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L. Gélébart,1 J. Crépin,2 M. Dexet,3 M. Sauzay,4 and A. Roos5   

Identification of Crystalline Behavior on Macroscopic 
Response and Local Strain Field Analysis: Application to 
Alpha Zirconium Alloys  

ABSTRACT:  The purpose of this paper is to present an identification method of the crystalline behavior 
of a material from a mechanical test performed on a polycrystalline sample. Because of the lack of 
knowledge about its crystalline behavior, this method is applied to a Zirconium alloy. This identification 
is based on a finite element modeling of the microstructure, and the results are compared to both the 
macroscopic and the microscopic experimental results.  On the microscopic scale, the plastic strains are 
obtained using a micro-extensometry technique, and the crystalline orientation using an EBSD technique. 
In order to validate the method, an identification is performed with only two free parameters: the 
evolutions of the macroscopic and microscopic errors appear to be regular and exhibit a well-defined 
minimum so that the parameters can be clearly identified. 

KEYWORDS: identification, crystalline plasticity, zirconium, finite-element, micro-extensometry, 
EBSD  

Introduction 
On different scales, the recent development of displacement (strain) field measurement 

techniques opens new possibilities for the identification of the mechanical behavior of materials. 
From a practical point of view, in case of a “classical” macroscopic identification, they can 

be used to control the homogeneity of the strain field at the surface of the specimen. But their 
main interest is that this condition of homogeneity is no more a necessity: actually, the 
displacement, and consequently the strain, are known in a high number of points (typically about 
10 000), so that an identification of the materials’ behavior based on “heterogeneous” tests can 
be considered [1]. An application can also be performed at the scale of the microstructure, i.e., 
the grain for a polycrystal, thanks to strain field measurements (micro-extensometry) and 
orientation field measurements (EBSD) [2,3].  On this scale, the purpose is to identify the 
crystalline behavior of the grain. 

 At least two different methods can be considered to use these fields for the identification 
procedure. On the one hand, it is possible to perform finite-element calculations and to compare 
the experimental and simulated strain fields. In this case, the evaluated stress field is 
equilibrated, and the quantity to minimize is the difference between experimental and simulated 
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strain fields [2,3]. On the other hand, it is possible to use the experimental strain field to evaluate 
a stress field through a direct integration of the mechanical behavior’s constitutive law. In this 
case, the stress field is no more equilibrated, and the quantity to minimize is now the equilibrium 
gap evaluated on this stress field [1]. 

The crystalline behavior of α-Zr alloys is still a problem for the micro-mechanical modeling 
of fuel cladding in the nuclear industry; for example, the critical resolved shear stresses of the 
four types of slip systems are difficult to identify. One reason for this difficulty is the strong 
heterogeneity of the stress field due to the strong anisotropy of the plastic behavior. One way to 
take it into account is to perform finite-element calculations. The work presented below is then 
carried out on the scale of the microstructure, and the purpose is the identification of the α-Zr 
crystalline behavior from tests performed on poly-crystal specimens. The aim is to use both the 
macroscopic response and the intra-granular strain field to identify the parameters of the 
crystalline behavior. 

The identification is applied to a tensile test performed on a Zr alloy, and the outline of this 
paper follows the different points of this methodology: first, the experimental procedure leading 
to the superposition of the experimental plastic strain and crystalline orientation fields, then, the 
finite element simulation, next, the definition of an error between experimental and simulated 
results obtained on the local and on the macroscopic scale, and finally, a way to use this error to 
identify crystalline parameters.  

Material 
The tensile test specimen (Fig. 1) is taken from a rolled and recrystallized plate (8mm in 

thickness) with the tensile test direction parallel to the transverse direction (perpendicular to the 
rolling direction and to the normal of the plate). The material is the so-called grade 702 Zr alloy 
(chemistry is given Table 1). The strong texture of this alloy (Fig. 2) is typical of rolled and 
recrystallized α-Zr alloys. The average grain size is 12µm.   

40mm

6mm

84mm

FIG. 1—Geometry of the tensile test specimen (3mm in thickness). 

TABLE 1—Chemical composition of zirconium grade 702. 

Element C H O N Cr Fe Ni Sn 
Concentration 
(ppm weight) 58 4- 7 1,40

0 33 240 760 50 2,28
0 
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FIG. 2—Crystallographic texture (DL = longitudinal direction, and DT = transverse direction). 

Experiments 
In this part, we present the tensile test that gives the macroscopic behavior of the material, 

the measurement of the crystallographic orientation field that will be used to define a finite 
element model of the microstructure, and the measurement of the plastic strain field that will be 
compared to the finite element results.  

Tensile Test 

The tensile test specimen was deformed at a uniform temperature of 200°C (±2°C) with a 
crosshead displacement rate of 1 mm/min that corresponds to an approximate strain rate of 4.10–4 
s–1. The axial strain was measured by means of an axial extensometer. The corresponding 
macroscopic stress-strain curve is given Fig. 3. Two constraints have determined the choice of 
the temperature: it had to be low enough to preserve the quality of the micro-grids (a gold 
deposit) and  high enough to avoid twinning that is hard to take into account in the modeling of 
the plastic crystalline behavior.   

Orientation Field Measurement (EBSD) 

The lattice orientation of each grain is obtained by EBSD, whose electron beam displacement 
can be prescribed automatically by using a regular mesh (1µm step) to get the whole orientation 
field (Fig. 4) associated with the studied microstructure on a surface (150 × 150µm2). 

Superimposition 

In Figs. 4 and 6, four marks made of a 10 × 10µm2 gold deposit at the surface of the 
specimen surrounding the analysis region are illustrated. They are used to superimpose the 
crystallographic orientation map (Fig. 4), obtained for a tilt angle of 70° and the secondary 
electron (SE) images (Fig. 6), obtained with no tilt of the specimen. 

Actually, because of inherent alignment, imperfections between the tilt axis and the scanning 
direction, an image obtained with a tilt of 70° is “deformed” compared to the image obtained 
with no tilt; the effective scanned zone is not rectangular (Fig. 5). 
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FIG. 3—Macroscopic behavior. 

0 0.5 

FIG. 4— Schmid factor for prismatic slip. 
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Effective scanned 
zone Specimen 

(tilt 70°) 

Scanning zone 

FIG. 5—Distortion of the EBSD image. 

FIG. 6—SE image: the micro-grid used for strain field measurement and the marks (10 × 10 
µm2) used for the superposition. 

In the context of a quantitative analysis, an accurate superposition of the orientation field on 
the SE images, used to evaluate the displacement field, is required: a local strain must not be 
affected to a wrong grain. The problem of the superposition is to determine the transformation Φc 
between X, the coordinates of a point in the EBSD image, and x, the coordinate of the same 
point in the SE image. If this transformation is assumed to be homogeneous, the knowledge of 
this transformation in three points is enough to determine its six components; this is performed 
thanks to the gold marks (Figs. 4 and 6). 
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Displacement and Strain Field Measurement (Micro-Extensometry) 

The local strain field at the surface of the sample is obtained by a micro-extensometry 
technique, developed by LMS-Ecole Polytechnique [4,5], whose principle consists in taking 
SEM images of a square micro-grid deposited on the surface, before and after deformation (or 
during deformation if the test is performed in situ). The in-plane displacements of the 
intersections of this micro-grid are determined by means of a correlation method that compares 
the images before and after deformation. The strain field is then derived from this displacement 
field. The choice of the pitch for the micro-grids, 2 µm, is related to the accuracy and resolution 
required to measure intra-granular strain fields. The strain measured after unloading with this 
technique is the total residual strain field; it is divided into the plastic and the residual elastic 
strain fields, and it is assumed that the residual elastic local strains can be neglected in front of 
the plastic strains.  

The superimposition of the equivalent plastic strain map on the microstructure can be 
observed in Fig. 7 where the microstructure is represented by the Schmid factor’s map for 
prismatic slip. The strain distribution is very heterogeneous and can be described by bands of 
plastic strain localization, having an orientation of around 45° with respect to the tensile axis, 
and regions remaining nearly undeformed. These regions correspond to grains where the Schmid 
factor for prismatic slip is low, and there are often localization bands situated at the boundaries 
of these grains, especially if these boundaries have an orientation of 45° with respect to the 
tensile axis.    

0 0.5 

0% 7% 
FIG. 7—Superposition of the experimental plastic strain map ( expeqε ) on the Schmid factor’s 

map (for prismatic slip); the tensile test axis is horizontal. 
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Crystalline Behavior 
In this section we present the crystalline behavior law that will be, in the next sections, 

associated to the crystallographic orientation field in the finite element model. 

Deformation Mechanisms [7,8] 

The major deformation mode is prismatic glide on { }0110  planes with Burgers vectors
<a>=< 0211 >. The main secondary slip system is pyramidal <a> slip gliding on { 0111 } planes, 
but pyramidal <c+a> (< 1132 > { 0111 }) and basal slip (< 0211 > { 0001}) also have been 
observed. At low temperature, twinning also plays an important role in the plastic deformation. 
The critical resolved shear stresses and the interactions between the different systems still are not 
well known. 

Crystalline Behavior Law 

As a first approximation, we use a simple and classical single crystal behavior law written in 
the context of small perturbations. The elastic behavior is given by the Hooke law (Eq 1), σ  

being the stress, ε  the total strain, and  vpε  the visco-plastic strain. 

( )vpK εεσ −= : (1) 

The elastic tensor K  has a transverse isotropic symmetry, and its numerical value is given as a 
function of the temperature in [6]. According to the normality rule, the visco-plastic strain rate is 
the sum of the shear strain rates on all the slip systems (s) (Eqs 2 and 3).  

∑=
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vp Rγε (2) 
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vp
sγ   is the intensity of the shear strain rate, and 

s
R  gives the orientation of the shear strain on 

the system (s) defined by its gliding plane and direction, respectively  sn  and sm . On each 
system, the intensity of the shear strain rate is related to the applied stress by a modified Norton 
law (Eqs 4 and 5). The introduction of a sinh function was proposed for zirconium alloys [8–11].   
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Where  and are the resolved and critical resolved shear stresses on the system (s). Finally 
the evolution of the critical resolved shear stress (i.e., the hardening behavior) is assumed to be 
linear (Eq 6). 

sτ
0
sτ

∑=
k

vp
ksks h γτ 0 (6) 

The hardening matrix, a 24 × 24 matrix, has been simplified (Eqs 7 and 8).  It can be described 
by only two values, h  for the self-hardening, and  for the latent hardening.  0 qh0

sksk qhh 0= (7) 

sksk qqq δ)1( −+= (8) 

Finite Element Calculation with Experimental Boundary Conditions 
The geometry of the finite element mesh is built on the description of the EBSD mesh; it 

consists of one layer of cubic elements (8 nodes - 8 Gauss points), the center of each element 
being a position of the EBSD mesh. For each element, the material behavior is given by the 
crystalline behavior of the hexagonal crystal, described previously, associated to the 
crystallographic orientation (EBSD). 

On the upper and lower faces, boundary conditions consist of conditions of free surface so 
that this calculation is close to a plane stress calculation. These conditions assume that the effect 
of the underlying microstructure can be neglected if we only consider the strains at the surface of 
the sample, but this question still has to be clarified.   

The boundary conditions applied to the contour of the mesh are divided into an elastic and a 
plastic part (Eqs 9–11). In Eqs 9–13, U  are displacement fields restricted to the points located 
at the contour. 

XXX

)()()( tUtUtU PE += (9) 

max)()( EE UtftU = (10) 

max)()( PP UtgtU = (11) 

The plastic part at the end of the loading U  is assumed to be equal to the experimental 
displacement field at the contour (Eq 12) measured after loading, thanks to the micro-grid (as 
there is not an exact coincidence between the points of the FEM mesh and those of the micro-
grid, a linear interpolation is applied to get the displacement at the points of the contour).  

maxP

expmax UU P = (12) 
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The elastic part at the end of the loading U  is assumed to be equal to the displacement field 
at the contour corresponding to a homogeneous strain 

maxE

0E  (Eq 13). 0E  is evaluated as the strain 

that gives max
expσσ =xx , 0=yyσ  and 0=xyσ  if the behavior of the material is assumed to 

remain elastic.  

{ contourxxExuUE ∈== ,.)( 0max  with 0,0,/ max
exp0 === xyyyxxE σσσσ  in elasticity   (13) }

The kinetic of the loading is given by the functions f and g. The most simple to apply is a 

proportional loading (
ft
ttgtf == )()( ) [2,3], but it is not quite realistic; at the beginning of the

tensile test, the material is elastic, and ≈xxyy εε / –0.37, and at the end its behavior is plastic, 

and ≈xxyy εε / -0.75 (this value is due to the anisotropy of the material; it would have been 
equal to –0.5 for an isotropic material). A way to improve the description of the loading is to 
define a piecewise evolution (Fig. 8), with and  the stress and the time at the beginning of 
plasticity (Fig. 9). 

y
expσ yt

The use of experimental boundary conditions represents the interaction with the other grains 
situated in the neighborhood of the area of interest.  

The finite element code used for these calculations is CASTEM2000 developed by CEA-
Saclay/SEMT [12], and the crystalline behavior [13] was introduced in the code by CEA-
Saclay/SRMA. 

yt ft

max
expexp /σσ y

1 

f(t)

g(t)

t 
0

FIG. 8— Evolution of the functions that define the evolution of the boundary conditions. 
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        (a)       (b) 

FIG. 9—Experimental plastic strain ( ) (a) and experimental macroscopic stress (b) P
xxε

%6.2=P
xxε . 

Definition of the Error Estimation 
In this section, we define the error estimation that quantifies the “quality” of the finite 

element calculation compared to the experimental results, and as a consequence, the “quality” of 
the set of parameters used for this calculation. As usual in identification problems, many 
different choices can be made to define the error estimation; here is one choice. 

The error estimation is divided into two parts: a macroscopic and a microscopic one. The 
macroscopic error (Eq 14) is the norm between the mean simulated stress tensor and the 
experimental macroscopic stress tensor (with 0expexp == xyyy σσ  for a uniaxial tensile test), 
averaged during the time of loading. Of course, the larger and the more representative the region 
of interest is, the more the use of this macroscopic error makes sense.  

∫ −= ft

f

mac dt
t

E
0 2

exp
1 σσ   where  222

2
2: xyyyxx AAAAAA ++== (14) 

The microscopic error used in reference [2] for body-centered cubic (BCC) crystals was 
based on the comparison between the statistical distributions of experimental and simulated 
strains. This definition can be used in BCC structures because all the slip systems have the same 
critical resolved shear stress. In our case, the mechanisms have different CRSS, and the positions 
of the strain heterogeneities have to be taken into account: the microscopic error (Eq 15) is the 
average of the norm of the difference between the simulated plastic strain tensor and the 
experimental strain tensor. The choice of the norm 

eq
.  is done because it only takes into account 

the deviatoric part of the tensor, which is the important part if we are interested in plastic 
deformation.    
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eq

PmicE expεε −= where  ( ) 22 4
3
2

xyyyxxeq
AAAA +−= (15) 

In order to define a single error estimation, these errors have to be normalized by macroscopic 
and microscopic normalization factors (Eq 16). The choice that has been made for this 
normalization is to use the errors (  and  ) evaluated with a uniform and isotropic 
behavior (i.e., a Von Mises yield function). With this choice of normalization, the error 
estimation indicates the “quality” of a set of crystalline parameters in comparison with an 
isotropic behavior. Details will be found in the applications. 

macE0
micE0









+= mic

mic

mac

mac

E
E

E
EE

002
1 (16) 

Applications 

The experimental results that will be used for the following applications are: the evolution of 
the experimental axial stress as a function of time (Fig. 9b) and the experimental plastic strain 
field (Fig 9a) on a region of 116 × 110µm2. With this size of region, the finite element mesh has 
3190 elements, and the calculation lasts around one hour on an Intel Xeon 3.06GHz processor. 

Effect of the Boundary Conditions Applied on the Contour 

In order to evaluate quantitatively the effect of the use of experimental boundary conditions 
(BC) as they were described in a previous section, another calculation was performed assuming 
homogeneous BC: the plastic part of the displacement is assumed to be equal to the 
displacements corresponding to an homogeneous strain PE0 , where PE0  is equal to the average 

experimental plastic strain ( ) (Eq 17).  %2.0%;1.2%;6.2 000 =−== P
xy

P
yy

P
xx EEE

{ SxxExuU P
P ∂∈== ,.)( 0max      with     }exp0 ε=PE (17) 

A part of the material parameters used for this comparison is inspired from literature; they 
have been identified to fit creep tests thanks to a micro-mechanical model [10]. The other 
parameters have been qualitatively identified on the macroscopic behavior, keeping in mind the 
experimental observations on the relative ease of slip of the different slip systems (Table 2).  

TABLE 2—Choice of material parameters. 

0γ * (s–1) n * Oτ  (MPa) 0h  (MPa) q *

Prismatic 1.107 3 20 100 2
Pyramidal <a> 1.107 7 40 100 2
Basal 1.107 7 80 100 2
Pyramidal <c+a> 1.107 7 80 100 2

* inspired from [10].
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A qualitative comparison (Fig. 10) shows that the plastic strain field is more heterogeneous 
when it is evaluated with experimental BC. From a quantitative point of view, the microscopic 
errors micE  are of 1.54 % and 1.74 % for experimental and homogeneous conditions; the first 
one leads to a best estimate of the experimental plastic strain field.   

Another way to evaluate the effect of the experimental BC is to perform a calculation with a 
homogeneous and isotropic behavior. The behavior is elasto-plastic with an isotropic Von Mises 
yield function and a linear hardening. A value of 100MPa is chosen for the linear hardening, and 
the yield stress is identified on the axial stress at the end of the loading.  The plastic strain field 
(Fig. 11) is also heterogeneous with localization bands, but the heterogeneities are more diffuse 
in comparison with the heterogeneous crystalline calculation (Fig. 10a), and surprisingly, the 
microscopic error , equal to 1.37 %, is lower. Not surprisingly, from a macroscopic point of 
view (Fig. 11b), the evolution of the axial stress is far from the experimental one and the 
transversal stress is far from 0.MPa that corresponds to a uniaxial tensile test. The macroscopic 
error  is then of 99.3 MPa. This example reveals the necessity to take both the microscopic 
and the macroscopic behavior into account to identify the material behavior.  

micE0

macE0

(a) (b) 

FIG. 10—Comparison of the plastic strain field ( ) calculated with experimental boundary 
conditions (a) or homogeneous boundary conditions (b). 

P
xxε
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(a) (b) 
FIG. 11—Plastic strain field ( ) and evolution of the macroscopic stresses for a 

homogeneous and isotropic behavior (Von Mises). 

P
xxε

Identification of Material Parameters 

General Description—From the description of the crystalline behavior, the material 
parameters are ( , , , ,…). A way to identify these parameters is to apply directly 
a minimization procedure to the error estimation 

0
Pτ

0
><aπτ

0
Bτ

0
>+< acπτ

E  as a function of ( , , , ,…).  0
Pτ

0
><aπτ

0
Bτ

0
>+< acπτ

Here, we propose to modify the description of the problem and to use the parameters 

( ,0
Pτ ><aπα , Bα , >+< acπα ,…), where O

P

i
i τ

τ
α

0

=

0
Pτ

. Now, a pre-identification of  can be performed 

easily; it consists in identifying  on the axial stress at the end of the loading, the other 
parameters being constant. As a consequence the error estimation, 

0
Pτ

E  is now a function of 
( ><aπα , Bα , >+ac<πα ,…); for each evaluation of E  ( ><aπα , Bα , >+< acπα ,…) an optimal value of  
is identified.  The main advantage of this pre-identification is that all the evaluations of 

0
Pτ

E  have 
in common a macroscopic behavior “not so different from” the experimental one. The second 
advantage is that this pre-identification has a very low cost in terms of iterations.     

The use of a minimization procedure has not been carried out yet, and as it is important to 
have a preliminary knowledge of the behavior of the function E  before using such a procedure, 
the following example is restricted to the identification of two parameters.  

Example:  Identification of  and 0
Pτ ><aπα —In this example, the material parameters are those 

used for the comparison between experimental and homogeneous boundary conditions (Table 2), 
except the critical resolved shear stresses (CRSS):  and 0

Pτ ><aπα  are still to identify, Bα  and 

>+< acπα are set equal to 4. The criterion ( ) ( ) ( )( )fxxxxfxx tt expexp ft σσσ −  used for the pre-
identification of >+< acπα  is 1 %, and the number of iterations to reach this criterion varies 
between 2 and 4. As the CRSS of the pyramidal <a> slip is supposed to be larger than the CRSS 
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of prismatic slip and lower than the CRSS of the basal and pyramidal <c+a> slips, the parameter 
><aπα  is bounded by the values 1 and 4.  

><aπα

0
Pτ

=Bα

The evolutions of the microscopic and macroscopic errors (  and ) as functions of micE0
macE0

 (Fig. 12a), are quite regular, and they both exhibit the presence of minima that correspond 
respectively to the interpolated values of 2.8 and 2.3. The error estimation E  that mixes the 
microscopic and the macroscopic errors (Eq 16) exhibit a unique minimum for ><aπα =2.6 (Fig. 
12b). Each point on Fig. 12 is the result of the pre-identification, and the pre-identified value of 

 is also represented; it decreases when ><aπα  increases, which is not surprising. The 
corresponding optimal set of CRSS is given in Table 3. Finally, the macroscopic curves and the 
plastic strain fields are presented (Fig. 13) for three values of ><aπα  , the extreme values 1 and 4 
and the value 2.5 corresponding to the minimum of E . 

(a)       (b) 

FIG. 12—Evolutions of the microscopic and macroscopic errors (a), of the error estimation 
(b) and of the pre-identified CRSS for prismatic slip (b). 

TABLE 3—Optimal values of prismatic and pyramidal <a> CRSS, obtained with 
4=>+< acPyα . 

Prismatic Pyramidal <a>
α  1. 2.6
CRSS (MPa) 16.2 42.1 
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0% 7% 

(a1) (a2)

(b1) (b2)

(c1) (c2)

FIG. 13—Plastic strain field ( ) and macroscopic behavior for P
xxε ><aπα =1(a1 and a2), 

><aπα =2.5 (b1 and b2), and ><aπα =4 (c1 and c2). 
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 Conclusion, Discussion, and Future Prospects 
The aim of this paper was to present an identification method of the crystalline behavior of 

the α -Zr alloy grain from a mechanical test performed on a polycrystalline sample. Actually, in 
many cases, single crystals having an identical chemical composition to that of the alloy are hard 
to obtain. Then, the transposition of the material parameters obtained on a single crystal to the 
behavior of the grain is not evident. As a consequence, this behavior has to be identified on the 
polycrystalline material.  

A way to identify this local behavior is to use a micromechanical model and to fit this 
behavior on the macroscopic response obtained on the polycrystal [14]. But in this approach, the 
local quantities such as stress and strains, on which the micromechanical models are based, are 
not compared to the experimental local quantities. The purpose of this approach is to perform 
this identification not only on the macroscopic behavior but also on the local quantities. 

The local quantity that we use is the plastic strain field, measured on the scale of the 
microstructure due to a micro-extensometry technique. The micromechanical model is a finite-
element calculation with a crystalline behavior associated to a crystallographic orientation 
measurement technique (EBSD). In order to take into account the interaction of the grains in the 
neighborhood of the region of interest, experimental boundary conditions are used. The 
macroscopic error accounts for all of the components of the stress tensor. The microscopic error 
accounts for the difference, at each point, between the experimental and the simulated plastic 
strain tensor.   

A first identification has been proposed in order to validate this methodology: only two 
parameters were free. The evolutions of the microscopic and macroscopic errors appear to be 
regular and exhibit a well-defined minimum so that the parameters can be identified clearly. 
Such identifications still have to be performed before using a minimization procedure for a more 
complex identification. 

The crystalline behavior, which is quite simple and classical, will have to be modified in 
order to take physical aspects of the plastic deformation into account, such as the evolutions of 
the dislocation densities.  Finally, two questions, on which this identification method is based, 
are still open and will have to be clarified: is the region of interest mechanically representative of 
the polycrystal behavior, and what is the effect of the microstructure under the surface?   
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