u ¼
@ug
@mi

on Gu � T

� �

dmi
P ¼ dmi

p 2 H1ðOÞ jdmi
p ¼ dmi

p0 in O at t ¼ 0; dmi
p ¼

@pg
@mi

on Gp � T

� �

The notation E@C represents the following bi-linear operator:

E@C ¼
Z
O
eðuÞ :

@C

@mi
: eðvÞ dx ð29Þ

A similar notation is used for the other operators involving the partial derivatives with respect
to the constitutive parameters such as A@k; S@M ; C@b: Like for the direct problem, this form of
the problem can be directly related to the numerical solution by finite element discretization in
space and finite difference integration in time.

Finite element solution

As already noticed, the forward and differentiated poroelastic problems are very similar. The
difference lies only in the boundary conditions and the force terms in the differentiated
problems, which directly depend on the solution of the forward problem. These features are
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classic for a linear forward system of equations [7]. From a numerical stand point, the
consequence is that, at each time step, only the right-hand side of the linear system will differ
between the direct and differentiated problems. Therefore, the numerical solution of the
differentiated and forward problems by finite elements in space and finite difference in time can
be elegantly coupled and computational cost can be drastically reduced.

In order to have the same level of numerical accuracy for the differentiated and forward
problems, the numerical solutions have to be consistent: same spatial and time discretization,
same order of the finite elements [7, 20]. We always respected this recommendation in the
numerical examples.

The DDM has been programmed using the object oriented finite element code Cast3M. The
script language Gibiane allows a quick programming of the sensitivity problems. The linear
system to solve at time tnþ1 for the differentiated problem can be directly written from the weak
form (29)

ðK� Dtnþ1PÞdmi
Unþ1 ¼ Kdmi

Un þ
@Fnþ1

@mi
�

@K

@mi
ðUnþ1 �UnÞ þ Dtnþ1

@P

@mi
Unþ1 ð30Þ

We clearly see, that the global stiffness matrix ðK� Dtnþ1PÞ is equal to the one of the forward
problem (18). Moreover, this matrix is the same for all differentiated problems as it does not
depend on the parameter mi: Only the right-hand side of the system has to be computed for each
parameter mi: The coupling between the numerical solution of the differentiated and forward
will take advantage of this remark and use the LU decomposition of the matrix ðK� Dtnþ1PÞ:
For one time step ½tn; tnþ1�; the scheme can be summarized as follows:

1. Solution of the forward problem at time tnþ1

* LU decomposition of the matrix ðK� Dtnþ1PÞ;
* Computation of the forces terms of Equation (18) (depending on Un),
* Solution of the linear system (18) to obtain Unþ1

2. Solution of the sensitivity problem on mi

* Computation of the forces terms for the sensitivity problems (30) (depending on
Unþ1)

* Solution of the linear system (30) via the stored LU decomposition of ðK�
Dtnþ1PÞ to obtain dmi

Unþ1;

3. The last step is repeated for the sensitivity problem on miþ1

We see that the sensitivity problems are thus solved in parallel with the forward problem.
The use of a LU decomposition of the global matrix allow to greatly speed up the solution.
Once the LU decomposition is known, the solution of the linear system is extremely fast as it
only consists of basic operations. The additional cost of solving the p sensitivity problems on
parameter mi is extremely low if we use the LU decomposition of the stiffness matrix, which has
to be computed only once. However the forces terms, different for each mi; have to be
computed.

The speed of the overall scheme will be even more reduced if a constant time step is used to
solve the evolution problems in the interval T ¼ ½0; tf �; as the LU decomposition can be passed
from one time step to the other in that case.
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In practice, the LU form of ðK� Dtnþ1PÞ is easily accessible while using the algorithm
pasapas of the code Cast3M to solve the poroelastic problem. The use of personal routine
perso1 at the end of each time step allows to easily construct the forces terms for each
sensitivity problems and to solve all the linear systems using the available LU decomposition of
the global system matrices kept in memory.

Case of the constitutive parameters: In the case where one desires to obtain the sensitivities
on the constitutive parameters, the computation of the forces terms involve the results
of the forward problem as well as the different bi-linear operators derived with respect to the
constitutive parameters like E@C: In the isotropic case, it is easier to use the following
parameters m ¼ ðE; m; b; M; kÞ: It is afterwards possible to switch to another set of poroelastic
parameters using the different relations between them (see References [11, 1]) and
the simple chain rule for differentiation of composed function. Using such a set of
poroelastic parameters, we have simple expressions for the different differentiated bi-linear
operators

E@E ¼
E

E
; E@m ¼

E

m

A@k ¼
A

k
; C@b ¼

C

b

S@M ¼ �
S

M

Of course, we have E@k ¼ 0 etc. which greatly reduced the expressions of the sensitivity problems
(29). We can note that, this procedure can also be applied to heterogeneous or anisotropic
materials.

Advantages and drawbacks of the method

In comparison to a finite difference method, the DDM (DDM) provides an estimation
of the sensitivities with the same level of accuracy as the solution of the forward problem.
Also, the solution will always be stable in comparison to a finite difference estimation as
it is independent of the choice of a differentiation step which is not the case for the
finite difference method. Moreover, due to the efficient coupling between the sensitivities and
the forward problem, the overall computational cost can be greatly reduced. We have
found that in the case of the sensitivities on the 5 poroelastic parameters (homogeneous,
isotropic case), the solution of the five additional sensitivity problems only increased the overall
scheme by a factor of 1:2: In comparison, a finite difference scheme will cost the solution of six
forward problems.

However, the DDM, even if the coupled scheme outlined above is used, is really efficient for a
relatively small number of parameters (less than 20–30). If for example, in the case of a
heterogeneous material, one wants to obtain an estimation of the sensitivities on the
permeability at each nodes, the DDM is probably not very well suited. It will require the
solution of large number of problems and a large amount of memory storage. In that particular
case, the ASM will be better adapted.
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THE ADJOINT STATE METHOD

The adjoint state method (ASM) takes a different view on the minimization of the cost
functional described in Equation (19). Especially, the implicit dependence of the solution of the
forward problem upon the parameters m is taken into account by stating that we face a
constrained minimization problem:

Minimize Jðm; u; p; r; qÞ defined by equation ð19Þ with respect to m with the constraint

that u; p; r and q are solutions of the forward problem P Equation ð16Þ:

In the case of a constrained minimization problem, it is natural to introduce a Lagrangian L
by adjoining to the cost functional the weak form of the forward problem integrated in time on
the interval of interest T :

Lðm; u; r; p; q; un; rn; pn; qnÞ ¼Jðm; u;r; p; qÞ

þ
Z
T

ðEð’uu; unÞ�Cð ’pp; unÞ�Cð pn; ’uuÞ�Sð ’pp; pnÞ �Að p� p0; p
nÞÞ dt

�
Z
T

Z
G
un � ð ’rr � nÞ dx dt�

Z
T

Z
G
pnq � n dx dt ð31Þ

All variables are supposed to be mutually independent. The virtual displacement un and
virtual pore pressure pn play the role of Lagrange multiplier (denoted adjoint variables
hereafter). The construction of this Lagrangian ensures that its saddle point gives the minimum
of the cost functional with u and p solution of the forward problem:

If ðu;r; p; qÞ are solution of the forward problem P then J � L

An adjoint poroelastic problem has already been derived and used in the context of the
boundary element method to solve the poroelastic forward problem [21]. The poroelastic system
of equation is not self-adjoint due to the presence of the diffusivity equation. In the following,
we re-derive the adjoint problem following the lines of optimal control [22], having in mind the
estimation of the gradient of the cost functional J (19) with respect to the parameters m:

The adjoint problem

All variables being mutually independent, the stationarity conditions of the Lagrangian can be
formally written as follows:

@L

@un
; dun

� �
¼

Z
T

ðEð’uu; dunÞ � Cð ’pp; dunÞÞ dt�
Z
T

Z
G
dun ’rr � n dx dt ¼ 0 ð32Þ

@L

@pn
; dpn

� �
¼ �

Z
T

ðCðdpn; ’uuÞ þSð ’pp; dpnÞ þAð p� p0; dp
nÞÞ dt

�
Z
T

Z
G
dpnq � n dx dt ¼ 0 ð33Þ
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@L

@u
; du

� �
¼

Z
Gt�T

@uj1ðuÞ du dx dtþ
Z
O�T

@ugðu; pÞ du dx dt

þ
Z
T

ðEðd’uu; unÞ � Cð pn; d’uuÞÞ dt ¼ 0 ð34Þ

@L

@p
; dp

� �
¼

Z
Gq�T

@pj3ð pÞ dp dx dtþ
Z
O�T

@pgðu; pÞ dp dx dt

�
Z
T

ðCðd ’pp; unÞ þSðd ’pp; pnÞ þAðdp; pnÞÞ dt ¼ 0 ð35Þ

@L

@r
; dr

� �
¼

Z
Gu�T

@rj2ðrÞ dr � n dx dt�
Z
G�T

un d ’rr � n dx dt ¼ 0 ð36Þ

@L

@q
; dq

� �
¼

Z
Gp�T

@qj4ðq:nÞ dq � n dx dt�
Z
G�T

pn dq � n dx dt ¼ 0 ð37Þ

The stationarity conditions with respect to the adjoint variables (32) and (33) returns the weak
form of the direct poroelastic problem (16).

The stationarity conditions on the direct variables, after integration by part in time of
Equations (34)–(37), furnish the following weak form of the adjoint problem on the variables
ðun; pnÞ:

Find un 2 Un and pn 2 Pn such that at all time t 2 T :

Eð’uun; vÞ � Cð ’ppn; vÞ � Cðr; ’uunÞ �Sð ’ppn; rÞ þAð pn; rÞ

¼
Z
Gt

v@uj1ðuÞ dxþ
Z
Gq

r@pj3ð pÞ dxþ
Z
O
ðv@ugðu; pÞ þ r@pgðu; pÞÞ dx ð38Þ

for all test fields r 2 Pn

f and v 2 Un

f :

where the adjoint functional spaces, incorporating the final conditions, are defined as
follows:

Un ¼ fun 2 H1ðOÞ jun ¼ 0 in O at t ¼ tf ; ’uu
n ¼ �@rj2ðrÞ on Gu � Tg

Pn ¼ fpn 2 H1ðOÞ jpn ¼ 0 in O at t ¼ tf ; p
n ¼ @qj4ðq � nÞ on Gp � Tg

Un

f ¼ fv 2 H1ðOÞ jv ¼ 0 in O at t ¼ tf ; v ¼ 0 on Gu � Tg

Pn

f ¼ fr 2 H1ðOÞ jr ¼ 0 in O at t ¼ tf ; r ¼ 0 on Gp � Tg

Gradient of the cost functional

For a given point m; if ðu; pÞ are solutions of the direct problem ðPÞ; by definition of the
Lagrangian L; we have L � J: Moreover, if ðun; pnÞ are solutions of the adjoint problem Pa

(38) previously described, we obtain:

rmJ ¼ rmL ð39Þ

13



In the case of constitutive parameters, i.e. m ¼ ðC; b; k; MÞ; one obtains the following
components for rmJ:

@J

@C
¼

Z
T

E@Cð’uu; unÞ dt

@J

@b
¼ �

Z
T

C@bð ’pp; unÞ dt�
Z
T

C@bð pn; ’uuÞ dt

@J

@M
¼ �

Z
T

S@Mð ’pp; pnÞ dt

@J

@k
¼ �

Z
T

A@kð p� p0; p
nÞ dt

where E@C denotes the partial derivative of the elasticity operator with respect to the elastic
moduli C as defined in Equation (29). The same notation holds for the others operators.

Therefore, in order to compute the gradient of the cost functional rmJ; one needs to solve
both the forward P and adjoint problems Pa:

Strong form of the adjoint problem

Knowing the definition of the bilinear operators, Equations (12)–(15), it is straightforward to
deduce from the weak form of the adjoint problem Pa (38) the corresponding strong form.

* Final conditions:

div rnðtf Þ ¼ 0 in O

rnðtf Þ � n ¼ 0 on Gt ð40Þ

unðtf Þ ¼ 0 in O

pnðtf Þ ¼ 0 on O
ð41Þ

* Equilibrium, compatibility and fluid balance equations:

div ’rrn þ @ugðu; pÞ ¼ 0 in O� T

eð’uunÞ ¼ 1
2
ðr’uun þrT ’uunÞ in O� T

’zzn þ @pgðu; pÞ ¼ �div qn in O� T

ð42Þ

* Boundary conditions:

’rrn � n ¼ @uj1ðuÞ in Gt � T

pn ¼ @qj4ðq:nÞ in Gp � T

’uun ¼ �@rj2ðrÞ in Gu � T

qn � n ¼ @pj3ð pÞ in Gq � T

ð43Þ

* Adjoint transport law:

qn ¼ krpn in O� T ð44Þ
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* Adjoint poroelastic constitutive law:

’rrn ¼ ðCþ b� bMÞeð’uunÞ �Mb’zzn in O� T

’pnpn ¼ Mð’zzn � b : eð’uunÞÞ in O� T
ð45Þ

We clearly see that the differences between the direct and adjoint problems lie in the final and
boundary conditions as well as the transport law (44).

The classical expression of Darcy’s law (4) is replaced by the adjoint form (44). This change of
sign together with the final conditions at t ¼ tf explain the backward character in time of the
adjoint poroelastic system.

Finite element solution

As noticed previously, the adjoint problem is a backward poroelastic problem with a final
condition instead of an initial one. After a change of variables: tn ¼ t� tf ; the problem is strictly
similar to a direct poroelastic problem. The boundary and final conditions of this problem
depend on the solution of the direct problem. Therefore, the adjoint poroelastic problem is
solved after the solution of the direct problem has been obtained. Moreover, the boundary
conditions at time tn are computed from the solution of the direct problem at tn:

The gradient of the cost functional is computed using Equation (40), after the solutions of the
direct and adjoint problems have been obtained. We recall that the local sensitivities of the
poromechanical fields are not obtained with the ASM but the gradient of the cost functional is
computed only via the solution of two poroelastic problems independently of the number of
unknowns parameters m:

It is important to note that passing from the direct to the adjoint problem changes the
integration scheme from implicit (forward Euler) to explicit (backward Euler) and vice
versa. This particularity has to be taken into account in the choice of the evolution of the time
step [7].

NUMERICAL EXAMPLES

Hollow sphere under oscillatory internal pressure

As a first example to test the DDM and ASM, we consider the problem of a hollow poroelastic
sphere of internal radius Ri ¼ 1 and external radius Re ¼ 2:5: Its inner surface is subjected to an
oscillatory pressure and pore pressure

rðtÞ � n ¼ H sinðotÞ

pðtÞ ¼ H sinðotÞ

The outer surface is undrained and free of traction.
The radial displacement produced by this loading is supposed to be measured on the outer

surface. As a consequence we dispose of overspecified boundary conditions and can define the
following cost functional:

JðmÞ ¼
Z
T

1
2
ðurmeasured

ðtÞ � urðm; tÞÞ2 dt ð46Þ
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On the one hand, we shall compare the sensitivities obtained by DDM and a finite difference
scheme and, on the other hand, we shall compute the gradient of a mismatch cost functional
using the DDM, ASM and finite difference.

Although the problem is clearly one-dimensional for a homogeneous material as subject to
spherical symmetry, we solve it numerically by the finite element method using a bi-dimensional
mesh under axial symmetry. The computation is performed with the following material
constants (Table I):

E ¼ 9:36 GPa; n ¼ 0:2; M ¼ 18:6 GPa

b ¼ 0:83; k ¼ 0:2 10�9 m2; mf ¼ 103 Pa s

Figure 2 shows the evolution of the pore pressure and radial displacement on the inner and
outer surface. The corresponding sensitivity coefficients are displayed in Figure 3. Table II
presents the numerical values of the sensitivities obtained by DDM and finite difference. The
values are equal up to three digits.

The comparisons of the gradient of J defined in Equation (46) is obtained by the three
methods in a particular point and is presented in the Table I. We remark, that the values are in
excellent agreement.

Table I. Comparison of the functional gradient (hollow sphere
example) for E ¼ 14:04 GPa; M ¼ 18:06 GPa; b ¼ 0:7;

k ¼ 2:65� 10�9 m2 and mf ¼ 103 Pa s:

FD DDM ASM

J 1.81201E-02 1.81201E-02 1.81201E-02
rEJ 2.58636E-02 2.57086E-02 2.50994E-02
rbJ 8.46560E-03 8.38752E-03 8.3184E-03
rMJ 6.27311E-05 6.22351E-05 6.2802E-05

Figure 2. Time evolution of pore pressure and radial displacement on the inner and outer surface of the
hollow sphere (first example).
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Hollow cylinder under complex loading

Let us now consider the case of a hollow cylinder of inner radius Ri ¼ 1 and outer radius
Re ¼ 2:5 as displayed in Figure 4. A constant pore pressure p ¼ p is applied to a part of the inner
radial surface while the rest of this surface remains undrained during the time of interest ½0; tf �:
The top and bottom surface are drained, whereas the outer radial surface is undrained. A
variable mechanical pressure (compression) is applied at the top of the cylinder. Figure 5
displays the evolution of the applied pressure as well as the corresponding evolution of the
vertical displacement of the top platten.

We can note the delayed displacement due to the poroelastic coupling. The stresses contour at
a given time during the transient phase are displayed on Figure 6. The two-dimensional effect
due to the hydraulic loading is clearly visible.

Figure 3. Time evolution of the sensitivities coefficient of the outer pore pressure (left panel) and of the
radial displacement (right panel) (midmi

urðr ¼ Re; tÞ) for the hollow sphere (first example).

Table II. Comparison finite difference and direct differentiation for E ¼ 14:04 GPa; M ¼ 18:06GPa;
b ¼ 0:7; k ¼ 2:65� 10�9 m2 (hollow sphere, first example).

EdEur ðr ¼ ReÞ 1e-3 MdMur ðr ¼ ReÞ 1e-4 bdbur ðr ¼ ReÞ 1e-3 kdkur ðr ¼ ReÞ1e-3

Time FD DDM FD DDM FD DDM FD DDM

0.4 �0.663765 �0.664143 0.565540 0.568142 0.459273 0.459000 0.128135 0.128733
0.8 �0.672403 �0.672833 �0.259502 �0.257120 0.618375 0.617754 �0.062605 �0.062044
1.2 0.233582 0.233676 �0.808950 �0.810130 �0.052898 �0.053079 �0.184853 �0.185125
1.6 0.816166 0.816659 �0.244495 �0.247614 �0.650004 �0.649504 �0.052508 �0.053241
2 0.270814 0.271031 0.657686 0.656939 �0.348786 �0.348301 0.152367 0.152186
2.4 �0.648794 �0.649147 0.650962 0.653618 0.434443 0.434238 0.146675 0.147296
2.8 �0.671792 �0.672221 �0.255369 �0.252980 0.617287 0.616671 �0.061716 �0.061152
3.2 0.233604 0.233698 �0.808789 �0.809970 �0.052939 �0.053119 �0.184818 �0.185091
3.6 0.816167 0.816660 �0.244489 �0.247608 �0.650005 �0.649505 �0.052507 �0.053239
4 0.270815 0.271031 0.657686 0.656939 �0.348786 �0.348301 0.152367 0.152187
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The contour of the sensitivites of the stresses on the Biot modulus at the middle of the loading
are shown on Figure 7. Similar patterns can be observed for the other parameters.

Identification of some poroelastic coefficients

As an application, we will seek to recover some poroelastic parameters from the knowledge of
the vertical displacement of the top platten for the hollow cylinder example described in the
previous section. The measurements are simulated by a preliminary simulation and perturbed
with 3% of white noise. The chosen values of the poroelastic parameters that we will try to
recover from the data are

E ¼ 4:5 GPa; n ¼ 0:2; M ¼ 30MPa

b ¼ 0:658; k ¼ 3� 10�11 m2 Pa�1 s�1 ð47Þ

The identification is formulated as the minimization of the following cost functional:

JðmÞ ¼
1

2

Z
Gsup

Z
T

ðuzðm; tÞ � uzdataðtÞÞ
2 dx dt

where uzdataðtÞ are the simulated data of the vertical displacement and uzðm; tÞ are the
corresponding predictions for a given set of poroelastic parameters m (Figure 8).

In this case, we only try to retrieve the value of the Biot coefficient b; hydraulic conductivity k
and drained young modulus E from the displacement data. The optimization is performed
using a gradient based algorithm. We will used the two methods (ASM and DDM) in order
to obtain the gradient components: direct differentiation coupled with a Levenberg–Marquardt

Figure 4. Schematic view of the configuration of the hollow cylinder example (second example).
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algorithm and the adjoint state coupled with a BFGS update of the Hessian and a
Wolfe line search. For a general review of numerical minimization algorithms, see References
[23, 24].

Several optimizations starting from different guesses for the initial values of the unknown
parameters have been performed. The results are summarized, respectively, in Tables III and IV
for the case of the DDM and ASM, respectively. We can see that we always recover the

Figure 5. Loading path for the applied stresses L and the pore pressure p together with the induced vertical
displacement uz (second example).

Figure 6. Contour of szz; srz; p at the middle of the transient phase (axisymmetrical modelling, second
example).
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optimum values of the parameters (47). We can also note that in the case where the optimization
is performed using a Levenberg–Marquardt algorithm with the sensitivities computed by DDM,
the convergence was always reached within 15 iterations. The evolution of the estimated
parameters during an optimization process in that case is displayed in Figure 9.

Figure 8. Evolution of the sensitivity coefficient of the vertical displacement on different parameters
obtained by Direct differentiation (hollow cylinder, second example).

Figure 7. Corresponding contour of dMszz; dMsrz; dMp at the middle of the transient phase
(axisymmetrical modelling, second example).
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The results obtained via the ASM for the estimate of the cost functional gradient and a BFGS
scheme are slightly less precise as one can notice on Table IV. The convergence is also slightly
slower. Nevertheless, we recover the optimum parameters (47).

CONCLUSIONS

We have extended the DDM and ASM to the case of quasi-static linear poroelasticity and
discussed their finite element programming. Their efficiency in computing sensitivities and
gradients of cost functionals has been illustrated using two numerical examples. The examples
also showed the possibility of applying these techniques for parameter identification problems.

The importance of these techniques lies in their accuracy and computational efficiency in
comparison to any finite difference scheme. It is also important to notice, that their introduction
into existing finite element codes does impose only a small amount of additional programming,
provided the codes have an open architecture. Moreover, the present formulation can be further

Table III. Identification results, gradient by direct differentiation and
Levenberg–Marquardt algorithm.

E (GPa) k ð�10�10 m2 Pa�1 s�1Þ b

Initial 5 0.1 0.2
Identified 4.5 0.2997471 0.6580478
Initial 2 0.6 0.2
Identified 4.51 0.3292477 0.6859921
Initial 6.0 0.8 0.8
Identified 4.5 0.3003186 0.6585730
Initial 8.0 0.09 0.3
Identified 4.499 0.2986915 0.657082

Optimum 4.5 0.3 0.658

Table IV. Identification results, gradient by the ASM
and BFGS type algorithm.

E (GPa) k ð�10�10 m2 Pa�1 s�1 b

Initial 5 0.1 0.2
Identified 4.487 0.25835 0.65573
Initial 2 0.6 0.2
Identified 4.512 0.34512 0.6654
Initial 6.0 0.8 0.8
Identified 4.485 0.3245 0.6734
Initial 8.0 0.09 0.3
Identified 4.49 0.2867 0.6578

Optimum 4.5 0.3 0.658
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extended to other coupled problems such as thermo-poro-elasticity, or nonlinear constitutive
behaviours such as poro-viscoplasticity.

From a practical point of view, we recall that parameter identification problems are generally
ill posed, i.e. uniqueness and stability of the solution with respect to initial data are not assured.
Therefore in the application of the preceeding techniques further precautions have to be taken.
As a rule of thumb, a complete dimensional analysis of the particular forward problem must be
conducted in order to obtain the lumped parameters that have an influence on the measured
quantity. Nonetheless, such dimensional analysis will only give the maximum number of
parameters entering in the system response. It will not avoid the less obvious non-uniqueness
problems. To our knowledge the question of uniqueness of the parameter identification problem
in poroelasticity with respect to the available measurements is still an open question to be
addressed in the future.
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