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Abstract. This work presents the application of a recently proposed “second-order” homogenization
method (Ponte Castañeda, 2002) to generate estimates for effective behavior and loss of ellipticity in
hyperelastic porous materials with random microstructures that are subjected to finite deformations.
The main concept behind the method is the introduction of an optimally selected “linear thermoelastic
comparison composite”, which can then be used to convert available linear homogenization estimates
into new estimates for the nonlinear hyperelastic composite. In this paper, explicit results are provided
for the case where the matrix is taken to be isotropic and strongly elliptic. In spite of the strong
ellipticity of the matrix phase, the homogenized “second-order” estimates for the overall behavior are
found to lose ellipticity at sufficiently large compressive deformations corresponding to the possible
development of shear band-type instabilities (Abeyaratne and Triantafyllidis, 1984). The reasons
for this result have been linked to the evolution of the microstructure, which, under appropriate
loading conditions, can induce geometric softening leading to overall loss of ellipticity. Furthermore,
the “second-order” homogenization method has the merit that it recovers the exact evolution of the
porosity under a finite-deformation history in the limit of incompressible behavior for the matrix.

Key words: homogenization, finite deformations, elastomeric foams, microstructure evolution.

1. Introduction

This article is concerned with the use of recently developed homogenization meth-
ods to determine the macroscopic behavior of porous elastomers, as well as the
associated evolution of their microstructure (e.g., porosity) and the possible devel-
opment of instabilities, when these materials are subjected to finite deformations.
In an early contribution, Blatz and Ko [3] performed various experiments on a
polyurethane rubber with a random distribution of voids about 40 μ in diameter
and an approximate volume fraction of 50%. The experimental results generated
allowed these authors to propose a phenomenological model, known as the Blatz–
Ko model, which turns out to give adequate predictions at least for certain types
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of loadings. A physically appealing property of this constitutive model is that it
is found to lose ellipticity at finite deformation histories [15]. This property is in
agreement with experimental evidence suggesting that such materials can develop
macroscopic shear band instabilities at sufficiently high deformations, which corre-
spond to buckling of the ligaments between the pores at the micro scale. Motivated
by this earlier work, Abeyaratne and Triantafyllidis [1] attempted a numerical study
of the overall behavior of a nearly incompressible Neo-Hookean matrix with a
periodic distribution of cylindrical pores. They made use of the results of homoge-
nization theory for periodic media [31], which allow the reduction of the problem
of determining the effective behavior of a composite to a numerical calculation
on a unit cell. An interesting and important finding in this work was that the ho-
mogenized constitutive model for the porous material loses ellipticity, even when
the matrix material itself does not. This pioneering work has been generalized and
developed further by Triantafyllidis and coworkers [33, 9], always in the context
of periodic hyperelastic composites. One of the main conclusions of this work is
that loss of strong ellipticity for the homogenized material can be shown rigorously
to correspond to the bifurcation of the composite at wavelengths much larger than
the size of the unit cell. Furthermore, the overall loss of strong ellipticity (i.e., the
possible emergence of shear bands) in the homogenized composite, which is due
to the buckling of the actual material at the microstructural level, provides an upper
bound for the stable domain of the composite.
Although a proper homogenization framework has been available for some

time for hyperelastic composites with random microstructures [12], the applica-
tion of this framework to random porous elastomers has apparently not yet been
attempted, presumably because of the technical difficulties associated with this
problem. There are, however, some rigorous estimates for special loadings [11],
as well as other estimates based on various types of ad hoc approximations, mostly
for low-density foams (see, e.g., [8, 6, 10]). Our proposal here is to make use of the
“second-order” homogenization method, originally developed by Ponte Castañeda
[27] for viscoplastic materials, and extended recently for hyperelastic composites
by Lopez-Pamies and Ponte Castañeda [19, 20]. For comparison purposes, we will
also make use of an earlier version of the method due to Ponte Castañeda and
Tiberio [29] (see also [26]). The advantage of these methods is that they can be used
for any type of composite system, and that they make use of standard estimates for a
suitably optimized “linear comparison composites” to generate corresponding esti-
mates for the nonlinear hyperelastic composite. These methods have already been
used to estimate the behavior of particle-reinforced elastomers [29, 19, 17, 20],
and have been shown to be able to handle the strongly nonlinear constraint of
material incompressibility (a constraint on the determinant of the deformation)
for these material systems. These encouraging results for particle-reinforced elas-
tomers are suggestive that the methods can also be used successfully for porous
elastomers. This being our first attempt to handle porous elastomers in the context
of finite deformations, explicit results will be generated only for a model problem

2



involving aligned two-dimensional pores distributed randomly and isotropically in
an (in)compressible, isotropic elastomer. It is important to emphasize, however,
that the method can be applied for general classes of constitutive models in fi-
nite elasticity, as well as for very general classes of microstructures. The aim of
this first work is to explore the capabilities of the methods in the context of a
simple example, albeit one that incorporates the essential features of the problem
including strongly nonlinear behavior for the matrix phase, the possible evolution
of the microstructure and its implications for the overall stability of the material,
as determined by the strong ellipticity condition.

2. Preliminaries on Hyperelastic Composites

Consider a material made up of N different (homogeneous) phases distributed
randomly in a specimen occupying a volume �0 in the reference configuration.
Here, the characteristic length of the inhomogeneities (e.g., voids) is assumed to
be much smaller than the size of the specimen and the scale of variation of the
applied loading.
The constitutive behavior of the phases is characterized by stored-energy func-

tions W(r) (r = 1, . . . , N) that are nonconvex functions of the deformation gradi-
ent F. The local energy function of the composite may thus be written as

W(X, F) =
N∑

r=1
χ(r)(X)W(r)(F), (1)

where the functions χ(r) are equal to 1 if the position vector X is inside phase r

(i.e., X ∈ �
(r)

0 ) and zero otherwise. The stored-energy functions of the phases are,
of course, assumed to be objective in the sense that W(r)(QF) = W(r)(F) for all
proper orthogonalQ and arbitrary deformation gradients F. Making use of the polar
decomposition F = RU, where U is the right stretch tensor and R is the rotation
tensor, it follows, in particular, thatW(r)(F) = W(r)(U).
The local or microscopic constitutive relation for the material is then given by

S = ∂W

∂F
(X, F), (2)

where S denotes the first Piola–Kirchhoff stress tensor. Note that sufficient smooth-
ness has been assumed for theW(r) on F. Furthermore, the stored-energy functions
W(r) will be assumed to be such that W(r)(F) → ∞ as detF → 0+, to ensure the
material impenetrability condition: detF(X) > 0 forX in�0. This condition would
be automatically satisfied for incompressible materials, where detF is required to
be exactly 1.
Following Hill [12] and Hill and Rice [14], the global or macroscopic constitu-

tive relation for the composite is defined by

S = ∂W̃

∂F
, (3)
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where S = 〈S〉, F = 〈F〉 are the average stress and average deformation gradient,
respectively, and

W̃ (F) = min
F∈K(F)

〈W(X, F)〉 = min
F∈K(F)

N∑
r=1

c(r) 〈W(r)(F)〉(r) (4)

is the effective stored-energy function of the composite. In the above expressions,
the symbols 〈·〉 and 〈·〉(r) denote volume averages over the composite (�0) and
over the phase r (�(r)

0 ), respectively, so that the scalars c(r) = 〈χ (r)〉 represent the
(initial) volume fractions of the given phases. Furthermore, K denotes the set of
admissible deformation gradients:

K(F) = {
F | x = χ(X) with F = Gradχ in �0, x = FX on ∂�0

}
. (5)

Note that W̃ physically represents the average elastic energy stored in the com-
posite when subjected to an affine displacement boundary condition. Moreover,
from the definition (4) and the objectivity of W(r), it can be shown that W̃ is ob-
jective, namely, W̃ (F) = W̃ (U). Here, U represents the macroscopic right stretch
tensor associated with the macroscopic polar decomposition F = R U, with R
denoting the macroscopic rotation tensor. In turn, the objectivity of W̃ implies

that the macroscopic rotational balance equation S F
T = F S

T
is automatically

satisfied [12, 23].
It is further recalled that since W cannot be convex suitable hypothesis are

needed to ensure the existence of minimizers in (4). Ball [2] has provided suffi-
cient conditions for the existence of such minimizers, including the hypothesis of
polyconvexity of W , together with suitable growth conditions for W . More math-
ematically precise definitions of the effective energy W̃ are available at least for
periodicmicrostructures [5, 22]. Such definitions generalize the classical definition
of the effective energy for periodic media with convex energies [21], by allowing
for possible interactions between unit cells, essentially by taking an infimum over
the set of all possible combinations of units cells. Physically, this corresponds
to accounting for the possible development of instabilities in the composite at
sufficiently high deformation. In this connection, it is important to remark that
Geymonat et al. [9], following earlier work by Triantafyllidis and Maker [33], have
shown rigorously that loss of strong ellipticity in the homogenized behavior of the
composite corresponds to the development of long wavelength instabilities in the
form of localized shear bands. Furthermore, the “failure surfaces” defined by the
macroscopic loss of strong ellipticity condition are actually upper bounds for the
onset of other types of instabilities.
The objective of this work is to obtain estimates for the effective stored-energy

function W̃ of the above-defined hyperelastic composites subjected to finite defor-
mations, with particular interest in the special case of porous elastomers, where
the second phase is vacuous. Motivated by the earlier work of Abeyaratne and
Triantafyllidis [1], a second objective will be to investigate whether or not the

4



homogenized behavior of the porous material can lose strong ellipticity, even when
the local behavior of the matrix phase is assumed to be strongly elliptic itself.
The determination of the effective stored-energy function of a porous elastomer is
a very difficult problem, because it amounts to solving a set of highly nonlinear
partial differential equations with random coefficients. As a consequence, there are
very few analytical estimates for W̃ . Ogden [23] noted that use of the trial field
F = F in the definition (4) for W̃ leads to an upper bound analogous to the well-
known Voigt upper bound in linear elasticity. Due to the well-known difficulties
associated with the definition of a complementary energy principle in finite elastic-
ity, the equivalent of a Reuss-type bound in linear elasticity is not straightforward.
A non-trivial lower bound that used only information on the phase volume fractions
was proposed by Ponte Castañeda [25], exploiting the polyconvexity hypothesis.
Our proposal will be to use the “second-order” homogenization method for hy-
perelastic composites developed by Lopez-Pamies and Ponte Castañeda [20]. This
is a general homogenization technique, exact to second order in the heterogeneity
contrast, which has the capability to incorporate statistical information beyond the
phase volume fraction and that can be applied to large classes of hyperelastic com-
posites including reinforced and porous rubbers. For completeness, a brief outline
of the second-order method is included in the following section. For a more detailed
description of the theory, the reader is referred to [20].

3. Outline of the Second-Order Variational Methods

The key concept behind the second-order homogenization method for hyperelastic
composites developed by Lopez-Pamies and Ponte Castañeda [19, 20], as well as
the earlier version of the method [29] is the introduction of a fictitious “linear com-
parison composite” (LCC) with the samemicrostructure as the nonlinear composite
(i.e., the same χ (r)). Thus, the stored-energy function of the LCC can be formally
expressed as

WT (X, F) =
N∑

r=1
χ(r)(X)W

(r)
T (F), (6)

where the stored-energy functions of the phasesW(r)
T are given by the second-order

Taylor approximations of the nonlinear stored-energy functionsW(r) about certain
uniform reference deformation gradients F(r):

W
(r)
T (F) = W(r)(F(r))+S(r)(F(r)) · (F − F(r))+ 1

2
(F − F(r)) · L(r)

0 (F − F(r)).

(7)

In this relation, the L(r)

0 are fourth-order constant tensors, which together with the
F(r), are left to be specified later, and use has been made of the notation:

S(r)(F)
.= ∂W(r)(F)

∂F
. (8)
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Note further that the constitutive relation of the phases in the LCC are given by the
expressions:

S = L(r)
0 F + S(r), (9)

where S(r) = S(r)(F(r)) − L(r)

0 F(r) is a fixed polarization stress for fixed L(r)

0
and F(r). Thus, the LCC can be thought of as a linear “thermoelastic” composite,
but in a generalized sense since the relevant “stress” and “strain” measures are not
the standard linearized measures of stress and strain [29]. While it is well known
that such a material model is not suitable to describe the constitutive behavior of
actual elastomers at finite strain, the LCC is only an intermediate construction that
will allow the simplification of the original fully nonlinear problem, as described
by (4) with (1) and (2).
Next, “corrector” functions measuring the error made in the approximation of

the stored-energy functions W(r) of the nonlinear composite by the corresponding
stored-energy functionsW

(r)
T of the LCC are introduced such that

V (r)(F(r), L(r)

0 ) = stat
F̂ (r)

[
W(r)(̂F (r)) − W

(r)
T (̂F (r))

]
, (10)

where the optimization operation stat with respect to a variable means differen-
tiation with respect to that variable and setting the result equal to zero to gener-
ate an expression for the optimal value of the variable. Then, it follows that the
local stored-energy functions of the phases of the nonlinear composite may be
approximated as

W(r)(F) ≈ W
(r)
T (F) + V (r)(F(r), L(r)

0 ), (11)

and therefore that the effective stored-energy function W̃ of the nonlinear compos-
ite may be correspondingly approximated as

W̃ (F) ≈ W̃T (F; F(s), L(s)

0 ) +
N∑

r=1
c(r)V (r)(F(r), L(r)

0 ), (12)

where

W̃T (F; F(s), L(s)

0 ) = min
F∈K

〈WT (X, F)〉 = min
F∈K

N∑
r=1

c(r)〈W(r)
T (F)〉(r) (13)

is the effective energy function associated with the LCC. In this last expression, it
is implicitly assumed that the variables L(s)

0 remain strongly elliptic at least up
to the point where macroscopic instabilities could develop. These macroscopic
instabilities correspond to the loss of strong ellipticity of the effective constitu-
tive relation for the nonlinear composite; the use of the approximation (12) could
become questionable beyond the onset of these instabilities.
The approximation (12) is valid for any reference deformations F(r) and moduli

L(r)

0 , which naturally suggests its optimization with respect to these variables. In
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fact, the solution of this optimization problem for the variables F(r) and L(r)

0 in
the estimate (12) for W̃ depends on the solution of the optimization problems
(10) defining the “corrector” functions V (r). Thus, stationarity with respect to the
variables F̂(r) in (10) leads to the conditions:

S(r)(̂F (r)) − S(r)(F(r)) = L(r)

0 (̂F (r) − F(r)), (14)

which correspond to the linearization of the nonlinear constitutive relation for
the hyperelastic material in the phases. Now, it is observed that relations (14)
have several possible solutions. For example, these conditions could be identically
satisfied by taking the F̂(r) equal to the F(r), which would lead to the so-called
“tangent” approximation. On the other hand, solutions are also possible such that
F̂(r) �= F(r) and F(r) �= 0, which leads to a new type of linearization which has been
referred to as a “generalized secant” approximation [27]. Depending on the type
of linearization chosen, the general expression (12) can deliver, as discussed in the
next sections, various types of second-order estimates. It is recalled that the reason
for calling these estimates “second-order” is related to the fact that they are exact
to second-order in the limit of small heterogeneity contrast among the phases [32].

3.1. TANGENT SECOND-ORDER ESTIMATES (VERSION 1)

Considering the limit as F̂(r) tends to F(r) in (14) makes the functions V (r) vanish
identically. Then, optimality of the reference deformations F(r) in (12) leads to the
prescriptions:

F(r) = F
(r) .= 〈F〉(r), (15)

where F
(r)
has been defined as the average deformation field over phase r in the

LCC, defined by relations (6) and (7). As shown by Ponte Castañeda and Tiberio
[29], under condition (15), the general second-order estimate (12) simplifies to

W̃ (F) =
N∑

r=1
c(r)

[
W(r)(F

(r)
) + 1

2
S(r)(F

(r)
) · (F − F

(r)
)

]
. (16)

A key disadvantage of the estimates (16) is that by setting F̂(r) = F(r), the optimal-
ity conditions for the moduli L(r)

0 in expression (12), which for this case specialize
to

〈(F − F(r)) ⊗ (F − F(r))〉(r) = 0, (17)

where it is recalled that F = F(X) is the solution of the LCC problem (13), can-
not be satisfied in general [30]. Instead, we implement the physically motivated
prescription:

L(r)

0 = L(r)
t

.= ∂2W(r)

∂F2
(F

(r)
), (18)
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which, as already mentioned, is consistent with the limit F̂(r) → F(r) in (14). Note

that the estimate (16) then depends exclusively on the average fields F
(r)
over the

phases of the linear comparison composite.

3.2. SECOND-ORDER ESTIMATES WITH FLUCTUATIONS (VERSION 2)

Considering the more elaborate “generalized secant” linearization scheme, where
F̂(r) �= F(r) and F(r) �= 0, and optimizing the resulting expression (12) with respect
to the moduli L(r)

0 , leads to the following conditions:

〈(F − F(r)) ⊗ (F − F(r))〉(r) = (̂F (r) − F(r)) ⊗ (̂F (r) − F(r)). (19)

Unlike, the corresponding conditions (17) associated with the tangent second-
order estimate (Version 1), the new conditions (19) are more flexible in that they
allow fluctuations of the fields in the phases of the linear comparison composite.
The question then becomes what is the optimal choice of the reference deforma-
tions F(r). Unfortunately, this is a difficult question that has not yet been completely
resolved [27]. For this reason, two different approximate choices – neither of which
is expected to be optimal – will be considered here. The first is to identify the
reference deformations with the phase averages of the deformation gradients in the
LCC:

F(r) = F
(r)

. (20)

This prescription was used by Lopez-Pamies and Ponte Castañeda [20] and has the
advantage that it makes stationary (with respect to F(r)) the stored energy W̃T of
the LCC. Furthermore, this prescription can be shown [20] to lead to the following
second-order estimate:

W̃ (F) =
N∑

r=1
c(r)

[
W(r)(̂F (r)) − S(r)(F

(r)
) · (̂F (r) − F

(r)
)
]
, (21)

where the phase moduli tensors L(r)

0 in the LCC are determined by the conditions:

S(r)(̂F (r)) − S(r)(F
(r)

) = L(r)
0 (̂F (r) − F

(r)
), (22)

and the variables F̂ (r) by the conditions:

(̂F (r) − F
(r)

) ⊗ (̂F (r) − F
(r)

) = 〈(F − F
(r)

) ⊗ (F − F
(r)

)〉(r) .= C(r)

F . (23)

In this last relation, it is useful to note that the phase fluctuation covariance tensors
C(r)

F may be estimated via

C(r)

F = 2

c(r)

∂W̃T

∂L(r)

0

∣∣∣∣
F(r)=F

(r)
. (24)
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It should be emphasized that, because the phase fluctuation tensors C(r)

F are not
of rank 1, it is not possible to satisfy conditions (19) in full generality. Instead, as
explained later in more detail, only appropriate traces of these expressions should
be enforced [27].

3.3. SECOND-ORDER ESTIMATES WITH FLUCTUATIONS: A SIMPLIFIED
VERSION (VERSION 3)

An alternative choice for the reference deformation F(r), which is also probably not
optimal, is provided by

F(r) = F. (25)

This prescription has the advantage of being simpler than (20), while still keeping
dependence on the field fluctuations.
Using condition (25), together with the appropriate specialization of (19), the

general second-order estimate (12) can be shown to reduce to

W̃ (F) =
N∑

r=1
c(r)

[
W(r)(̂F (r)) − S(r)(F) · (̂F (r) − F

(r)
)
]
, (26)

where now the phase moduli tensors L(r)

0 in the LCC are determined by the condi-
tions:

S(r)(̂F (r)) − S(r)(F) = L(r)

0 (̂F (r) − F), (27)

and the variables F̂ (r) by (appropriate traces of) the conditions:

(̂F (r) − F) ⊗ (̂F (r) − F) = C(r)

F + (F
(r) − F) ⊗ (F

(r) − F). (28)

It is seen that the second-order estimate (26) depends explicitly on the vari-

ables F
(r)
. In addition, as opposed to (16) and like (21), the estimate (26) also

depends directly on the variables F̂(r), which are associated with the fluctuations of
the deformation fields in the phases, as specified by relation (28).
All three estimates, (16), (21), and (26), can be shown to be exact to second

order in the heterogeneity contrast, provided that the corresponding estimates for
the LCC are also taken to be exact to second order in the contrast. For instance,
the fact that both the Hashin–Shtrikman (HS) and Self-Consistent (SC) estimates
are exact to second order in the contrast for linear composites implies that the
corresponding hyperelastic HS and SC estimates for W̃ obtained from (16), (21),
and (26) will be also exact to second order in the contrast. However, it should
also be recalled [27] that the second-order methods exhibit a small “duality gap”,
which has the implication that the overall stress-strain relation for the nonlinear
hyperelastic composite, as generated from equation (3), is not exactly the same as
that for the LCC.
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As a final remark it is noted that Lopez-Pamies and Ponte Castañeda [20] have
shown that the estimates delivered by (21) were superior to those delivered by (16),
which (as previously stated) do not take into account field fluctuations, in the con-
text of incompressible elastomers reinforced with rigid particles. In this particular
context, the incorporation of fluctuations by the version (21) proved to be crucial in
order to recover the correct overall incompressibility constraint. In the present con-
text of porous elastomers, there is not such an incompressibility constraint as the
overall behavior of a porous elastomer remains compressible even when the matrix
phase is incompressible. Instead, the challenge for porous systems is to predict
correctly the evolution of the relevant microstructural variable (the porosity).

4. Effective Behavior of Porous Elastomers

In this section, the second-order estimates (16) and (26) for the effective stored-
energy function W̃ are applied to the special case of two-phase composites con-
sisting of vacuous (i.e., W(2) = 0) inclusions with given initial volume frac-
tion c(2) = fo in a compressible elastomeric matrix with stored-energy function
W(1) = W . Note that for this particular case the average stress in phase 2 is iden-

tically zero, so that the average stress in phase 1 is given by S
(1) = (1/c(1))S. It

is also emphasized that by exploiting the objectivity of W̃ , only macroscopic pure
stretch loading histories (i.e., F = U; R = I) need to be considered. Here, general
expressions are derived for two types of geometry and distribution of the pores:
(i) initially spherical pores distributed randomly and isotropically in the reference
configuration, and (ii) aligned cylindrical pores with initially circular cross sec-
tion distributed randomly and isotropically in the transverse plane of the reference
configuration. It is remarked that the former situation corresponds to a statistically
isotropic composite, whereas the latter corresponds to a statistically transversely
isotropic one. The loading will be assumed to be general three-dimensional in the
first case, and in-plane two-dimensional in the second.
Before proceeding with the various second-order estimates, it is useful to recall

the classical Voigt upper bound, which depends only on the phase concentrations
and follows from the principle of minimum potential energy [23]. Thus, the special-
ization of this Voigt bound to porous elastomers with hyperelastic matrix phaseW

leads to

W̃V (U) = (1− fo)W(U). (29)

Note that in the limit when the matrix phase is made incompressible, the Voigt up-
per bound becomes infinite for all loadings except for those with macroscopically
isochoric deformations (i.e., detF = J = 1). Although rigorously an upper bound,
the Voigt estimate is physically unrealistic, because it would suggest that a porous
elastomer with an incompressible matrix phase would be itself incompressible,
which is in contradiction with experimental evidence. This spectacular failure of
the Voigt bound can be used as motivation for generating the new types of estimates
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that we propose to develop in this paper. Although they are less rigorous in the
sense that they will not be bounds, they will be much more accurate and will give
realistic predictions, at least for non-isochoric overall deformations. We conclude
this section by noting that the available lower bounds [25] vanish identically for
the case of porous elastomers, and are therefore also of little practical value in this
context.

4.1. THE LINEAR COMPARISON COMPOSITE

In order to compute the second-order estimates (16) and (26) for porous rubbers it is
necessary to determine the effective stored-energy function (13) associated with a
fictitious linear porous “thermoelastic” composite (LCC) with the samemicrostruc-

ture as the original elastomer, as well as the corresponding phase averages F
(r)

and fluctuations C(r)

F . Note that this fictitious linear thermoelastic problem involves
measures of stress and deformation that are not symmetric, and hence suitable
generalizations of the classical thermoelastic problem are required. These gener-
alizations are straightforward and were provided by Ponte Castañeda and Tiberio
[29] in the broader context of N-phase thermoelastic composites. For conciseness,
the general expressions will not be repeated here, instead, only the relevant results
specialized to two-phase porous systems will be considered. To this end, it is first
noted that for the special class of two-phase composites, the work of Levin [18]
allows great simplification of the general relations of linear thermoelastic compos-
ites. In fact, the effective potential energy (13) for W̃T for two-phase composites
may be simply written in the form:

W̃T (F)= f̄ + T · H + 1

2
H · L0H

+ 1

2

[
H + (
L0)−1(
T)

] · (L̃0 − L0)
[

H + (
L0)−1(
T)
]
, (30)

where the notations H = F − I and H(r) = F(r) − I have been introduced for
convenience. Also here, f (r) = W(r)(F(r))−T(r) ·H(r)− 1

2H(r) ·L(r)
0 H(r) with T(r) =

S(r)(F(r)) − L(r)

0 H(r), and 
L0 = L(1)
0 − L(2)

0 , 
T0 = T(1)
0 − T(2)

0 . Furthermore, in
this relation, f̄ and L0 are the volume averages of f and L0, while L̃0 is the tensor
of effective modulus of the two-phase, linear-elastic comparison composite with
moduli L(1)

0 and L(2)
0 , and the same microstructure, in its undeformed configuration,

as the nonlinear hyperelastic composite. Now, by letting L(2)
0 → 0 and defining

L0 = L(1)
0 and M0 = L−1

0 , it is straightforward to show that relation (30) in the
case of porous systems specializes to

W̃T (F)= (1− fo)W(F(1)) − 1− fo

2
S(F(1)) · M0 S(F(1))

+ 1

2

[
F − F(1) + M0 S(F(1))

] · L̃0
[

F − F(1) + M0 S(F(1))
]
. (31)
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Next, the average deformation F
(1)
and the fluctuations C(1)

F in the matrix phase
can be determined from the stored-energy function (31) (see, for example, [28]),
and may be simply written as

F
(1) = F + 1

1− fo

M0
(
L̃0 − (1− fo)L0

)[
F − F(1) + M0 S(F(1))

]
(32)

and

C(1)
F = 2

1− fo

∂W̃T

∂L0
, (33)

respectively. Note that expressions (31) through (33) are valid for any reference
deformation tensor F(1) and modulus L0. Furthermore, these expressions are valid
for any effective modulus tensor L̃0. For example, for the case of a random and
isotropic distribution of initially spherical pores, use can be made of the isotropic
Hashin–Shtrikman-type estimate [35]:

L̃0 =
(

L−1
0 + fo

1− fo

Q−1
)−1

, (34)

where Q = L0 − L0PL0, with P being obtained by setting L(0) equal to L0 in the
expression:

P = 1

4π

∫
|ξ |=1

H(0)(ξ) dS, (35)

with K
(0)
ik = L

(0)
ijklξj ξl , N(0) = K(0)−1, and H

(0)
ijkl(ξ) = N

(0)
ik ξj ξl . Similarly, for

the case of a random and isotropic distribution of aligned cylindrical pores with
initially circular cross section, the corresponding HS type estimate is given by (34)
but with P being obtained by setting L(0) equal to L0 in the expression [35]:

P = 1

2π

∫
ξ21+ξ22=1

H(0)(ξ1, ξ2, ξ3 = 0) dS, (36)

where the cylindrical pores have been aligned in the x3 direction. From a compu-
tational point of view, it is seen that the microstructural tensor P depends on the
anisotropy of the modulus L0, which in turn depends on the functional form of the
potentialW , as well as the particular type of loading, as determined by F = U.

4.2. TANGENT SECOND-ORDER ESTIMATES (VERSION 1)

The specialization of the second-order estimate (16) to the case of elastomeric
porous composites leads to

W̃ (F) = (1− fo)

[
W(F

(1)
) + 1

2
S(F

(1)
) · (F − F

(1)
)

]
, (37)
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where the variable F
(1)
needs to be determined. Now, by recognizing that within

the framework of the tangent second-order estimates F(1) = F
(1)
, equation (32) can

be readily shown to reduce to

F
(1) = F + 1

1− fo

M0
(
L̃0 − (1− fo)L0

)[
F − F

(1) + M0 S(F
(1)

)
]
. (38)

Next, recalling that in this context L0 = ∂2W(F
(1)

)/∂F2, it is seen that (38) consti-
tutes a system of nine nonlinear algebraic equations for the components of the aver-

age deformation F
(1)
. The solution of these equations can then be used to compute

the effective stored-energy function W̃ for the porous elastomer using (37).

4.3. SECOND-ORDER ESTIMATES WITH FLUCTUATIONS (VERSION 3)

The second-order estimate (26) for the case of elastomeric porous composites
specializes to

W̃ (F) = (1− fo)
[
W(̂F (1)) − S(F) · (̂F (1) − F

(1)
)
]
. (39)

Here, the variables F
(1)
, F̂(1), as well as the modulus tensor L0 of the matrix phase

of the linear comparison composite, need to be determined.
Now, recognizing that in connection with the second-order estimate (26) the ref-

erence field F(1) = F, equation (32) can be shown to yield the following expression
for the average deformation gradient F

(1)
associated with the estimate (39):

F
(1) = F + 1

1− fo

M0
(

L̃0 − (1− fo)L0
)
M0 S(F). (40)

With regard to the above equations, it is necessary to remark that (40) pro-

vides an explicit expression for F
(1)
in terms of the modulus L0, which can be

determined, along with F̂(1), making use of the generalized secant condition:

S (̂F (1)) − S(F) = L0(̂F (1) − F), (41)

together with suitably chosen traces of the expression:

(̂F (1) − F) ⊗ (̂F (1) − F) = 2

(1− fo)

∂W̃T

∂L0
. (42)

More specifically, the traces to be taken depend on the choice of the form of L0, as
will be explained later in more detail. Moreover, in this last expression, W̃T is the
stored-energy function for the relevant LCC given by

W̃T (F) = (1− fo)W(F) + 1

2
S(F) · M0

[
L̃0 − (1− fo)L0

]
M0 S(F). (43)

13



4.4. THE STRONG ELLIPTICITY CONDITION

A complete study of the stability of porous elastomers with random microstruc-
tures is an extremely difficult problem, and well beyond the scope of this work.
However, following Geymonat et al. [9], the onset of macroscopic instabilities can
be identified from the loss of strong ellipticity of the effective constitutive behavior
of the porous elastomers, which, as has already been seen in the prior subsections,
can be estimated easily and efficiently by means of the second-order variational
procedure.
In this subsection, it is quickly recalled that the condition of strong ellipticity

for a given constitutive relation is that the corresponding acoustic tensor must be
positive definite. More precisely, the condition of strong ellipticity for the homog-
enized porous elastomer characterized by the effective stored-energy function W̃

can be written in the form:

L̃ijklNjNlmimk > 0 (44)

for all m ⊗ N �= 0. Here, L̃ = ∂2W̃/∂F
2
is the fourth-order tensor of first-order

elastic moduli characterizing the effective incremental behavior of the porous com-
posite. When condition (44) is satisfied, the associated macroscopic equilibrium
equations form a strongly elliptic system of partial differential equations.
In connection with condition (44) it should be emphasized that L̃ �= L̃0. In other

words, the modulus associated with the effective stored-energy function of the
porous elastomer does not correspond exactly to the effective modulus associated
with the auxiliary linear thermoelastic composite. This is related to the above-
mentioned existence of a (small) “duality gap” in the second-order variational
estimates.
Parenthetically, it is recalled that the condition of ordinary ellipticity requires

the acoustic tensor to be merely nonsingular and not necessarily positive definite.
Hence, strong ellipticity implies ordinary ellipticity but the converse is not true in
general. However, the interest here is in the determination of the loss of strong
ellipticity of homogenized materials that are strictly convex, and therefore strongly
elliptic, under infinitesimal deformations. Then, elliptic regions which contain the
point λ̄1 = λ̄2 = λ̄3 = 1, by continuity, will be necessarily strongly elliptic as well.
That is, for the cases studied here, ellipticity and strong ellipticity are equivalent.
In summary, use can be made of the second-order expressions (37) and (39) to

produce estimates for the effective stored-energy function W̃ in order to determine
the strongly elliptic domain of porous elastomers through condition (44).

5. Plane Strain Loading of Transversely Isotropic Porous Elastomers

The results presented in the previous section are specific for porous elastomers with
(3-D and 2-D) isotropic microstructures, hence the use of the Hashin–Shtrikman
(HS)-type estimate (34) for the LCC. However, the results are general as far as the
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material behavior and loading conditions are concerned. The aim of this paper is
to make use of these results for the first time, and therefore some additional hy-
potheses will be made in this section in order to simplify the calculations involved,
in an attempt to generate results that are as explicit as possible. Thus, the prob-
lem of plane-strain loading of porous elastomers consisting of cylindrical voids
(with initially circular cross-section), perpendicular to the plane of deformation
and aligned in the x3 direction, will be considered. Note that the applied deforma-
tion F = U in this context is entirely characterized by the macroscopic principal
stretches λ̄1 and λ̄2, with the out-of-plane principal stretch λ̄3 being identically 1.
Furthermore, attention will be restricted to porous elastomers with isotropic ma-
trix phases. This restriction, along with objectivity and plane strain conditions,
implies that the stored-energy function of the matrix phase can be expressed as a
function of the principal invariants of the right Cauchy–Green deformation tensor
C = FTF:

I = trC = λ21 + λ22,
(45)

J = √
detC = λ1λ2,

or equivalently, as a symmetric function of the principal stretches λ1, λ2 of F.
Therefore,W may be written as

W(F) = ϕ(I, J ) = 	(λ1, λ2). (46)

However, actual rubber being nearly incompressible, it will suffice to consider
isotropic matrix phases characterized by the stored-energy function:

W(F) = g(I ) + h(J ) + μ′

2
(J − 1)2, (47)

where the Lamé parameter μ′ will be taken to tend to infinity in order to recover
incompressible behavior (J → 1). Here, g and h are assumed to be twice continu-
ously differentiable and to satisfy the conditions: g(2) = h(1) = 0, gI (2) = μ/2,
hJ (1) = −μ, and 4gII (2) + hJJ (1) = μ, where the subscripts I and J denote
partial differentiation with respect to these invariants. Note that when these con-
ditions are satisfied W(F) → (1/2)μ′(trε)2 + μtrε2, where ε is the infinitesimal
strain tensor, as F → I, so that the stored-energy function (47) linearizes properly.
A relatively simple model of the general type (47), which captures the limiting
chain extensibility of elastomers, is the Gent model [7]:

W(F) = −μJm

2
ln

[
1− I − 2

Jm

]
− μ ln J +

(
μ′

2
− μ

Jm

)
(J − 1)2, (48)

where the parameter Jm is the limiting value for I − 2 at which the material
locks up. Note that (48) reduces to a Neo-Hookean material on taking the limit
Jm → ∞.
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5.1. TANGENT SECOND-ORDER ESTIMATES (VERSION 1)

5.1.1. Compressible Matrix

Within the framework of the second-order estimate (37), it is seen that under plane
strain loading and given matrix material behavior (47), expression (38) reduces

simply to two nonlinear equations for the components F
(1)
11 = λ̄

(1)
1 and F

(1)
22 = λ̄

(1)
2

(the other in-plane components being identically zero) of the average deformation

F
(1)
in the matrix phase of the linear comparison composite. They are:

fo(λ̄
(1)
2 − λ̄2)(L1122P1111 + L2222P1122)

+ (λ̄
(1)
1 − λ̄1)

[
(L1122P1122 − 1)(1+ (fo − 1)L1122P1122)

− (fo − 1)(L2222 + L21122P1111 − L1111L2222P1111)P2222

+ L1111(P1111 − (fo − 1)L2222P 2
1122)

]
− fo

(
P1111 − (fo − 1)L2222P 2

1122 + (fo − 1)L2222P1111P2222
)S (1)

11

− fo

(
P1122 + (fo − 1)L1122P 2

1122 − (fo − 1)L1122P1111P2222
)S (1)

22 = 0

and

fo(λ̄
(1)
1 − λ̄1)(L1122P2222 + L1111P1122)

+ (λ̄
(1)
2 − λ̄2)

[
(L1122P1122 − 1)(1+ (fo − 1)L1122P1122)

− (fo − 1)(L1111 + L21122P2222 − L2222L1111P2222)P1111

+ L2222(P2222 − (fo − 1)L1111P 2
1122)

]
− fo

(
P2222 − (fo − 1)L1111P 2

1122 + (fo − 1)L1111P2222P1111
)S (1)

22

− fo

(
P1122 + (fo − 1)L1122P 2

1122 − (fo − 1)L1122P2222P1111
)S (1)

11 = 0,

(49)

where

L1111 = 2ḡ(1)
I + 4(λ̄(1)

1

)2
ḡ

(1)
II + (

h̄
(1)
JJ + μ′)(λ̄(1)

2

)2
,

L2222 = 2ḡ(1)
I + 4(λ̄(1)

2

)2
ḡ

(1)
II + (

h̄
(1)
JJ + μ′)(λ̄(1)

1

)2
,

L1122 = h̄
(1)
J − μ′ + (

4ḡ(1)
II + h̄

(1)
JJ + 2μ′)λ̄(1)

1 λ̄
(1)
2

and

S (1)
11 = 2ḡ(1)

I λ̄
(1)
1 + h̄

(1)
J λ̄

(1)
2 + μ′(λ̄(1)

1 λ̄
(1)
2 − 1)λ̄(1)

2 ,

S (1)
22 = 2ḡ(1)

I λ̄
(1)
2 + h̄

(1)
J λ̄

(1)
1 + μ′(λ̄(1)

1 λ̄
(1)
2 − 1)λ̄(1)

1 .

Here, for convenience, the subscript ‘0’ has been dropped out for the components

of L0. Also, use has been made of the notation ḡ(1) = g(Ī (1)) and h̄(1) = h(J
(1)

),
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where Ī (1) = (λ̄
(1)
1 )2 + (λ̄

(1)
2 )2 and J

(1) = λ̄
(1)
1 λ̄

(1)
2 denote the principal invari-

ants associated with F
(1)
. In passing, it is noted that for the tangent modulus

tensor of (47) and the applied loading, the relevant tensor P can be computed
analytically, but for brevity, the explicit expressions will not be included here. In
summary, upon solving numerically the two nonlinear algebraic equations (49) for

the nonzero components of F
(1)
, the effective stored-energy function W̃ can be

readily computed using (37).

5.1.2. Incompressible Matrix

The limit when the matrix phase is made incompressible (i.e., μ′ → ∞) can be
shown to simplify the above expressions considerably. As already stated, this limit
is interesting from a practical perspective, given that actual elastomers exhibit a
nearly incompressible behavior (i.e., they usually exhibit a ratio between the bulk
and shear moduli of the order of 104). Due to the cumbersomeness of the final ex-
pressions, the asymptotic analysis of the incompressible limit involving the general
stored-energy function (47) will not be included here. Instead, for illustrative pur-
poses, only the particular case of a Neo-Hookean matrix phase will be discussed.
The details of the relevant asymptotic analysis are given in Appendix A, but the
final expression for the tangent second-order estimate (37) for the effective stored-
energy function of a porous elastomer with incompressible Neo-Hookean matrix
phase may be written as

W̃ I (F)= 	̃I (λ̄1, λ̄2)

= (1− fo)

2u
μ

[
(u2 − 1)(λ̄1 − λ̄2)

+ (1+ u2)(λ̄2u
2− 2u+ λ̄1)((1+ fo)u

2+ (λ̄2− λ̄1)u− 1− fo)

u(λ̄1 − λ̄2u2)

]
.

(50)

In this expression, u is the solution of the equation

(λ̄22 + f 2o − 1)u4 + 2(λ̄1 + (fo − 1)λ̄2)u3 + (λ̄22 − λ̄21)u
2

− 2((fo − 1)λ̄1 + λ̄2)u + 1− f 2o − λ̄21 = 0, (51)

which can be determined explicitly as a function of fo, λ̄1, and λ̄2. Note that (51) is
a quartic polynomial equation and hence it may be solved in closed-form. However,
for practical purposes, it proves helpful to solve (51) numerically. In this regard,
it is emphasized that only one of the 4 roots of (51) gives the correct linearized
behavior for the effective response of porous materials; this is indeed the root that
should be chosen at least initially.
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For the special case of in-plane hydrostatic finite expansion or contraction, i.e.,
λ̄1 = λ̄2 = λ̄, the second-order estimate (50) can be shown to further reduce to

	̃I (λ̄, λ̄) = 2μ
(1− fo)(λ̄ − 1)2

fo + λ̄ − 1 . (52)

For later use, it is also noted that the average deformation field in the matrix phase
associated with the stored-energy function (52) is given by

F
(1) = I. (53)

Finally, it is noted that the result (53) holds true, not only for a porous elas-
tomer with incompressible Neo-Hookean matrix, but for a porous elastomer with a
general incompressible isotropic matrix phase.

5.2. SECOND-ORDER ESTIMATES WITH FLUCTUATIONS (VERSION 3)

5.2.1. Compressible Matrix

Given the transverse isotropy of the microstructure and the orthogonal symmetry
of the prescribed loading, it is reasonable to assume that the linear comparison
problem of relevance here will also exhibit orthotropic symmetry, with the sym-
metry axes aligned with the applied loading F = U. In order to carry out the
computation for the HS-type second-order estimates (39) for porous elastomers
with matrix phase (47) under plane strain conditions, it suffices to consider the in-
plane components of a general deformation field F relative to the symmetry axes.
It is convenient to denote these components as a vector in 4

[ F11 F22 F12 F21 ]T. (54)

The modulus tensor L0 of the matrix phase of the linear comparison composite is
consequently denoted as a matrix in 4×4⎡⎢⎢⎣

L1111 L1122 0 0
L1122 L2222 0 0
0 0 L1212 L1221
0 0 L1221 L2121

⎤⎥⎥⎦ , (55)

where, for convenience, the subscript ‘0’ has been suppressed for the components
of L0, and use has been made of the major symmetry of the tensor L0 (i.e., Lijkl =
Lklij ).
Next, due to the above-stated assumptions, it is seen that the tensor F̂ (1) has

at most 4 independent components (F̂ (1)
11 , F̂

(1)
22 , F̂

(1)
12 , F̂

(1)
21 ) which should be de-

termined from equations (42). This implies that the modulus L0 must be chosen
to have at most four independent components, with respect to which W̃T will be
differentiated to generate 4 consistent equations for the components of F̂(1). Note
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that these four conditions correspond to 4 different “traces” of the equations (42).
For this reason, the components of L0 will be required to satisfy the prescriptions:

L1212 = L2121 and L1221 + L1122 = √
(L1111 − L1212)(L2222 − L1212).

(56)

These relations reduce the components of the L0 to only 4 independent ones,
namely, L1111, L2222, L1122, and L1212. It is recalled [20] that the motivation for
the choices (56) was twofold: (i) the components of the tangent modulus of a
Neo-Hookean material, expressed relative to the symmetry axes, satisfy (56); and
(ii) the conditions (56) simplify significantly the computation of the microstructural
tensor P (see [20, Appendix A]).
Now, making use of the equations (34) for the HS estimate for L̃0, the equa-

tions (42), together with (43), can be used to generate 4 equations for the 4 com-
ponents of F̂ (1), which are of the form:(

F̂
(1)
11 − λ̄1

)2 + 2f1F̂ (1)
12 F̂

(1)
21 = k1,(

F̂
(1)
22 − λ̄2

)2 + 2f2F̂ (1)
12 F̂

(1)
21 = k2,

(57)(
F̂

(1)
12

)2 + (
F̂

(1)
21

)2 + 2f3F̂ (1)
12 F̂

(1)
21 = k3,(

F̂
(1)
11 − λ̄1

)(
F̂

(1)
22 − λ̄2

) − F̂
(1)
12 F̂

(1)
21 = k4,

where f1, f2, f3, k1, k2, k3, k4 are functions of the components of L0, i.e., L1111,
L2222, L1122, and L1212, as well as of the deformation F, the initial volume frac-
tion of voids fo, and the constitutive functions g, h, and μ′ of the matrix phase.
Equations (57) can be shown to yield two distinct solutions for F̂

(1)
11 and F̂

(1)
22 , in

terms of which F̂
(1)
12 and F̂

(1)
21 may be determined. Note, however, that the variables

F̂
(1)
12 and F̂

(1)
21 only enter the equations through the combinations F̂

(1)
12 F̂

(1)
21 and

(F̂
(1)
12 )2 + (F̂

(1)
21 )2, and hence, only these combinations can be determined uniquely

from (57). The two solutions for F̂ (1)
11 and F̂

(1)
22 are as follows:

F̂
(1)
11 − λ̄1 = ± 2f1k4 + k1√

4f 21 k2 + 4f1k4 + k1

,

(58)
F̂

(1)
22 − λ̄2 = ± 2f1k2 + k4√

4f 21 k2 + 4f1k4 + k1

,

where it must be emphasized that the positive (and negative) signs in the roots for
F̂

(1)
11 and F̂

(1)
22 go together.

Next, each of the two distinct roots of (57) can be substituted into the gener-
alized secant condition (41) to obtain a system of 4 equations for the 4 unknowns
L1111,L2222,L1122, andL1212, which must be solved numerically. Having computed
the values of all the components of L0 for a given initial porosity (fo), given
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material behavior (g, h, and μ′), and given loading (λ̄1 and λ̄2), the values of

the components of F
(1)
and F̂ (1) can be readily determined using relations (40)

and (58), respectively. In turn, the second-order estimate (39) for the effective
stored-energy function W̃ for porous isotropic elastomers can be computed using
these results. Finally, it is noted that the two above roots lead to very similar results
for the effective behavior of the porous elastomer when small values of μ′ are
considered (i.e., for μ′ of the order of μ). However, for larger values of μ′, the
estimates produced by the two distinct roots are very different. In fact, as explained
in more detail in the following subsection, it can be shown that for large values of
μ′ only one of the two roots provides physically meaningful results. Consequently,
this is the root that should be chosen to compute the effective behavior of the porous
elastomer.

5.2.2. Incompressible Matrix

The above expressions can be simplified in the limit of incompressibility of the
matrix phase (i.e., μ′ → ∞). In this context, it is important to realize that the
asymptotic behavior of one of the two above roots leads to nonphysical predic-
tions in the limit as μ′ becomes unbounded. More specifically, for deformations
satisfying ē1 + ē2 � 0 only the “positive” (+) root provides physically reasonable
predictions, whereas for deformations with ē1 + ē2 � 0, only the “negative” (−)

root has the physically plausible asymptotic behavior; here, the logarithmic strains
ē1 = ln(λ̄1) and ē2 = ln(λ̄2) have been introduced for convenience. Taking this
observation into account, it can be shown that the second-order estimate (39) for the
the effective stored-energy function of a porous elastomer with an incompressible
isotropic matrix phase may be written as

W̃ I (U) = 	̃I (λ̄1, λ̄2) = (1− fo)g(Î (1)), (59)

where Î (1) = Î (1)(α, β, γ ), and α, β, γ are the solution to three nonlinear algebraic
equations, not shown here for their bulkiness, which can be solved for in terms of
the initial porosity fo, given material behavior g, and given loading λ̄1 and λ̄2. In
general, it is not possible to solve these equations in closed-form. However, for the
particular case of a porous elastomer with an incompressible Neo-Hookean matrix
phase, the general estimate (59) can be shown (see Appendix B) to reduce to

	̃I (λ̄1, λ̄2) = (1− fo)μ

2

[
p4v

4 + p3v
3 + p2v

2 + p1v + p0

(q2v2 + q1v + q0)2
− 2

]
, (60)

where v is the solution of the quartic polynomial:

r4v
4 + r3v

3 + r2v
2 + r1v + r0 = 0. (61)

Here, the coefficients p0, p1, p2, p3, p4, q0, q1, q2, r0, r1, r2, r3 and r4, which de-
pend on fo, λ̄1 and λ̄2, are given in explicit form in Appendix C. Since the es-
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timate (60) depends effectively on the solution of the quartic polynomial equa-
tion (61), it may be written in closed-form. However, for all practical purposes, it
is simpler to solve (61) numerically. In this regard, it is emphasized that only one
of the 4 roots of (61) gives the correct linearized behavior for the effective response
of porous materials; this is indeed the root that should be chosen at least initially.
It is useful, for comparison purposes, to spell out the simplification of the

second-order estimate (60) for the case of in-plane hydrostatic loading, i.e., λ̄1 =
λ̄2 = λ̄. The result reads as follows:

	̃I (λ̄, λ̄) = 2μ

1− fo

[
(1+ fo)λ̄

2 + fo − 1− 2λ̄
√

fo(λ̄2 + fo − 1)
]
. (62)

For later use, it is noted that the average deformation field in the matrix phase
associated with the stored-energy function (62) is given by

F
(1) = λ̄I I, (63)

where

λ̄I =
√

fo(λ̄2 + fo − 1) − λ̄

fo − 1 . (64)

Finally, it is emphasized that the result (64) holds true, not only for a porous elas-
tomer with incompressible Neo-Hookean matrix, but in fact for a porous elastomer
with general incompressible isotropic matrix phase.

5.3. COMPARISON OF THE SECOND-ORDER ESTIMATES WITH EXACT RESULTS

5.3.1. Hydrostatic Loading

With regard to porous elastomers subjected to finite deformations, there are very
few exact results available. For the special case of hydrostatic loading, Hashin [11]
obtained the exact equilibrium solution by making use of the idea of the composite
spheres assemblage. Following that work, it is straightforward to show that the
exact stored-energy function for the in-plane hydrostatic deformation of a porous
rubber with incompressible isotropic matrixW(F) = 	(λ1, λ2) may be written as

W̃ I (U) = 2
∫ 1

√
fo

	(λ, λ−1)R dR, (65)

where

λ =
√
1+ λ̄2 − 1

R2
. (66)

The corresponding exact average deformation in the matrix phase reads as

F
(1) = λ̄I I, (67)
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with

λ̄I =
√

fo(λ̄2 + fo − 1) − λ̄

fo − 1 , (68)

where λ̄ must be greater than
√
1− fo.

In general, the integral in (65) cannot be computed analytically; however, for
the particular case of a porous elastomer with incompressible Neo-Hookean matrix
phase, the exact stored-energy function may be expressed as

	̃I (λ̄, λ̄) = μ

2
(λ̄2 − 1)

[
ln

(
λ̄2 + fo − 1

fo

)
− ln(λ̄2)

]
. (69)

It can thus be seen that the two versions of the second-order estimates, as
defined by (52) and (62), do not recover the exact result (69) for the effective stored-
energy function of porous elastomers with incompressible Neo-Hookean matrix
phase subjected to general in-plane hydrostatic finite deformations. Nonetheless,
both estimates can be shown to be exact to third order in the infinitesimal strain
(i.e., up to O(λ̄−1)3). For larger finite deformations, however, the behavior of both
estimates is very different. As it will be seen in the following section, whereas the
expression (62), which takes into account the field fluctuations, provides estimates
that are in very good agreement with the exact result, the corresponding tangent
expression (52) delivers estimates that deviate drastically from (69). This disparity
is mainly due to the difference in the prediction of the evolution of the microstruc-
ture. In fact, while the average deformation gradient in the matrix phase (53)
predicted by the tangent second-order theory is exactly equal to the identity, the

corresponding F
(1)
(63) predicted by the second-order method with fluctuations is

consistent with the exact result (67). This is a remarkable result. Indeed, by taking
into account the fluctuations, the second-order estimate (26) is able to improve
on the tangent second-order estimate (16) in that it recovers the exact average
deformation fields in a porous elastomer with an incompressible isotropic matrix
under finite in-plane hydrostatic loading.

5.3.2. General Loading

For more general loadings, there are no other known exact solutions to the prob-
lem for porous elastomers. However, for incompressible matrix phase materials, a
simple conservation of mass argument (for the matrix phase) allows for the deter-
mination of the evolution of the porosity f as a function of deformation. The result
is

f = 1− 1− fo

J
. (70)

Now, it can be shown that the estimate for the porosity associated with the second-
order estimate with fluctuations (59) for porous elastomers with incompressible
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isotropic matrix phases is in exact agreement with the exact result (70). The proof
of this is sketched out for the particular case of a Neo-Hookean porous material
at the end of Appendix B. On the other hand, the corresponding estimate for
the porosity arising from the tangent second-order estimate (37) deviates radi-
cally from (70) for large deformations, as will be shown explicitly in the next
section.
In summary, Version 3 (with fluctuations), unlike Version 1 (tangent), of the

second-order method is able to predict the exact evolution of the porosity for
general finite loading, and consequently the exact average deformation fields for
hydrostatic loading, for a porous elastomer with incompressible isotropic matrix
phase. This is a nontrivial result, since the actual fields in a deformed porous elas-
tomer are highly heterogeneous. However, it appears that the “generalized secant”
linearization together with the incorporation of field fluctuations leads to improved
approximations capable of capturing better the heterogeneity of these fields in order
to deliver the exact results mentioned above.

5.4. LOSS OF STRONG ELLIPTICITY

For the particular case of plane strain deformations, the strong ellipticity condi-
tion (44) can be written more explicitly. In fact, under plane strain deformations,
necessary and sufficient conditions for strong ellipticity of the effective constitutive
behavior of the type of porous systems considered here have been shown [16, 13]
to reduce to:

L̃1111 > 0, L̃2222 > 0, L̃1212 > 0, L̃2121 > 0, and
(71)

L̃1111L̃2222 + L̃1212L̃2121 − (L̃1122 + L̃1221)
2 > −2

√
L̃1111L̃2222L̃1212L̃2121,

where

L̃iijj = ∂2W̃

∂λ̄i∂λ̄j

,

L̃ij ij = 1

λ̄2i − λ̄2j

(
λ̄i

∂W̃

∂λ̄i

− λ̄j

∂W̃

∂λ̄j

)
, i �= j, (72)

L̃ijji = 1

λ̄2i − λ̄2j

(
λ̄j

∂W̃

∂λ̄i

− λ̄i

∂W̃

∂λ̄j

)
, i �= j,

(i, j = 1, 2) are the components of the modulus L̃ written in the Lagrangean
principal axes. Note that the third and fourth conditions in (71) are equivalent and
that for loadings with λ̄i = λ̄j (i �= j), suitable limits must be taken for some of
the components in (72). In particular, equations (72)2 and (72)3 transform into:
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L̃ij ij = 1

2

(
L̃iiii − L̃iijj + 1

λ̄i

∂W̃

∂λ̄i

)
, i �= j,

(73)

L̃ijji = 1

2

(
L̃iiii − L̃iijj − 1

λ̄i

∂W̃

∂λ̄i

)
, i �= j,

respectively.
It is important to remark here that most stored-energy functions of the form (47)

describe best the actual behavior of elastomers when “calibrated” to be strongly
elliptic. For example, a compressible Gent material, characterized by the stored-
energy function (48), is strongly elliptic under plane-strain deformations if (but not
only if) μ > 0, Jm > 0, and μ′ > 2μ/Jm. Note that for a Neo-Hookean elastomer,
these sufficient conditions simplify to μ > 0 and μ′ > 0. In fact, for realistic
elastomers, μ > 0, Jm > 0, and μ′ is not only positive but is several orders of
magnitude larger than μ, namely, μ′/μ ≈ 104. Consequently, the Gent elastomers
utilized in this work to model the matrix behavior of the porous elastomers are
strongly elliptic for all deformations. As a final remark, it is recalled that having
strict convexity in the linearized region, i.e., μ > 0 and κ = μ + μ′ > 0 (where κ

denotes the plane-strain bulk modulus) in the limit λ̄1 → 1 and λ̄2 → 1, does not
ensure strong ellipticity of a Gent material for all deformations.
In the next section, the second-order methods described in this section will

be used to generate estimates for the strongly elliptic domains of random porous
elastomers with incompressible Gent and Neo-Hookean matrix phases subjected
to plane-strain deformations. It will be shown that even though the behavior of the
matrix phase is strongly elliptic, the homogenized behavior of the porous elastomer
can lose strong ellipticity. This is consistent with the observations of Abeyaratne
and Triantafyllidis [1] for porous elastomers with periodic microstructures.

6. Results for General Plane-Strain Loading

This section presents results associated with the (Versions 1 and 3) second-order
HS estimates for in-plane hydrostatic, uniaxial, and pure shear loading of porous
elastomers with incompressible Gent and Neo-Hookean matrix phases. Results are
given for μ = 1 and various levels of initial porosity fo, and were computed up
to the point at which the effective incremental moduli were found to lose strong
ellipticity, or truncated at some sufficiently large strain if no such loss was found.
For clarity, the points at which loss of strong ellipticity occurred are denoted with
the symbols � and ◦ for Versions 1 and 3, respectively. The characterization of the
strongly elliptic domains is given in the last subsection. It is further noted that exact
results and bounds are presented when available.

6.1. HYDROSTATIC LOADING

Figure 1 presents the comparison between the effective behavior as predicted by
Versions 1 and 3 of the second-order method and the exact result, for a Neo-
Hookean porous elastomer with incompressible matrix phase (μ′ → ∞) under
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(a) (b)

Figure 1. Comparisons of the second-order estimates (Versions 1 and 3) with the exact re-
sults for the effective response of a porous rubber subjected to in-plane hydrostatic loading
(λ̄2 = λ̄1 = λ̄). The results correspond to an incompressible Neo-Hookean matrix phase with
various initial concentrations fo of aligned cylindrical voids, and are shown as a function of
the logarithmic strain ē = ln(λ̄). (a) The stored-energy function W̃ ; and (b) the corresponding
stresses S11 = S22 = S.

hydrostatic loading with λ̄2 = λ̄1 = λ̄. Results are shown for initial porosities of
30, 50 and 70% as a function of the logarithmic strain ē = ln(λ̄) for both: (a) the
effective stored-energy function; and (b) the associated stress S11 = S22 = S.
Recall that closed-form expressions for the effective stored-energy functions shown
in Figure 1(a) are given by (52), (62), and (69) for Version 1, Version 3, and the
exact result, respectively.
The main observation that can be made from Figure 1 is that Version 3 of the

second-order variational procedure provides estimates for the effective constitutive
behavior which are in excellent agreement with the exact result. Version 1 also
delivers estimates that compare reasonably well with the exact result for compres-
sive loadings. However, the predictions by Version 1 deviate significantly from
the exact behavior for large tensile deformations. It is also seen that both versions
of the second-order method predict loss of strong ellipticity of the homogenized
porous elastomer under in-plane hydrostatic compression, while no such behavior
is observed under in-plane hydrostatic tension. Moreover, both second-order esti-
mates for the effective behavior exhibit a better agreement with the exact result
for higher values of fo. Finally, it is interesting to note from Figure 1(b) that
the overall constitutive behavior of the composite consistently exhibits hardening
under compression and softening under tension. This feature will be shown shortly
to be due mainly to a geometric effect caused by the evolution of the porosity.
Figure 2 provides plots associated with the results shown in Figure 1 for: (a) the

porosity as a function of the logarithmic strain ē = ln(λ̄); and (b) the critical stretch
λ̄crit at which the loss of strong ellipticity of the homogenized elastomer takes place,
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(a) (b)

Figure 2. In-plane hydrostatic loading (λ̄2 = λ̄1 = λ̄) of a porous rubber with an incompress-
ible, Neo-Hookean matrix phase with various initial concentrations fo of aligned cylindrical
voids. (a) The evolution of porosity f as predicted by Versions 1 and 3 of the second-order
method compared with the exact result as a function of the logarithmic strain ē = ln(λ̄).
(b) The critical stretches λ̄crit at which the loss of strong ellipticity of the homogenized elas-
tomer takes place as a function of initial porosity fo. (This last plot also includes the critical
loads for the first two buckling modes (n = 2 and 3) of a cylindrical shell [34].)

as a function of initial porosity fo. First, a key point to be drawn from Figure 2(a) is
that the porosity decreases for compressive deformations and increases for tensile
ones. This entails a geometric hardening/softening on the overall response of the
porous elastomer which is entirely consistent with the hardening/softening exhib-
ited by the effective constitutive behavior observed in Figure 1(b). Moreover, the
porosity predicted by Version 3 of the second-order method reduces to the exact
result, as already pointed out in the previous section (see expressions (63) and (67)).
On the other hand, the porosity delivered by Version 1 deviates from the exact
evolution for large finite deformations, especially for tensile hydrostatic loading. In
fact, under hydrostatic tension, Version 1, which does not take into account infor-
mation about the field fluctuations, predicts unrealistic values for the porosity (i.e.,
greater than unity). This explains the extremely soft effective constitutive behavior
observed in Figure 1 for Version 1 of the second-order method under hydrostatic
tension. Also, in accordance with the trend discerned from Figure 1, it appears that
the porosity evolution predicted by Version 1 gets worse with decreasing initial
porosity.
The main observation with regard to Figure 2(b) is the somewhat counterin-

tuitive result that the porous material becomes more stable (λ̄crit smaller) with
increasing initial values of the porosity. In this connection, it is relevant to remark
that while exact results are available for the effective stored-energy function and
porosity evolution in in-plane hydrostatic loading of composite cylinders (with
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incompressible matrix phase), the loss of strong ellipticity of these structures has
not been studied. However, Wang and Ertepinar [34] did study the stability of an
isolated cylindrical Neo-Hookean shell under in-plane hydrostatic loading. Results
of that work comprising the buckling flexural modes n = 2, which corresponds to
the collapse to an oval shape, and n = 3 have been included in Figure 2(b), for
reference purposes. Although, it should be emphasized that the buckling behavior
of an isolated shell cannot be rigorously identified with the buckling instabilities
that would take place in an actual composite system, even for a composite with the
Hashin composite-shell microstructure, it is interesting to remark that these results
appear to be consistent with the results derived from the second-order theory in that
the overall stability is enhanced with increasing initial porosity, at least initially.
Moreover, it is noted that the critical stretches characterizing the loss of strong
ellipticity predicted by both versions of the second-order variational procedure
are smaller than the corresponding critical stretches associated with the buckling
modes for an isolated cylindrical shell. Figure 2(b) also shows that for the interval
0 < fo < 0.4 the loss of strong ellipticity predicted by Version 3 is slightly smaller
than the one obtained from Version 1. In contrast, for initial porosities higher
than 0.4, the prediction of loss of strong ellipticity by Version 1 becomes smaller
than the one computed from Version 3. The difference between the results of these
two versions becomes more pronounced in the limit fo → 1, where λ̄crit → 0.73
and λ̄crit → 0 for Versions 1 and 3, respectively. We expect the estimate for the
critical stretch associated with Version 3 to be more accurate, but we do not have
an explanation for its relatively low values at high porosities. However, it should be
kept in mind that it is expected that other (smaller wavelength) instabilities would
take place before reaching the loss of ellipticity condition.

6.2. UNIAXIAL LOADING

In Figure 3, plots for the effective stress-strain behavior associated with Versions 1
and 3 are presented for a Neo-Hookean porous elastomer with incompressible ma-
trix phase (μ′ → ∞) under uniaxial loading with λ̄2 = 1, λ̄1 = λ̄. The results for
the stress components S11 and S22 are presented in parts (a) and (b), respectively,
for values of fo = 30, 50 and 70%, as functions of the logarithmic strain ē = ln(λ̄).
Similar to the case of in-plane hydrostatic loading, the results for compressive
(tensile) deformations shown in Figure 3 exhibit a clear hardening (softening)
behavior with increasing deformation, but less pronounced than the corresponding
results for in-plane hydrostatic loading. From Figure 3(a) it is seen that the effective
constitutive behavior for S11 obtained from Version 1 is significantly softer than the
one obtained from Version 3. This is also the case for the component S22 as shown
by Figure 3(b). In fact, the prediction for this component of the stress by Version 1
is not only much softer than the corresponding stress predicted by Version 3, but
it even decreases for tensile loadings reaching negative values, which is physically
unrealistic. This suggests that the predictions of Version 1 could be too soft for
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(a) (b)

Figure 3. Versions 1 and 3 estimates of the second-order method for the effective response of a
porous rubber subjected to uniaxial loading (λ̄2 = 1 and λ̄1 = λ̄). The results correspond to an
incompressible Neo-Hookean matrix phase with various initial concentrations fo of aligned
cylindrical voids, and are shown as a function of the logarithmic strain ē = ln(λ̄). (a) The
stress component S11. (b) The stress component S22.

(a) (b)

Figure 4. Versions 1 and 3 estimates of the second-order method for the effective response of a
porous rubber subjected to uniaxial loading (λ̄2 = 1 and λ̄1 = λ̄). The results correspond to an
incompressible Neo-Hookean matrix phase with various initial concentrations fo of aligned
cylindrical voids, and are shown as a function of the logarithmic strain ē = ln(λ̄). (a) The
evolution of the porosity f compared with the exact result. (b) The evolution of the average
aspect ratio of the voids ω.

large finite deformations, especially for tensile loadings. Furthermore, as it was the
case for hydrostatic loadings, loss of ellipticity was found for compressive loadings
but not for tensile ones.
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Figure 4 provides corresponding results for: (a) the porosity; and (b) the average
aspect ratio of the pores ω, as function of the logarithmic strain ē = ln(λ̄). Note
that the aspect ratio has been defined as ω = λ̄

(2)
1 /λ̄

(2)
2 , with λ̄

(2)
1 and λ̄

(2)
2 denoting

the principal stretches associated with the average deformation gradient tensor

of the vacuous phase F
(2)
, so that ω > (<) 1 correspond to an oblate (prolate)

average shape of the pores. As it was the case for hydrostatic loading, it is seen
from Figure 4(a) that the porosity decreases for compressive deformations and
increases for tensile ones. In turn, this can be related to the aforementioned hard-
ening/softening trend exhibited by the effective stress-strain behavior in Figure 3.
As already anticipated in Section 5.3.2, Figure 4(a) also shows that the prediction
for the evolution of the porosity by Version 3 of the second-order method is in
agreement with the exact result, whereas the prediction by Version 1 deviates from
the correct behavior for large deformations. This deviation, which is much more
drastic for tensile loadings and lower values of fo, helps explain the unphysical
behavior observed in Figure 3(b) for S22. In particular, it is seen that S22 tends to
negative values whenever f approaches one. Figure 4(b) shows that both versions
of the second-order method give similar predictions for the average aspect ratio of
the pores. Note that in compression the changes in aspect ratio are more rapid for
smaller fo.
It is concluded from the observations made in the context of these figures for

uniaxial stretch, as well as the earlier figures for hydrostatic deformation, that
Version 3 of the second-order method leads to more consistent predictions for
the overall behavior and microstructure evolution of the porous elastomers, and
therefore it should be preferred over Version 1. For this reason, in the following
sections only results associated with Version 3 will be presented.

6.3. PURE SHEAR LOADING

Figure 5 provides Version 3 second-order estimates for a Gent porous elastomer
with incompressible matrix phase under pure shear (λ̄1 = 1/λ̄2 = λ̄). Results
are shown for an initial porosity of 10% and values of the lock-up parameter
Jm = 42, 100, and Jm → ∞ as functions of the logarithmic strain ē = ln(λ̄)

for: (a) the effective stored-energy function compared with the Voigt upper bound;
and (b) the evolution of the aspect ratio ω. First, it is observed from Figure 5(a)
that the Version 3 estimates for the effective stored-energy function satisfy the
rigorous Voigt upper bound. It is emphasized again that this bound is only helpful
when considering isochoric loadings, like the one considered in this section, since
it becomes unbounded otherwise. Note that no loss of ellipticity was detected at
any level of deformation. In connection with the evolution of the microstructure, it
is remarked that the porosity does not evolve under pure shear deformations. On
the other hand, as clearly shown by Figure 5(b), the aspect ratio of the pores does
increase fairly rapidly with increasing strains. Furthermore, note that ω appears to
be insensitive to the value of the material parameter Jm.
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(a) (b)

Figure 5. Version 3 estimates of the second-order method for the effective response of a
porous rubber subjected to pure shear loading (λ̄1 = 1/λ̄2 = λ̄). The results correspond to an
incompressible Gent matrix phase with given initial porosity fo = 0.1 and various values of
the material parameter Jm, and are shown as a function of the logarithmic strain ē = ln(λ̄).
(a) The effective stored-energy function W̃ compared with the Voigt upper bound. (b) The
evolution of the aspect ratio ω.

(a) (b)

Figure 6. Version 3 estimates of the second-order method for the effective response of a
porous rubber subjected to pure shear loading (λ̄1 = 1/λ̄2 = λ̄). The results correspond to an
incompressible Gent matrix phase with given initial porosity fo = 0.1 and various values of
the material parameter Jm, and are shown as a function of the logarithmic strain ē = ln(λ̄).
(a) The stress component S11. (b) The stress component S22.

Figure 6 presents plots of the corresponding results for the stress components:
(a) S11; and (b) S22. One of the main points that can be drawn from Figure 6 is
the strong dependence of the effective stress-strain relation of the porous rubber on
the lock-up parameter Jm of the matrix phase. Interestingly, it can also be deduced
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from these figures that the evolution of the aspect ratio appears to have little effect
on the effective constitutive behavior of the porous elastomer under pure shear.

6.4. LOSS OF STRONG ELLIPTICITY

Figure 7 displays the strongly elliptic (and non-elliptic) domains for the 2-D porous
elastomer with incompressible Neo-Hookean matrix phase, subjected to in-plane
deformations. The results are shown in the plane (ē1 − ē2) for: (a) Versions 1 and 3
estimates for initial porosities fo = 30, 50 and 70%; and for (b) Version 3 estimates
for initial porosities fo = 10, 20 and 30%. In order to aid the discussion of the
results, the boundary at which the porosity vanishes has also been included in
Figure 7. Note that once the zero-porosity boundary is reached, further compressive
deformation of the material is not possible.
An interesting observation that can be made from Figure 7 is that the loci of

points describing loss of strong ellipticity satisfy ē2 + ē1 < 0, which implies that
a necessary condition for loss of strong ellipticity to occur is the existence of a
compressive component in the state of deformation. Also, note that the predictions
from both versions of the second-order method have roughly the same qualitative
behavior; however, the results of Version 1 appear to be more restrictive than those
of Version 3 for all initial values of porosity and loadings, with the exception of
cases satisfying fo < 0.3, ē1 < 0, and ē2 < 0, for which the onset of loss of strong
ellipticity of Version 3 precedes that one of Version 1. Furthermore, it is interesting

(a) (b)

Figure 7. Domains of strong ellipticity on the (ē1 − ē2)-plane for a porous elastomer with
incompressible, Neo-Hookean, matrix phase and various levels of initial concentrations fo

of aligned cylindrical voids, as determined by Versions 1 and 3 of the second-order varia-
tional procedure. The dotted lines denote the boundary at which the level of zero porosity has
been reached upon compressive deformation. (a) Comparisons between the Versions 1 and 3
estimates; and (b) Version 3 estimates for low initial porosity.
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to note that the strongly elliptic (and non-elliptic) domains shown in Figure 7 are
similar to the results obtained by Abeyaratne and Triantafyllidis [1] for the loss of
strong ellipticity of periodic porous elastomers with a nearly incompressible Neo-
Hookean matrix phase. However, their results appear to be more restrictive than
the ones obtained here. In particular, these investigators did find loss of (strong)
ellipticity for deformations with ē2 + ē1 > 0, which includes pure shear loading.
These discrepancies seem to be consistent with their periodic microstructure, as
it is more susceptible to instabilities than the random microstructure utilized in
this work. Another important point that deserves further comment is the trend
followed by the onset of loss of ellipticity as a function of initial porosity. In effect,
Figure 7 suggests that a Neo-Hookean porous elastomer with random and isotropic
microstructure becomes more stable with increasing value of initial porosity. This
behavior is counterintuitive as one might expect an elastomer to be more unstable
with increasing porosity. However, this is a complex and difficult problem, which
will be pursued in future work. Finally it is interesting to remark that it was through
the failure of the third (and equivalently fourth) condition of (71) that the porous
elastomer with incompressible Neo-Hookean matrix phase lost strong ellipticity
systematically. Indeed, whereas the evolution of the microstructure for compressive
loadings led to the already-mentioned hardening of some of the components of the
effective incremental modulus, it also led to the softening of the shear component
L̃1212, which resulted in the overall loss of ellipticity of the porous elastomer.
For completeness, it is noted that the corresponding domains of strong elliptic-

ity for porous elastomers with incompressible Gent matrix phases are essentially
identical to those shown in Figure 7. Indeed, the results predicted by the second-
order theory indicate that the value of the lock-up parameter Jm does not play a
major role in estimating the onset of loss of ellipticity of porous elastomers with
random and isotropic microstructures.
In summary, the second-order estimates for the homogenized constitutive be-

havior of porous elastomers with isotropic, strongly elliptic, matrix phases have
been found to admit loss of strong ellipticity at reasonable levels of deformation.
This behavior has been linked to the evolution of the microstructure under finite
deformations, which, depending on the specific loading conditions, was found to
induce hardening or softening behavior resulting in the loss of strong ellipticity for
the porous elastomer.

7. Concluding Remarks

In this work, analytical estimates have been derived for the effective behavior of
porous elastomers with random microstructure subjected to finite deformation, by
means of an implementation of the second-order procedure of Lopez-Pamies and
Ponte Castañeda [19, 20]. It is emphasized that this homogenization technique,
which is an extension of the variational method developed by Ponte Castañeda [27]
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in the context of viscoplastic materials, is applicable to a large class of hyperelastic
composites including reinforced and porous rubbers.
A key issue in the general framework of the second-order variational proce-

dure is the scheme employed for the linearization of the constitutive relation of
the hyperelastic phases in the composite. In this regard, it has been seen that the
earlier tangent linearization proposed by Ponte Castañeda and Tiberio [29] results
in estimates for the effective stored-energy function that depend exclusively on the
average fields of the constituent phases. On the other hand, the estimates associated
with the generalized secant linearization scheme not only depend on the average
fields, but also exhibit a direct dependence on the field fluctuations. The difference
between these two approaches has already been shown to be significant in the
context of reinforced incompressible elastomers, where the incorporation of field
fluctuations proved necessary to obtain the correct overall incompressibility con-
straint for these materials (see [20]). Within the richer class of porous elastomers,
the direct incorporation of field fluctuations into the computation of the effective
behavior has turned out to be essential as well.
Thus, by incorporating field fluctuations, Version 3 of the second-order method

has been shown to lead to the exact evolution of the porosity in porous elastomers
with incompressible, isotropic, matrix phases, under general plane strain loading.
This is a remarkable result in view of the strong nonlinearity of the problem. Fur-
thermore, for the particular case of hydrostatic loading, the effective constitutive
estimates delivered by Version 3 exhibit excellent agreement with the available
exact result. This can be related to the correct prediction of the porosity evolution.
Unfortunately, no other exact results are available for the effective constitutive
behavior of porous elastomers. However, based on the comparisons presented, it
seems plausible that Version 3 of the second-order variational procedure should
be also able to deliver accurate estimates for the homogenized behavior of porous
elastomers for more general loading conditions.
On the contrary, Version 1 of the second-order method, which only makes use

of the average fields, delivers predictions for the evolution of the microstructure
that deviate rapidly from the expected behavior for finite deformations, especially
for tensile loadings. The negative consequences of this deviation were put in evi-
dence by the comparisons with the exact result for hydrostatic loading, where the
Version 1 estimates, even though exact to third order in the infinitesimal strain,
break down under large tensile deformations.
A major result of this work is the strong influence of the microstructure evolu-

tion on the overall behavior of porous elastomers, in particular, through geometric
hardening/softening mechanisms arising as a consequence of the evolution of the
pore microstructure during a finite-deformation history. Indeed, it was seen that the
decrease of the porosity during compressive deformations results in a significant
hardening of the effective constitutive behavior of the porous elastomer. On the
other hand, the increase of the porosity associated with tensile deformations leads
to a pronounced softening.
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Finally, it has been shown that loss of strong ellipticity, corresponding to the
possible development of shear-band instabilities, can take place in porous elas-
tomers with random microstructures at physically realistic levels of compressive
deformation. This is consistent with earlier findings by Abeyaratne and Triantafyl-
lidis [1] for porous systems with periodic microstructures. Indeed, in this work,
we have been able to relate softening mechanisms associated with the evolution
of the microstructure under finite deformations with the possible onset of macro-
scopic instabilities, even for materials with strongly elliptic matrix phases. These
encouraging results for two-dimensional microstructures should provide ample
motivation to carry out corresponding analyses for porous and other types of elas-
tomeric composites with more general three-dimensional, random microstructures,
where comparisons with appropriate experimental results should be feasible.
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Appendix A. Incompressible Limit for a Neo-Hookean Porous Elastomer
(Version 1)

In this appendix some details are presented concerning the incompressibility limit
associated with the tangent second-order estimate (37) for a porous elastomer
with Neo-Hookean matrix. The asymptotic solution resulting from this heuristic
derivation has been checked to be in agreement with the full numerical results.
Motivated by the observed properties of the numerical solution for general μ′,

an expansion is attempted in the limit as μ′ → ∞ of the following form:

λ̄
(1)
1 = α1 + α2� + α3�

2 + O(�3),
(A.1)

λ̄
(1)
2 = β1 + β2� + β3�

2 + O(�3),

where �
.= 1/μ′ is a small parameter, and α1, α2, α3, β1, β2, and β3 are un-

known coefficients which ultimately depend on the applied loading F, the initial
concentration of voids fo, and the material parameter μ.
By making use of expressions (A.1) in relation (49), a hierarchical system of

equations is obtained for the coefficients α1, α2, α3, β1, β2, and β3. The leading
order terms O(�−1) of these equations can be shown to lead to the following
relationship:

β1 = 1

α1
, (A.2)

which implies that the determinant of F
(1)
, denoted by J

(1)
, is exactly equal to one

in the incompressible limit.
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Next, under condition (A.2), the equations of order O(�0) yield the relationship:

α2 + α21β2 = (1+ α21)(−1− fo + (1+ fo)α
2
1 + (λ̄2 − λ̄1)α1)μ

λ̄1 − α21 λ̄2
, (A.3)

which determines the combination α2 + α21β2 in terms of α1.
Finally, the equations of order O(�) derived from (49) are considered. Making

use of relations (A.2) and (A.3) in these equations can be shown to lead to the
following expressions:

α3 + G1(α1, α2)β3 = G2(α1, α2) (A.4)

and

(λ̄22 + f 2o − 1)α41 + 2(λ̄1 + (fo − 1)λ̄2)α31 + (λ̄22 − λ̄21)α
2
1

− 2((fo − 1)λ̄1 + λ̄2)α1 + 1− f 2o − λ̄21 = 0, (A.5)

where G1 and G2 are (known functions of their arguments) too cumbersome to be
included here.
It is noted that (A.4) establishes a linear relationship between β3 and α3 analo-

gous to the one established by equation (A.3) between β2 and α2. More importantly,
(A.5) provides a fourth-order polynomial equation for the coefficient α1 in terms of
the initial concentration of pores fo, and the applied loading as determined by λ̄1
and λ̄2. This equation is precisely the equation (51) given in the main body of
the text, where for clarity of notation α1 was denoted as u. It turns out that the
leading order term of the effective energy (37) in the limit of incompressibility
may eventually be characterized entirely in terms of the coefficient α1. The final
result is given by expression (50) in the text, where, as already pointed out, u must
be identified with α1.
It is noted that for the particular case of hydrostatic loading, i.e., λ̄2 = λ̄1 = λ̄, a

suitable limit must be taken in the above expressions. For this type of deformation,
it is straightforward to show that λ̄(1)

2 = λ̄
(1)
1 , and hence that, β1 = α1, β2 = α2,

and β3 = α3. Now, making use of these relations together with the equation of
order O(�−1) given by (A.2) leads to α1 = 1. In turn, this result for α1 makes
the equation (of order O(�0)) (A.3) be satisfied trivially, whereas the one of order
O(�1) can be shown to render the following identities:

α2 = λ̄ − 1
λ̄ + fo − 1μ,

(A.6)

α3 = (λ̄ − 1)(3− 5fo + 2f 2o + (7fo − 6)λ̄ + 3λ̄2)
2(λ̄ + fo − 1)3 μ2.

Recognizing now that under expression (A.1), hydrostatic loading, and α1 = 1, the
expansion of the second-order estimate (37) in the incompressibility limit can be
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written, to first order, as

W̃ I (F) = 	̃I (λ̄, λ̄) = 2(1− fo)(λ̄ − 1)α2 + O(�), (A.7)

together with (A.6)1, leads to the final result (52).

Appendix B. Incompressible Limit for a Neo-Hookean Porous Elastomer
(Version 3)

In this appendix, a brief outline of the asymptotic analysis corresponding to the
incompressibility limit associated with the second-order estimate (39) for a porous
elastomer with a Neo-Hookean matrix phase is presented. As discussed in the
main body of the text, only one of the roots derivable from this version of the
second-order method has a physically consistent asymptotic behavior in the limit
of incompressibility. The limit associated with this root is the one presented here. It
is noted that the results obtained from the following asymptotic analysis have been
checked to be in agreement with the full numerical solution.
Based on numerical evidence from the results for general μ′, an expansion is

attempted in the limit as μ′ → ∞ of the following form:

L1111 = a1

�
+ a2 + a3� + O(�2),

L2222 = b1

�
+ b2 + b3� + O(�2),

L1122 = c1

�
+ c2 + c3� + O(�2), (B.1)

L1212 = d1

�
+ d2 + O(�),

L1221 = e1

�
+ e2 + O(�),

where�
.= 1/μ′ is a small parameter and a1, a2, a3, b1, b2, b3, c1, c2, c3, d1, d2, e1,

and e2 are unknown coefficients that ultimately depend on the applied loading F,
the initial concentration of voids fo, and the material parameter μ.
First, it is remarked that for the particular case of a Neo-Hookean matrix phase

one of the generalized secant equations (41) can be solved exactly for the variable
L1212 in terms of the other components of the modulus L0. This, together with the
constraints (56), can be shown to result into the following simplifications:

d1 = 0, d2 = μ, e1 = √
a1b1 − c1, and

(B.2)
e2 = a2b1 + a1b2 − (a1 + b1)μ

2
√

a1b1
− c2.

Next, introducing relations (B.1) and (B.2) in the general expression (58) for
the components of F̂(1) − F can be shown to lead to the following expansions:
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F̂
(1)
11 − λ̄1= x1 + x2� + O(�2),

F̂
(1)
22 − λ̄2= y1 + y2� + O(�2),

(B.3)
F̂

(1)
12 F̂

(1)
21 = p1 + p2� + O(�2),

(F̂
(1)
12 )2 + (F̂

(1)
21 )2= s1 + s2� + O(�2).

The explicit expressions for the coefficients of these expansions have not been
included here for their bulkiness; however, it is useful to spell out their depen-
dence on the variables introduced in (B.1). Thus, the coefficients of first order
x1, y1, p1, and s1 exhibit dependence on a1, b1, c1, a2, b2, and c2, whereas, the
second order terms x2, y2, p2, and s2 are functions of a1, b1, c1, a2, b2, c2, a3, b3,
and c3.
In connection with relations (B.3), it is necessary to clarify that the asymp-

totic expressions for the combinations F̂
(1)
12 F̂

(1)
12 and (F̂

(1)
12 )2 + (F̂

(1)
12 )2 have been

specified in (B.3), rather than those for the independent components F̂
(1)
12 and

F̂
(1)
12 , since, as discussed previously, they are the relevant variables in this prob-
lem.
Now, by introducing expressions (B.1)–(B.3) into the three reduced (recall that

L1212 = μ) generalized secant equations (41), a hierarchical system of equations
is obtained for the remaining unknown coefficients introduced in (B.1). Thus, the
equations of first-order O(�−1) lead to the following results:

b1 = λ̄21

λ̄22
a1, c1 = λ̄1

λ̄2
a1, (B.4)

whereas the equations of second-order O(�0), by making use of (B.4), can be
shown to render the following relations:

b2 = λ̄21

λ̄22
a2 − (λ̄1 − λ̄2)(λ̄1 + λ̄2)

λ̄22
μ, (B.5)

a1 = λ̄2(λ̄1λ̄2 − 1)(q2n22 + q1n2 + q0)

2foλ̄1(z2n
2
2 + z1n2 + z0)

, (B.6)

r4n
4
2 + r3n

3
2 + r2n

2
2 + r1n2 + r0 = 0, (B.7)

where n2 = λ̄1a2 − λ̄2c2,

z2= (fo − 1)λ̄1,
z1= μ

[
(3− 2fo)λ̄

2
1 + 2λ̄1λ̄2 + λ̄22

]
, (B.8)

z0= μ2(λ̄1 + λ̄2)
[
(fo − 2)λ̄21 − (1+ fo)λ̄1λ̄2 − λ̄22

]
,

and q2, q1, q0, r4, r3, r2, r1, and r0 have been given in explicit form in Appen-
dix C.
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Prescriptions (B.4) through (B.8) can be shown to be sufficient to fully deter-

mine the first-order terms of all of the components of F̂(1) − F and F
(1)
. The final

expressions may be written as

x1= − λ̄1

λ̄2
y1 − (J − 1)λ̄2

a1
,

y1= − λ̄2[a1foμ(λ̄22 − λ̄21) + λ̄2(λ̄1λ̄2 − 1)((fo − 1)n2 + 2μ(λ̄1 + λ̄2))]
a1[2(fo − 1)n2λ̄1 − μ(λ̄1 + λ̄2)((fo − 3)λ̄1 − (1+ fo)λ̄2)]

,

p1= x1y1 + λ̄2x1 + λ̄1y1 + λ̄1λ̄2 − 1,
(B.9)

s1= μ(λ̄1 − λ̄2)
2(λ̄1 + λ̄2)

2

a21foλ̄1[2(fo − 1)n2λ̄1 − μ(λ̄1 + λ̄2)((fo − 3)λ̄1 − (1+ fo)λ̄2)]2
× (

a1foμ(λ̄1 + λ̄2)
2 + (fo − 1)λ̄2(λ̄1λ̄2 − 1)(n2 − μ(λ̄1 + λ̄2)

))
× (
2a1foλ̄1 + λ̄2(1+ fo − (1+ fo)λ̄1λ̄2)

) +
(

λ̄1

λ̄2
+ λ̄2

λ̄1

)
p1,

and

λ̄
(1)
1 = x1 + λ̄1 + O(�),

(B.10)
λ̄

(1)
2 = y1 + λ̄2 + O(�),

with F
(1)
12 = F

(1)
21 = 0. At this point, it is important to remark that relations (B.9)

and (B.10), by means of (B.6), ultimately depend on the variable n2, which can be
determined in closed-form by solving the fourth-order polynomial equation (B.7).
This is precisely the same equation as (61) given in the main body of text, where
for clarity of notation n2 was relabelled as v. Under the above development, it
is then straightforward to show that the leading order term of the expansion of
the second-order estimate (39) in the limit of incompressibility may be expressed
in closed-form, as it ultimately depends on the coefficient n2. The final explicit
expression (in terms of the variable n2 = v) is given by (60) in the text.
Next, it is shown that the porosity associated with the second-order estimate (60)

for a porous elastomer with an incompressible Neo-Hookean matrix phase reduces
to the exact result (70). Given that a HS-type approximation is utilized in the ho-
mogenization process, the fields in the porous phase are assumed constant. This
implies that the average change in volume of the porous phase is simply given by

J
(2) = 〈det(F)〉(2) = det(〈F〉(2))

= (foλ̄1 − (1− fo)x1)(foλ̄2 − (1− fo)y1)

f 2o
, (B.11)
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where use has been made of the relation F = (1 − fo)F
(1) + foF

(2)
. Expres-

sion (B.11) can now be used to compute the porosity associated with the second-
order estimate (60) through the relation

f = J
(2)

J
fo, (B.12)

which, after some simplification, can be shown to reduce to the exact result (70).
Finally it should be emphasized that this result has been proven to hold not only for
Neo-Hookean porous elastomers, but more generally, for porous elastomers with
incompressible isotropic matrix phases.

Appendix C. Coefficients Associated with the Incompressible Limit for a
Neo-Hookean Porous Elastomer (Version 3)

In this appendix, the expression for the coefficients introduced in relations (60) and
(61) are given in explicit form in terms of λ̄1, λ̄2, fo, and μ:

p4= (fo − 1)2(1+ fo)λ̄
2
1(λ̄

2
1 + λ̄22),

p3= −4(fo − 1)μλ̄21
(
(−1+ f 2o )λ̄31 − (1+ fo)λ̄

2
1λ̄2

+ (−1+ (fo − 4)fo)λ̄1λ̄
2
2 − (1+ fo)λ̄

3
2

)
,

p2= 2μ2λ̄1
(
3(fo − 1)2(1+ fo)λ̄

5
1 + (5+ (4− 7fo)fo)λ̄

4
1λ̄2

+ 2(2+ fo(13+ (−12+ fo)fo))λ̄
3
1λ̄
2
2 + 4(1− 2(−2+ fo)fo)λ̄

2
1λ̄
3
2

− (1+ fo)(−1+ (fo − 4)fo)λ̄1λ̄
4
2 − (1+ (fo − 4)fo)λ̄

5
2

)
,

p1= −4μ3λ̄1(λ̄1 + λ̄2)
(
(fo − 1)2(1+ fo)λ̄

5
1 − (−1+ fo(−5

+ fo(3+ fo)))λ̄
4
1λ̄2 + (fo − 4)(−3+ fo)foλ̄

3
1λ̄
2
2 − (fo − 4)fo

× (1+ fo)λ̄
2
1λ̄
3
2 + (−1+ 3fo)λ̄1λ̄

4
2 + (fo − 1)λ̄52

)
,

p0= μ4(λ̄1 + λ̄2)
2
(
(fo − 1)2(1+ fo)λ̄

6
1 − 2fo(−5+ fo(2+ fo))λ̄

5
1λ̄2

+ (−1+ fo(11+ 2(fo − 1)fo))λ̄
4
1λ̄
2
2 − 2fo(−2+ (−3+ fo)fo)λ̄

3
1λ̄
3
2

+ (−1+ fo(5+ (fo − 1)fo))λ̄
2
1λ̄
4
2 + 2fo(1+ fo)λ̄1λ̄

5
2 + (1+ fo)λ̄

6
2

)
,

q2= (fo − 1)2λ̄1,
q1= 2(fo − 1)μλ̄1(λ̄1 − foλ̄1 + λ̄2),

q0= μ2
(
(fo − 1)2λ̄31 − (1+ fo)

2λ̄1λ̄
2
2 − (1+ fo)λ̄

3
2 + λ̄21(λ̄2 − 3foλ̄2)

)
,

r4= −(−1+ fo)
3λ̄21(−1+ fo + λ̄1λ̄2),

r3= −4(−1+ fo)
2μλ̄21(λ̄1 − foλ̄1 + λ̄2)(−1+ fo + λ̄1λ̄2),

r2= −2(−1+ fo)μ
2λ̄1

(
3(−1+ fo)

3λ̄31 + (−1+ fo)λ̄
2
1(5− 7fo

+ 3(−1+ fo)λ̄
2
1)λ̄2 − λ̄1(1− 3fo + f 2o + f 3o + (−5+ 7fo)λ̄

2
1)λ̄

2
2

− (−1+ f 2o + (−1+ fo(4+ fo))λ̄
2
1)λ̄

3
2 − (1+ fo)λ̄1λ̄

4
2

)
,

39



r1= 4μ3λ̄1(λ̄1 + λ̄2)
(
(−1+ fo)

3λ̄41λ̄2 + λ̄1λ̄
2
2(−1+ f 2o

+ (1+ fo + f 2o )λ̄22) + λ̄31((−1+ fo)
4 − (1+ fo(−4+ fo + f 2o ))λ̄22)

+ λ̄32(−1+ fo(fo + λ̄22))

+ λ̄21λ̄2(1+ λ̄22 − fo(4− 4fo + f 3o + (−3+ fo)λ̄
2
2))

)
,

r0= −μ4(λ̄1 + λ̄2)
2
(
(−1+ fo)

4λ̄41 − (−1+ fo)
2λ̄31(2fo(1+ fo)

− (−1+ fo)λ̄
2
1)λ̄2 + λ̄21(−2+ fo(2+ 3fo + f 3o − 2(−3+ f 2o )λ̄21))λ̄

2
2

+ λ̄1(2fo(1+ fo)
2 + (2+ fo(4+ fo + f 2o ))λ̄21)λ̄

3
2

+ (1+ fo)(1+ fo + 2foλ̄
2
1)λ̄

4
2 + (−1+ fo)λ̄1λ̄

5
2

)
.

Note that the factors of μ in the above expressions have been included for
consistency with the results from Appendix B. However, these factors cancel out
in equations (60) and (61), and therefore μmay be dropped from the above expres-
sions.
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