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Initiation and propagation of fracture
in the models of Griffith and Barenblatt

J.-J. Marigo1, L. Truskinovsky2

1 LPMTM, UPR-CNRS 9001, Université Paris-Nord, 93430 Villetaneuse, France
2 LMS, UMR-CNRS 7649,́Ecole Polytechnique, 91128 Palaiseau, France

Abstract. In the setting of the simplest debonding problem we give a systematic comparison of
the fracture models due to Griffith and Barenblatt. We prove that the Griffith model represents an
asymptoticΓ -limit of the Barenblatt model, when the ratio of the external and internal lengths
increases indefinitely. We then illustrate the character of convergence by solving explicitly two
sample problems with “initially rigid” and “initially elastic” cohesive energies. The geometrical
simplicity of the setting allows us to study the small parameter dependence of both global and
local minimizers of the total energy.

Key words: fracture mechanics, variational methods, gamma-convergence, pull-out test, Baren-
blatt model
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1 Introduction

While the well-known theories of fracture due to Griffith [1] and Barenblatt [2] take into account cohesive forces
in different ways, both have the same basic structure. The theory of Griffith assumes that the surface energy
density is equal to a constant that does not depend on the crack opening, while the theory of Barenblatt postulates
that the surface energy density is amonotonic function of the displacement discontinuity, approaching a constant
only at some sufficiently large crack opening. For consistency of the two approaches, the constant appearing in
the Griffith model and representing the toughness of the material must be equal to the limiting cohesive energy
in the Barenblatt model. When the two models are consistent and when Barenblatt’s cohesive forces act over
sufficiently short range, a formal asymptotic analysis of [3] showed that the stress fields near the tip of the
crack predicted by the two models are asymptotically equivalent. In the present paper we explore the detailed
character of this asymptotic convergence in the most elementary shear-lag setting of the fiber pull-off problem.
The simplicity of the problemopens theway to studying the limiting behavior of both global and localminimizers
without any a priori specification of the fracture geometry. An equivalent mathematical treatment of the general
fracture problem presents a considerable challenge because of the complex technical issues associated with the
variation of the generic discontinuity sets.

It is well known that the experimental characterization of cohesion parameters is usually based on either
fiber pulling or pushing tests making the pull-out problem an important point of reference in the analysis of
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fiber–matrix interactions [4,5]. The shear-lag approximation and its dynamic extensions were derived from the
three-dimensional theory in [4,6–13]. The main conclusion of these and other investigations is that the shear-lag
model can be used for sufficiently long and thin fibers and that the solutions are accurate except in the vicinity
of the crack tip. Although the shear-lag approximation may misrepresent some fine features of the elastic fields,
the error is known to decrease with the slenderness parameter in a controlled fashion. In the present paper we
compare the Griffith and Barenblatt theories by explicitly solving the shear-lag problem for a composite bar in
a hard device.

The main focus of our analysis is the influence of the structure of the cohesive energy on the geometry of the
discontinuity set. The deficiencies of the simplestGriffithmodel in predicting the crack geometry arewell known.
For instance, since the ultimate strength of thematerial in this theory is infinite, it fails to describe the infinitesimal
fracture (see e.g. [14]). The problem disappears in the Barenblatt formulation, in which the ultimate strength
is finite (see e.g. [15]); to achieve the same result in the Griffith theory, one needs to introduce an incremental
energy minimization (see e.g. [12,16]). It remains unclear, however, how close are the predictions of the two
theories concerning the maximally attained stress and the fine structure of the resulting fracture surface. Of
particular interest is the exact domain of applicability of the much simpler and therefore more attractive Griffith
approximation.

We show rigorously that theGriffithmodel furnishes the exact variational limit for a generic Barenblatt model
when either the length of the bar tends to infinity or the internal length scale, originating from the cohesive law,
tends to zero.We then predict the onset of debonding and compute the complete history of damage evolution until
the full rupture. In addition to confirming asymptotic results by [3], we obtain a detailed account of the character
of convergence for both the energy and the geometry of the crack. Thus, we show that the “good” quantities
that are continuous in the limit include the energy and the critical stress, but not the geometrical parameters of
the damage zone such as, for instance, the length of the debonding. The Barenblatt theory is shown to play a
major role when the crack is about to appear; in the corresponding range of loadings the convergence of the two
theories is not uniform.

Contrary to most other investigations of fracture focused on the global minimum of the energy only, we
explicitly study the localminimizers. The only other comparison of the localminimizers in the theories ofGriffith
and Barenblatt has been previously performed for a bar in tension (see e.g. [15,17–19]). The analysis of the
associated one-dimensional problem shows that, while Griffith’s global minimizer asymptotically approximates
Barenblatt’s global minimizer, the two theories generate rather different predictions concerning the structure of
the local minima of the energy. Our pull-out problem for the fiber in a hard device is both simpler and more
complex than theproblem for a bar in tension. It ismore complex because thedisplacement field in both thematrix
and the fiber must be considered. It is more simple because, as we show, the bifurcation from the uncracked state
is always supercritical so that the only local minimizer is the global one. The special structure of the bifurcation
diagram in the pull-out problem is the result of the unavoidable stress concentration around the boundary of the
domain of application of the kinematic boundary condition which creates a permanent nucleation site.

The paper is organized as follows. In Sect. 2 we introduce the shear-lag energy functional and set the formal
variational problem by defining the appropriate space of competitors. We then reduce the vector problem to the
scalar one and prove that both local and global energy minimizers can have at most one crack. In Sect. 3 the
problem is nondimensionalized and the set of dimensional parameters is reduced to two main nondimensional
criteria. We then prove the main theorem establishing the Griffith theory as an exactΓ -limit of the Barenblatt
theory when one of the two nondimensional parameters tends to zero. In Sect. 4 we explicitly solve the local and
global minimization problem in the Griffith theory and reduce the corresponding solution to quadratures in the
general Barenblatt theory. In Sect. 5 we illustrate the general solution of the Barenblatt problem by explicitly
solving two special cases: with “initially rigid” cohesive response (Dugdale model) and with “initially elastic”
cohesive response (piece-wise quadratic model with zero ultimate strength). Finally in Sect. 6 we present a
sketch of the theory in the case of a soft device. The paper ends with a discussion of the parameter sensitivity
and of the size effect. All technical proofs of the mathematical statements are collected in the Appendix.
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Main symbols

R Radius of the cross-section
Rf Radius of the fiber
Sm Area of the matrix cross-section
Sf Area of the fiber cross-section
L Length of the bar
Ef Young modulus of the fiber
Em Young modulus of the matrix
ν Poisson ratio
γ Tangential toughness of the interface
δc Internal length of Barenblatt model
κ Surface energy function
uf Longitudinal displacement field of the fiber
um Longitudinal displacement field of the matrix
ud Difference of the longitudinal fields of the fiber and of the matrix
Ee Total elastic energy of the bar
Es Total surface energy of the bar
E Total energy of the bar
U Prescribed longitudinal displacement of the end of the bar
F Force needed for sustain the displacementU
ε Ratio of the internal length of the material and the length of the bar
a Ratio of the stiffness of the matrix and of the fiber

2 Setting of the problem

2.1 Preliminaries

Consider a circular cylindrical composite bar of lengthL which includes a fiber of radiusRf centered in the
matrix of inner radiusRf and outer radiusR. Both the fiber and thematrix are isotropic, linearly elastic materials
with Young moduliEf andEm, respectively, and with the same Poisson ratioν. Both the matrix and the fiber
are assumed to have infinite strength so that the fracture may only occur along the common interface. Before
loading, the fiber is assumed to be glued to the matrix and the interface is assumed to be breakable. We adopt
the following boundary conditions:

– the lateral part of the boundary (r= R) is free;
– at one end (z= L) thematrix is free, while the fiber is loaded in a hard device generating a given longitudinal
displacement;

– at the other end (z= 0) both the matrix and the fiber are fixed.

In order to compute the equilibrium response we adopt the energy minimization point of view. Specifically, we
require that, at each value of the loading parameter, the displacement field in the composite bar must deliver at
least alocalminimum to the corresponding energy functional. To give the precise definition of the minimization
problem, we have to define

– the set of admissible displacement fields;
– the expression of the energy associated with these displacement fields;
– the norm in the set of admissible displacements allowing one to evaluate the closeness between different
displacement fields.

To simplify the analysis we consider a limiting case of sufficiently slender bars and approximate the 3D problem
by a 1D problem (see [6] for more details). The longitudinal displacement fields inside the fiber,uf , and inside
thematrix,um, are assumed to depend only on the longitudinal coordinatez. It is convenient to take as unknowns
the pairu = (uf , ud), whereud = uf − um. The difference of displacementsud vanishes if the bond remains
unbroken and accordingly we can define the two sets

D(u) = {z ∈ [0, L] : ud(z) �= 0}, C(u) = {z ∈ [0, L] : ud(z) = 0}. (1)
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The displacementsuf andud must satisfy the following kinematic boundary conditions:

uf (L) = U, uf (0) = ud(0) = 0, (2)

where the prescribed displacementU of the endL of the fiber plays the role of the loading parameter. The total
energy associated with the admissible displacement fieldsu = (uf , ud) contains two terms: the elastic energy
Ee(u) and the cohesive (or surface) energyEs(u). The elastic energy can be written as

Ee(u) =
1
2

∫ L

0

(
EfSfu

′
f (z)2 + EmSm(u′

f (z) − u′
d(z))

2
)
dz, (3)

whereSm = π(R2 − R2
f ) andSf = πR2

f represent the area of the matrix and fiber cross-sections. For the
cohesive energy we assume

Es(u) =
∫ L

0
2πRfκ(|ud(z)|)dz, (4)

where the presence of the absolute value means that the energy cost of sliding is independent of its sign.
We consider the following two main choices forκ:

• Griffith model: κ is discontinuousat zero and is constant elsewhere

κ(δ) =
{

0 , δ = 0
γ , δ �= 0 (5)

• Barenblatt model:κ is acontinuousfunction ofδ such that

κ(0) = 0, κ(δ) > 0 when δ > 0, κ(∞) = γ. (6)

In both casesγ represents the (tangential) toughness of the interface. For the Barenblatt modelσc = κ′(0)
represents the ultimate shear stress, which may either be finite (“initially rigid” cohesive response) or zero
(“initially elastic” cohesive response); in the Griffith model the ultimate strength is equal to infinity. We remark
that the model with finite ultimate strength appears as the natural limit of a lattice model with Lennard-Jones-
type interactions (see e.g. [20]), while the model with zero ultimate strength can be linked to the presence of
pre-existing fracture surfaces (see e.g. [21]).

Now notice that the total energy of the bar,

E(u) = Ee(u) + Es(u), (7)

is finite provided thatuf andud belong to the spaceW 1,2(0, L); the set of admissible displacements then consists
of pairs of functions belonging to this functional space and satisfying the boundary conditions (2). This set will
be denoted byU . The precise statement of the local minimization problem reads

find u ∈ U such that ∃h > 0,∀v : ‖v − u‖ ≤ h, E(u) ≤ E(v). (8)

To complete the setting of the mathematical problem we choose the norm ofW 1,2(0, L) as defining the notion
of a (strong) local minimum and denote it by‖ · ‖. We emphasize that this assumption is of an entirely physical
nature. Weaker norms, considered for instance in [15], would mean a broader set of local minimizers but would
not affect the choice of the global minimum of the energy (and our main Theorem in Sect. 3.2).

2.2 Reduction to a scalar problem

We begin by eliminatinguf and formulating the problem in terms ofud alone. SinceE is a strictly convex
function ofuf , we can minimize it out by using the following Euler–Lagrange equation:

(EfSf + EmSm)u′
f (z) − EmSmu′

d(z) = const = F, (9)

meaning that the normal force is constant along the entire bar. By using the boundary conditionuf (0) = ud(0) =
0 we can integrate (9) to give

uf (z) =
Am

A
ud(z) +

F

A
z. (10)

Here we introduced the following notation:

Af = EfSf , Am = EmSm, A = Af + Am. (11)
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From the boundary conditionuf (L) = U , we obtain

FL = A U − Amud(L). (12)

By inserting these relations in the expression of the energy, we can rewrite (7) as

Ê(ud) =
AmAf

2A

∫ L

0
u′

d(z)
2dz +

A

2L

(
U − Am

A
ud(L)

)2

+ 2πRf

∫ L

0
κ(|ud(z)|)dz. (13)

Hereud belongs toW 1,2(0, L) and must satisfy the boundary conditionud(0) = 0. The energyÊ is positive
and hence bounded from below. Since it is also weakly lower semi-continuous, there always exists a global
minimizer of the semi-linear minimization problem for (13) and therefore of the original problem (8).

2.3 Monotonicity of the minimizers

Proposition 1. Assume that the surface energy functionκ is an increasing function. Then the local minimizer
of the energy(13)ud is a monotonic function ofz, increasing whenU ≥ 0, and decreasing whenU ≤ 0.

Proposition 2. Let u be a local minimizer of the energy andC(u) be the set of points where the fiber and the
matrix are bonded. If the surface energyκ is an increasing function, thenC(u) is a closed interval of the form
[0,  ], with 0 ≤  ≤ L.

Proof. The proof of Proposition 1 is given in the Appendix, whereas Proposition 2 is a consequence of the
monotonicity ofud and of the boundary conditionud(0) = 0.

3 Relationship between the models of Griffith and Barenblatt

3.1 Dimensionless formulation

For the minimization of̂E it is convenient to introduce dimensionless quantities. We define

z = Lz̄, ud(z) = Lūd(z̄), U =
Am

A
L Ū , F = Am

L
L
F̄ , a =

Am

Af
, (14)

where

L =

√
4πRfγA

AfAm
L =

√
4γA

RfEfAm
L (15)

is the main internal length scale of the Griffith model. A nondegenerate Barenblatt model contains another
internal length scaleδc = γ/κ′(0), which can be used to form a dimensionless parameter

ε =
δc

L . (16)

In terms of the nondimensional variables the cohesive energy in the Barenblatt model can be written as

κ(ud) = γ κ̄(
ūd

ε
). (17)

Now, if we normalize the total energy

2Ê(ud) =
AfAm

A

L2

L
Ē(ūd), (18)

we obtain

Ē(ūd) =
∫ 1

0
ū′

d(z̄)
2dz̄ +

∫ 1

0
κ̄
( ūd(z̄)

ε

)
dz̄ + a

(
ūd(1) − Ū

)2
. (19)

The relation between the dimensionless forceF̄ and the dimensionless total displacement takes the form

F̄ = Ū − ūd(1). (20)

As we see, the general Barenblatt problem contains two dimensionless parameters, namelya, which represents
the relative stiffness of the matrix with respect to the fiber, andε, which measures the ratio of internal (cohesive)
and external (geometrical) length scales.
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3.2 Limiting behavior asε → 0

Since in the Griffith theory the nondimensional parameterε is identically equal to zero, it is instructive to study
how the structure of the minimizers changes asε tends to 0. One of the goals is then to show that the longer the
Barenblatt composite bar is, the closer its response is to that of a composite bar with the Griffith cohesive energy.

In what follows the main parameters of the Barenblatt theory will be explicitly marked by the subscriptε,
while all other unnecessary subscripts will be dropped. For instance, we assume thatūε delivers a local minimum
to the energy functional̄Eε,

Ēε(v) =
∫ 1

0
v′(z)2dz + a(v(1) − Ū)2 +

∫ 1

0
κ̄
( |v(z)|

ε

)
dz, (21)

among allv fromW 1,2(0, 1) such thatv(0) = 0. A local minimizer in the Griffith model can then be denoted
by ū0. By using Proposition 2 we can rewrite the corresponding energy functionalĒ0 in the form

Ē0(v) =
∫ 1

0
v′(z)2dz + a(v(1) − Ū)2 + 1 − length

(
{z ∈ [0, 1] : v(z) = 0}

)
. (22)

The relationship between the two theories is established by the following theorem:

Theorem 1. Suppose thata > 0, Ū ∈ R, ε > 0, andκ̄ is a bounded positive function which satisfiesκ̄(0) = 0
andlimδ→∞ κ̄(δ) = 1. Then the global minimizer of̄Eε converges (strongly in the sense of theW 1,2(0, 1)-norm)
to the global minimizer of̄E0 whenε goes to0.

Proof. The proof is given in the Appendix.

Weemphasize that this theorem is rather general and remains true even ifκ̄ is notmonotonic or not continuous.
The only limitation is that it ensures the convergence of the global minimizer and does not say anything about the
local minimizers. As we show in the next section, in the case of a general Barenblatt surface energy, the unique
local minimizer is also the global one, and therefore our Theorem ensures that the response of the Barenblatt
tends to the response of the Griffith bar unconditionally.

4 Exact solution of the minimization problem

As a part of the proof of Proposition 1 we have shown that, whenU = 0,u = (0, 0) is the unique local minimizer
of E .Also, by symmetry, ifu is a localminimizer corresponding toU , then−u is a localminimizer corresponding
to−U . Therefore in what follows we consider only the caseU > 0.

4.1 Griffith model

Owing to its simplicity, the Griffith problem can be solved in closed form. Recall that for a local minimizerū
the setC(ū) = {z̄ ∈ [0, 1] : ūd(z̄) = 0} is an interval of the form[0,  (ū)] with 0 ≤  (ū) ≤ 1. In the subspace
of admissible displacements̄vd in W 1,2(0, 1) such that̄vd(0) = 0 andC(v̄) = [0,  ], the energy functional of
the Griffith theory reduces to

Ē( , v̄d) =
∫ 1

�

v̄′
d(z̄)

2dz̄ + (1 −  ) + a
(
Ū − v̄d(1)

)2
. (23)

Since this functional is strictly convex with respect tov̄d for fixed  , its unique (global) minimizer is given by

ūd(z̄) =




0 , 0 ≤ z̄ ≤  

a(z̄ −  )Ū
1 + a − a 

,  ≤ z ≤ 1
. (24)

To determine the value of we insert (24) into (23) to obtain

Ě( ) = Ē( , ūd) =
aŪ2

1 + a − a 
+ 1 −  . (25)
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Fig. 1. Debonding process and global response in the Griffith model

SinceĚ is strictly convex with respect to , there exists one and only one local minimizer of this one-dimensional
problem which is also the global one. The minimum is reached at 0 whenĚ ′(0) ≥ 0, at 1whenĚ ′(1) ≤ 0, and
at  such thatĚ ′( ) = 0 otherwise. Therefore, we obtain three different phases of behavior:

 =




1 , aŪ ≤ 1 (phase I)

1 +
1
a

− Ū , 1 ≤ aŪ ≤ 1 + a (phase II)

0 , 1 + a ≤ aŪ (phase III)

. (26)

The global response of the composite bar can also be illustrated by the following relation between the force
F̄ and the displacement̄U :

F̄ =




Ū , 0 ≤ Ū ≤ 1/a (phase I)

1/a , 1/a ≤ Ū ≤ 1 + 1/a (phase II)

Ū

1 + a
, 1 + 1/a ≤ Ū (phase III)

, (27)

which is plotted in Fig. 1. Notice that the force remains constant in the phase of progressive debonding of the
fiber.

The overall behavior of the composite bar in the Griffith model can be described by the language of the theory
of phase transformations. In fact, the undamaged state with energyĒ1(Ū) = Ě(1) = aŪ2 (our phaseI) and the
completely debonded state with energyĒ2(Ū) = Ě(0) = 1 + aŪ2/(1 + a) (our phaseIII) can be viewed as
two different “phase modifications” of the “averaged material” of the composite bar. Now, since in the Griffith
model these two “phases” can coexist without interaction, we can write for the mixed state (our phaseII)

E(x, Ū1, Ū2) = Ě( ) = xĒ1(Ū1) + (1 − x)Ē2(Ū2), (28)

wherex =  /L is the fraction of the length of the bar occupied by the first phase. The constraint of the total
displacement of the fiber can be written in the form

xŪ1 + (1 − x)Ū2 = Ū . (29)

Now by minimizing the energy (28) under the constraint (29) we obtain the standard conditions of “phase
equilibrium” furnishing the convexification of the total energy. The resulting overall response can be obtained
through the common tangent (Maxwell) construction illustrated in Fig. 2. For a similar description of a broader
class of partially damaged materials see [22].

Since in the Griffith problem the external length scale dominates, one can get an impression that in this theory
the size effect is absent. This is not exactly so. Indeed, we have seen that the interface entirely debonds when the
dimensionless forcēF reaches the value1/a. In terms of the physical parameters this corresponds to a critical
normal stressσd given by (see (15))

σd = Ef

√
4πRfγA

AfAm
= 2Ef

√
1 +

EfR
2
f

EmR2
m

√
 i

Rf
. (30)

Here the parameter i = γ/Ef with a dimension of length represents the ratio between the energy of the surface
(γ) and the energy of the bulk (E). The critical debonding stressσd is therefore proportional to the dimensionless
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Fig. 2. The Maxwell construction providing the overall re-
sponse of the composite bar in the Griffith model.

ratio
√

 i/Rf of the two (internal) length scales: i, associated exclusively with toughness, andRf , giving the
inner radius of the fiber. We conclude that the thicker the fiber, the lower the debonding stress.

Some important features of the debonding process will be different if instead of a hard device we consider a
composite bar in a soft device. To illustrate the new possibilities we sketch in Sect. 6 the theory of a pull-out test
for a Griffith fiber which is free atz = 0 and stretched by a forceF at z = L. In particular, we find that there
exists a limiting load above which no local minimizer exists. This means that the composite bar cannot support
sufficiently large forces and, if overloaded, the fiber completely debonds. It is also interesting that ifa < 1, the
debonding is first initiated atz = 0 and ifa > 1, it starts atz = 1.

4.2 Barenblatt model

Now assume that the surface energy is an arbitrary continuous and monotonically increasing function ofδ
satisfying the conditionsκ(0) = 0, κ(δ) > 0 whenδ > 0, andlimδ→∞ κ(δ) = γ > 0. To determine the local
minimizers in the general Barenblatt model we cannot use Euler–Lagrange equations because they require the
surface energy function to be differentiable, eliminating for instance an important case of theDugdale theory (see
below). An alternative approach is to use a Noether identity representing a first integral of the Euler–Lagrange
equations.

Proposition 3. Letf : R → R be a continuous function,U ∈ R, anda ≥ 0. Then a fieldu ∈ W 1,2(0, 1) such
thatu(0) = 0 is a local minimum (in the sense of the norm ofW 1,2(0, 1)) of the functionalI defined by

I(u) =
∫ 1

0
u′(x)2 + f(u(x))dx + a(u(1) − U)2

only if it satisfies the following first integral condition and boundary conditions:

∃C ∈ R : −u′(x)2 + f(u(x)) = C, ∀x ∈ (0, 1),
aU = u′(1) + au(1).

Proof. The proof is given in the Appendix.

By applying Proposition 3 to a general Barenblatt model, we obtain that ifūd is a local minimizer ofĒ it
necessarily satisfies the following set of equations:

ūd is increasing, (31a)

ū′
d(z̄)

2 − κ̄
( ūd(z̄)

ε

)
= C on (0, 1), (31b)

ūd(0) = 0, (31c)

ū′
d(1) + aūd(1) = aŪ . (31d)

Due to the monotonicity of̄ud, we know thatC(ū) = [0,  ]. It is convenient to consider the cases = 0 and
 > 0 separately.
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•  > 0. In this case, sincēud vanishes on[0,  ], the constantC is necessarily zero. Then we obtain

ū′
d(z̄) =

(
κ̄
( ūd(z̄)

ε

))1
2

on [ , 1]. (32)

This differential equation can be solved explicitly once is known. DefineŪ1 = ūd(1). By using (32), (31c),
and (31d), we obtain that andŪ1 must satisfy

1 −  = g0(Ū1) ≡
∫ Ū1

0
κ̄
(u

ε

)− 1
2
du, (33a)

Ū = f0(Ū1) ≡ 1
a

(
κ̄
( Ū1

ε

))1
2

+ Ū1. (33b)

Since the continuous functionf0 is strictly increasing from 0 to∞ asŪ1 grows from 0 to∞, (33b) has a unique
solutionŪ1 > 0 for any givenŪ > 0. Concerning (33a) we must consider two possibilities depending on the
behavior of the function̄κ(δ)− 1

2 nearδ = 0:

1. If the integral in (33a) is divergent (the case of a model with zero strength; see below), then (33a) has no
solution and the minimizer must be in the other class = 0 (andC > 0).

2. If the integral is convergent, the functiong0 increases continuously from 0 to∞with Ū1. Hence (33a) admits
a unique solution ∈ (0, 1] provided thatŪ1 ∈ [0, Ū c

1 ), with Ū c
1 = g−1

0 (1), which in turn requires that
the loadingŪ lies in [0, Ū c) with Ū c = f0(Ū c

1 ). OnceŪ1 and are determined, the field̄ud can be found
explicitly: ūd(z̄) = 0 for z̄ ∈ [0,  ], andūd(z̄) = g−1

0 (z̄ −  ) for z̄ ∈ [ , 1].

To summarize, for0 < Ū < Ū c, there exists a unique function̄ud satisfying the necessary conditions of
optimality (31a)–(31d) and havinglength(C(ū)) > 0. WhenŪ ≥ Ū c, this type of a minimizer does not exist.

•  = 0. Now consider local minimizers with an entire debonding of the interface. In this case, since
ūd(0) = 0, we have C= ū′

d(0)2 ≥ 0. We consider separately the casesC = 0 andC > 0. We still set
Ū1 = ūd(1).

(i) C = 0. We can use (33a) and (33b) with = 0 and obtain that̄U must satisfy1 = g0(Ū1) and
Ū = f0(Ū1). That requires the integral of̄κ(δ)− 1

2 nearδ = 0 to converge. Then̄U = Ū c ≡ f0 ◦ g−1
0 (1) and the

field ūd can be written explicitly as̄ud(z̄) = g−1
0 (z̄) on [0, 1].

(ii) C > 0. In this case we get̄u′
d(z̄) =

(
κ̄
( ūd(z̄)

ε

)
+ C

)1
2

on [0, 1]. This differential equation can be

solved as soon asC is known. By using (31b)–(31d), we obtain thatC andŪ1 must satisfy

Ū = f(C, Ū1) ≡ Ū1 +
1
a

(
C + κ̄

( Ū1

ε

))1
2

, (34a)

1 = g(C, Ū1) ≡
∫ Ū1

0

(
κ̄
(u

ε

)
+ C

)− 1
2
du. (34b)

Consider the functiong(C, Ū1) for C > 0 andŪ1 > 0. At fixedC, g is strictly increasing with̄U1 from 0 to∞,
while, at fixedŪ1, it is strictly decreasing from the valueg0(Ū1) – which can be infinite – to zero. Now, at fixed
C > 0, (34b) admits a unique solution̄U1 = G(C). Moreover,G(C) increases from the valueg0

−1(1) – with
the convention thatg0

−1(1) = 0 wheng0 is not finite – to∞ asC grows from 0 to∞. Inserting the relation
betweenŪ1 andC in (34a), we obtain the following equation forC:

Ū = f(C,G(C)). (35)

Since, at fixedŪ1, f increases from the valuef0(Ū1) to ∞ asC grows from 0 to∞ and since, at fixedC, f
increases from 0 to∞ as Ū1 grows from 0 to∞, we conclude that the functionf(C,G(C)) increases from
the valuef(0, G(0)) = f0(g0

−1(1)) = Ū c to∞ asC goes from 0 to∞. Thus (35) admits one (and only one)
solutionC > 0 for a givenŪ provided thatŪ > Ū c.

OnceŪ1 andC are determined, the field̄ud can be obtained explicitly becauseūd(z̄) is the unique solution
of ∫ ūd(z̄)

0

(
κ̄
(u

ε

)
+ C

)− 1
2
du = z̄. (36)

9
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Fig. 3. Different cohesive energy functions and the corresponding cohesive stress-opening relations

This solution is obviously a strictly increasing function ofz̄.We have therefore found that forŪ ≥ Ū c there exists
a unique function̄ud satisfying the necessary conditions of optimality (31a)–(31d) andhavinglength(C(ū)) = 0.
Such a minimizer does not exist whenŪ < Ū c.

By comparing different cases, we can conclude that there exists at most one local minimizer. Since we have
already shown that there is always a global minimizer, we may conclude that the only local minimizer is also
the global one.

5 Explicit examples of the minimizers in the Barenblatt problem

To illustrate the general existence and uniqueness results for the Barenblatt model, here we present two particular
examples. To cover different physical situations we consider two exactly solvable models with either “initially
rigid” or “initially elastic” cohesive response (see Fig. 3). Specifically, we define

1. The Dugdale model (“initially rigid” response) :

κ(δ) =


γ

δ

δc
, 0 ≤ δ ≤ δc

γ , δ ≥ δc

. (37)

2. The piece-wise linear model with zero ultimate strength (“initially elastic” response) :

κ(δ) =


γ

( δ

δc

)2
, 0 ≤ δ ≤ δc

γ , δ ≥ δc

. (38)

5.1 Dugdale model

Consider first the case where the surface energy is given by (37). The calculation of the integrals and solution
of (34a) and (34b) is then straightforward. It remains to distinguish the points where the relative slidingūd of
the fiber is less than the critical valueδc (partial debonding) from those where it is larger (total debonding). The
detailed succession of various phases of debonding is different depending on the value ofε, i.e. on whether the
bar is long or short.

— Case of a long bar :ε < 1/2.We can distinguish three phases of debonding:
1. Phase I :0 < Ū ≤ ε + 1/a. The bar is totally bonded along the interval[0,  ] and partially debonded

along the remaining part( , 1). The relation between andŪ is given by

 = 1 +
1
a

−
√

1
a2 + 4εŪ . (39)

10



The relative sliding of the fiber takes the form

ūd(z̄) =




0 , 0 ≤ z̄ ≤  
(z̄ −  )2

4ε
,  ≤ z̄ ≤ 1

. (40)

At the end of this phase, i.e. when̄U = ε+ 1/a, the relative sliding of the fiber reaches the critical value
1 at the loaded end (ūd(1) = 1), which marks the beginning of the second phase. During the first phase,
the forceF̄ needed to sustain the displacementŪ is

F̄ =
2Ū

1 +
√

1 + 4a2εŪ
. (41)

2. Phase II : ε + 1/a < Ū < 1 − ε + 1/a. During this phase, the bar is split into three parts with perfect
bonding along the interval[0,  ], partial debonding along the interval( , d), and total debonding along
the remaining part[d, 1]. The two limit points are given by

 = 1 − ε +
1
a

− Ū , d =  + 2ε. (42)

Notice that the (dimensionless) length of the partially debondedpart equals2ε. If we return to dimensional

quantities, this length is independent of the length of thebar and is equal to
( 4γA
RfEfAm

)− 1
2 δc. The relative

displacement is now

ūd(z̄) =




0 , 0 ≤ z̄ ≤  
(z̄ −  )2

4ε
,  ≤ z̄ ≤ d

z̄ −  − ε , d ≤ z̄ ≤ 1

. (43)

At the end of this phase = 0, which means that the perfectly bonded domain ceases to exist, marking
the beginning of the third phase. During the second phase, the forceF̄ remains constant:

F̄ =
1
a
. (44)

3. Phase III : Ū ≥ 1 − ε + 1/a. Since the end̄z = 0 of the fiber is fixed, there always remains a zone in
which the debonding is partial. The length of this zone decreases to 0 asŪ goes to infinity. Outside this
partially debonded zone, the debonding is total. From an analytical point of view, it is more convenient
to useF̄ as the parameter. The location of the limit point between the two zones is given by

d = 2ε
(
aF̄ −

√
a2F̄ 2 − 1

)
, (45)

whereas the displacement field is now

ūd(z̄) =




(z̄ −  )2

4ε
+ z̄

√
a2F̄ 2 − 1 , 0 ≤ z̄ ≤ d

aF̄ z̄ + d − ε , d ≤ z̄ ≤ 1
. (46)

Finally, the forceF̄ needed to sustain the displacementŪ is implicitly given by

Ū = (1 + a)F̄ − ε + 2ε
(
1 − a2F̄ 2 + aF̄

√
a2F̄ 2 − 1

)
. (47)

One can show that̄F strictly increases from 1/a to∞ asŪ grows from1 − ε + 1/a to∞. The explicit
inversion of this relation requires solving an algebraic equation of the third order.

The three phases of the debonding process and the global response of the bar are illustrated in Fig. 4.
— Case of a short bar :ε ≥ 1/2.We can again distinguish three phases of debonding, the first and the last

being the same as in the former case and the second corresponding to a case in which every point of the bar
is partially debonded. The difference is due to the fact that the limiting point which separates the perfectly
bonded zone from the partially debonded one reaches 0 before the totally debonded zone appears atz̄ = 1.
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Fig. 4. Debonding process and global response in the Dugdale model

Specifically, the different phases are now delimited by


Phase I : 0 < Ū ≤ 1
4ε

+
1

2aε

Phase II :
1
4ε

+
1

2aε
< Ū ≤ ε +

ε

a
+

1
4aε

Phase III : ε +
ε

a
+

1
4aε

< Ū

. (48)

The relations giving , ūd, andF̄ as functions of̄U during the first phase and those givingd, ūd, andŪ as
functions ofF̄ during the third phase are the same as in the case of long bars. During the second phase, the
whole bar is partially debonded, and the relative displacement of the fiber is now given by

ūd(z̄) =
z̄2

4ε
+

a

1 + a

(
Ū − 1

4ε
− 1

2aε

)
z̄, (49)

whereas the forcēF is no longer constant but is strictly increasing:

F̄ =
1

1 + a

(
Ū +

1
4ε

)
. (50)

The three phases of the debonding process and the global response of a short bar are illustrated in Fig. 4.

5.2 A piece-wise linear model with zero ultimate strength

Finally, consider the case in which the surface energy is given by (38) and is characterized by zero ultimate stress.
As we have already pointed out, in this model the integralg0 in (33a) is divergent. As a result, the perfectly
bonded phase does not exist: as soon asŪ > 0, all points of the fiber slide with respect to the matrix. As in the
case of the Dugdale surface energy, we need to distinguish here the points where the relative displacementūd is
below the critical valueδc from those where it is above.We obtain two phases of the debonding process (Phases
II and III):

12
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Fig. 5. Debonding process and global response in the piece-wise linear model with zero ultimate strength

1. Phase II : 0 < Ū ≤ ε + 1/(a tanh(1/ε)). The relative displacement of the fiber and the forceF̄ needed to
sustain the total displacementŪ are given by

ūd(z̄) =
aεŪ

cosh 1
ε + aε sinh 1

ε

sinh
z̄

ε
, (51)

F̄ =
Ū

1 + aε tanh 1
ε

. (52)

Both increase with̄U . At the end of this phase, the relative displacement of the fiber atz̄ = 1 reaches the
critical valueε. At this point the totally debonded zone appears and the third phase begins.

2. Phase III : Ū > ε + 1/(a tanh(1/ε)). Since the end̄z = 0 of the fiber is fixed, there always remains a
zone in which the debonding is partial. The length of this zone simply decreases to 0 asŪ grows to infinity.
Outside this zone, the debonding is total and the fiber does not interact with the matrix. From the analytical
point of view, it is again convenient to usēF as the parameter. The location of the limit point between the
two zones is then given by

d = ε sinh−1 1√
a2F̄ 2 − 1

, (53)

whereas the displacement field takes the form

ūd(z̄) =




ε
√
a2F̄ 2 − 1 sinh

z̄

ε
, 0 ≤ z̄ ≤ d

ε + aF̄
(
z̄ − ε sinh−1 1√

a2F̄ 2 − 1

)
, d ≤ z̄ ≤ 1

. (54)

During this last phase, the forcēF needed to sustain the loadinḡU is implicitly given by

Ū = ε +
(
1 + a − aε sinh−1 1√

a2F̄ 2 − 1

)
F̄ , (55)

One can show that̄F is a strictly increasing function of̄U . The explicit inversion of this relation requires the
solution of a transcendental equation.

The two phases of the debonding process and the global response of the bar are illustrated in Fig. 5.

6 Soft device

For a bar in a soft device, the general energy functional takes the form

E(u) =
1
2

∫ L

0

(
EfSfu

′
f (z)2 + EmSm(u′

f (z) − u′
d(z))

2
)
dz +

∫ L

0
2πRfκ(|ud(z)|)dz − Fuf (L), (56)

where the displacement of the matrix must satisfy the boundary conditionum(0) = 0, while the displacements
of the fiber are free. For each value ofF we are searching for the local minimizers ofE satisfying the boundary
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conditions. By choosing the Griffith surface energy and following a procedure similar to the one described in
Sect. 2, one can show that the dimensionless displacement discontinuityū must minimize the energȳE ,

Ē(v̄) =
∫ 1

0
v̄′(z)2dz − 2F̄ (v̄(0) + av̄(1)) − aF̄ 2 + 1 − length(C(v̄)). (57)

Notice that, contrary to the case of a hard device, the configuration withF̄ = 0 is not trivial. SinceĒ(0) =
0 ≤ Ē(v̄), with equality only at̄v=0, the global minimum always corresponds toū = 0. To see that this is not
the only local minimizer, consider the fields̄u = const �= 0 corresponding to rigid translations of the fiber
inside the unstretched matrix. All these fields have the same energyĒ(const) = 1. Since in any sufficiently
small neighborhood of each one of these fields a perturbed fieldv̄ does not vanish, the corresponding surface
energy is equal to1, whereas the bulk energy is non-negative. Consequently these “rigid translations” are all
local minimizers and, as we prove below, there are no others. Moreover, although one can approach the trivial
state by a sequence of such local minimizers, the limiting configurationv̄ = 0 is separated from any of these
local minimizers by an energy barrier of finite height (equal to 1).

Another peculiar feature of the soft device is that the energy is no longer bounded from below whenF̄ �= 0.
Indeed, by takinḡv(z) = qF̄ for all z, Ē(v̄) = −(2q + a)F̄ 2 and tends to−∞ whenq → ∞ provided that
F̄ �= 0. Consequently, the global minimum does not exist as long as a nonzero force is applied. A minimizer
then is necessarily a local one, if one exists at all. To find the local minimizers, we proceed as in Sects. 2 and 3.

Proposition 4. Assume for determinacy thata < 1, meaning that the fiber is stiffer than the matrix. Then

1. If F̄ = 0, the perfectly bonded state (ū = 0) and totally debonded states (ū = const) are the global and the
local minimizers, respectively;

2. If |F̄ | < 1, the perfectly bonded state (ū = 0) is the unique local minimizer;
3. If |F̄ | = 1, there is a one-parametric family of local minimizers

{
ū�

}
0≤�<1,

ū�(z̄) =

{
F̄ ( − z̄) , 0 ≤ z̄ ≤  

0 ,  ≤ z̄ ≤ 1
. (58)

This family contains the state of perfect bonding ( = 0) as well as configurations with partial debonding of
the fiber along the interval(0,  );

4. If |F̄ | > 1, there are no local minimizers.

Proof. The proof is given in the Appendix.

7 Discussion

In this concluding section we provide some additional arguments concerning the influence of the two main
parameters characterizing the cohesive law – the toughness, measured by the internal length i, and the effective
strength, measured by the internal lengthδc – on the resulting equilibrium response of the composite bar.

The effective strength of the interface enters the description of the debonding process through the parameter
ε. When the strength decreases, the parameterε also decreases. Since this is equivalent to a transition from
shorter to longer bars, we can conclude that the smaller the effective strength, the closer the response of the
Barenblatt bar to that of a Griffith bar. The detailed character of convergence can be illustrated in the case of
the Dugdale surface energy, for which the explicit relations for the minimizerūε and for the overall forcēFε are
available (see (39)–(47)). Since we are interested in the limit of small toughness, it is sufficient to consider the
caseε < 1/2. In particular, when0 < Ū ≤ 1/a, we obtain from (39)–(41) that̄uε converges uniformly to 0 and
that F̄ε converges tōU , which corresponds to the first phase in the response of the Griffith bar (see (24), (26),
and (27)). When1/a < Ū ≤ 1 + 1/a, we obtain from (42)–(44) that ε anddε converge to 0 = 1 + 1/a − Ū ,
that ūε converges uniformly to 0 on[0,  0] and toz̄ −  0 on [ 0, 1], and thatF̄ε remains constant and equal to
1/a. This corresponds to the second phase in the response of the Griffith bar. Finally, whenŪ > 1 + 1/a, we
obtain from (45)–(47) thatdε converges to 0, that̄uε converges uniformly toaz̄/(1+a), and thatF̄ε converges to
Ū/(1+a). This corresponds to the third phase in the response of the Griffith bar. All these phases of the pull-out
test are illustrated in Fig. 6, where the overall response of the Dugdale bars is plotted for different values of the
effective strength of the interface against the response of the Griffith bar with the same toughness.

The value of the slopēκ′(0), characterizing the ultimate strength of the surface, also has an important influence
on the character of the debonding process. Indeed,
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1. In the Griffith model, in which̄κ′(0) = ∞, there exists an interval of loading where the interface is entirely
bonded;

2. In the model with zero ultimate strength, in whichκ̄′(0) = 0, a (partial) debonding appears along the entire
bar as soon as the load is applied;

3. In the intermediate cases, when0 < κ̄′(0) < ∞, the debonding zone appears as soon as the load is applied,
but it spreads only along a finite segment of the bar. The length1 −  of this segment increases with the
loading. In particular, we can compute the derivative

d 

dŪ
(0) =

2a
Lκ̄′(0)

, (59)

confirming that the incipient debonding length is infinite when the slopeκ̄′(0) is zero (“initially elastic”
model) and vanishes when the slope is infinite (Griffith model).

The above differences in the detailed character of the debonding process do not contradict our general
conclusion concerning the convergenceof theBarenblatt andGriffithmodels in the limit of zeroeffective strength.
Thus, although in the piece-wise linearmodel with zero ultimate strength (but nonzero effective strength) a partial
debonding appears along the entire bar as soon as the load is applied, one can show that the smaller the effective
strength, the smaller the relative displacement of the fiber. In particular, in the limit of zero effective strength,
the sliding disappears completely.

This discussion confirms that the important parameter determining the detailed structure of the response is the
effective strength, not the ultimate strength. Notice, also, that if the pull-out test is performed for sufficiently long
composite bars, then the only material parameter that can be extracted from the experiment is the (tangential)
toughness of the interface which survives the transition from the Barenblatt to the Griffith description. The
situation here is completely different from the one in a simple tension test, in which the structure of the set
of local minimizers is much richer than in the present model and, therefore, in the absence of fluctuations (or
imperfections) only the ultimate strength can be measured, the toughness playing a relatively minor role (see
[19]). In that and related cases, the predictions of the Griffith model are not satisfactory and preference should
be given to the Barenblatt model.

Appendix

Proof of Proposition 1.First recall that (being inW 1,2) ud is continuous and thatud(0) = 0. Assume now that
ud is not monotonic. Then there existz1, z2, andu0 such that

0 ≤ z1 < z2 ≤ L, ud(z1) = ud(z2) = u0, |ud(z)| > |u0|, ∀z ∈ (z1, z2).

Let h be such that0 < h < 1 and definevh
d by

vh
d (z) =

{
ud(z) , z �∈ (z1, z2)

(1 − h)ud(z) + hu0 , z ∈ (z1, z2)
.
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This displacement field is admissible: it satisfies the boundary conditionvh
d (0) = 0, it is as smooth asud in each

subinterval delimited byz1 andz2, and it is continuous atz1 andz2, where it takes the same valueu0 as the field
ud. Let us note also thatud(L) = vh

d (L) and that|(1 − h)ud(z) + hu0| ≤ (1 − h)|ud(z)| + h|u0| < |ud(z)|
whenz ∈ (z1, z2). Moreovervh

d tends toud whenh tends to 0. Hence, for sufficiently smallh, it must have a
larger energy thanud. But a straightforward computation shows that

0 ≤ Ê(vh
d ) − Ê(ud)

=
(
(1 − h)2 − 1

)AmAf

2A

∫ z2

z1

u′
d(z)

2dz + 2πRf

∫ z2

z1

(
κ((1 − h)|ud(z)| + h|u0|) − κ(|ud(z)|)

)
dz.

Sinceκ is increasing, both terms on the right hand side are not positive and so theymust vanish for the inequality
to hold. That requiresu′

d = 0 on (z1, z2) and thereforeud(z) = u0 on (z1, z2). This is a contradiction, soud is
monotonic.

It remains to be proven thatud increases or decreases depending on the sign ofU . Sinceud is monotonic and
vanishes at 0, it has the same sign on the whole interval[0, L]. Thus it suffices to prove thatU andud(L) have
the same sign.

Let h > 0 andvh
d = (1 − h)ud. Sincevh

d is admissible and sincevh
d converges toud whenh goes to 0,vh

d

must have a larger energy thanud whenh is sufficiently small. That leads to the following inequality:

0 ≤
(
(1 − h)2 − 1

)AmAf

2A

∫ L

0
u′

d(z)
2dz + h

Am

L
Uud(L) +

(
(1 − h)2 − 1

)Am
2

2AL
ud(L)2 +

+2πRf

∫ L

0

(
κ((1 − h)|ud(z)|) − κ(|ud(z)|)

)
dz.

If Uud(L) < 0, the four termson the right hand sidearenot positive andweobtain a contradiction. IfUud(L) = 0
the inequality is satisfied if and only ifud = 0. Consequently, whenU > 0, thenud(L) ≥ 0, which means that
ud is increasing. Similarly whenU < 0, thenud(L) ≤ 0, meaning thatud is decreasing, and whenU = 0, then
ud(L) = 0, andud = 0 is the only possible local minimizer. In this latter case, it is easily checked that0 is really
the (unique) global minimizer.

Proof of the Theorem.The proof is divided into four steps. Essentially we are establishing a point-wise con-
vergence of the Barenblatt functional to the Griffith functional and dealing with an elementary example of
Γ -convergence (see, for instance, [23]).

(i) We first verify the basic inequality. Letv be an element ofW 1,2(0, 1) such thatv(0) = 0 and letvε be a
sequence of such elements weakly converging tov whenε → 0. Then we need to show that

Ē0(v) ≤ lim inf
ε→0

Ēε(vε). (A1)

To prove (A1), we must consider separately the three terms in the energy expression. For the bulk elastic energy,
since0 ≤ ∫ 1

0

(
v′(z)−v′

ε(z)
)2

dz, we easily obtain that
∫ 1
0 v′(z)2dz ≤ lim infε→0

∫ 1
0 v′

ε(z)
2dz. For the boundary

term, sincevε(1) converges tov(1)we get(v(1)− Ū)2 = limε→0(vε(1)− Ū)2. To prove the required inequality
for the surface energy letC(v) be the set of points wherev vanishes andD(v) the set of points where it does not.
Due to the positivity of̄κ, we have lim infε→0

∫
C(v) κ̄(|v(z)|/ε)dz ≥ 0. Furthermore, sincelimε→0 κ̄(vε(z)) = 1

onD(v), we can use Fatou’s Lemma to obtain

1 − length(C(v)) = length(D(v)) =
∫

D(v)
1 dz ≤ lim inf

ε→0

∫ 1

0
κ̄
( |vε(z)|

ε

)
dz.

This confirms that (A1) holds.
(ii) Now we need to ensure the existence of a recovery sequence. It suffices to show that, for everyv in

W 1,2(0, 1), that
Ē0(v) = lim

ε→0
Ēε(v). (A2)

Notice first that only the surface energy depends onε. Since the surface energy function vanishes at 0, we need to
prove thatlimε→0

∫
D(v) κ̄(|v(z)|/ε)dz = length(D(v)). But this follows from the assumption thatκ̄(|v(z)|/ε)

converges to 0 ifv(z) = 0 and to 1 ifv(z) �= 0. Sinceκ̄ is bounded, we can apply the Lebesgue dominated
convergence theorem and the result follows.��
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(iii) We can now prove that a global minimizer̄uε of Ēε weakly converges to the global minimizerū0 of
Ē0. SinceĒε(ūε) ≤ Ēε(0) = aŪ2, the sequencēuε is bounded inW 1,2(0, 1) and hence we can extract a
subsequence (also denotedūε) which weakly converges to a certainū. Then, due to (A1), (A2), and the fact that
ūε is a minimizer ofĒε, we obtain for anyv

Ē0(ū) ≤ lim inf
ε→0

Ēε(ūε) ≤ lim
ε→0

Ēε(v) = Ē0(v), (A3)

which ensures that̄u is the unique global minimizer of̄E0, and therefore that̄u = ū0.
(iv) By choosingv = ū0 in (A3) we obtain thatĒ0(ū0) ≤ limε→0 Ēε(ūε) and hence that

∫ 1
0 ū′

ε(z)
2dz

converges to
∫ 1
0 ū′

0(z)
2dz. That ensures that̄uε converges strongly tōu0. ��

Proof of Proposition 3.The analysis below is based on a standard use of inner variations (see [24] for a somewhat
different derivation in a more general case).

The minimizers must belong to the closed subspace ofW 1,2(0, 1) satisfyingu(0) = 0. Let v be inC∞
0 (0, 1)

andh ∈ R. When|h| is sufficiently small,x �→ φh(x) = x + hv(x) is a direct diffeomorphism onto[0, 1].
Moreover, ifu is in W 1,2(0, 1) andu(0) = 0, so is uh = u ◦ φ−1

h , anduh converges tou whenh goes to 0.
Consequently, ifu is a local minimizer ofI, the inequalityI(uh) ≥ I(u) must hold forh sufficiently small. A
straightforward calculation gives

I(u ◦ φ−1
h ) =

∫ 1

0

(u′(x)2

φ′
h(x)

+ φ′
h(x)f(u(x))

)
dx + a(u(1) − U)2. (A4)

By noticing thatI(u ◦ φ−1
h ) is now differentiable with respect toh and that it has a minimum ath = 0, we can

conclude that its derivative at 0 must vanish. This leads to

0 =
dI(u ◦ φ−1

h )
dh

(0) =
∫ 1

0

(
− u′(x)2 + f(u(x))

)
v′(x)dx, ∀v ∈ C∞

0 (0, 1). (A5)

Now it is straightforward to show that there exists a constantC such thatu′(x)2−f(u(x)) = C for all x ∈ (0, 1).
Let us derive the boundary condition. Letu be a local minimizer,h > 0, θ ∈ R, and defineuh by

uh(x) =

{
u(x), if 0 ≤ x ≤ 1 − h

u(x) + θ(x − 1 + h), if 1 − h ≤ x ≤ 1
.

Notice that forh sufficiently small,uh is admissible and converges tou ash goes to 0; then we can obtain the
following inequality:

0 ≤
∫ 1

1−h

(
2θu′(x) + θ2 + f(|uh(x)|) − f(|u(x)|)

)
dx + 2ahθu(1) + ah2θ2 − 2ahθU.

Dividing by h and passing to the limit whenh goes to 0 we obtain that0 ≤ 2θ
(
u′(1) + au(1) − aU

)
+ θ2.

This last inequality will be satisfied for allθ if and only if u′(1) + au(1) = aU , which constitutes the desired
boundary condition. ��
Proof of Proposition 4.The proof is divided into two steps. We first determine the short list of candidates by
using necessary conditions of equilibrium and then select among them local minimizers.We adopt the following
notation:

B = {v̄ ∈ W 1,2(0, 1) : C(v̄) �= ∅}, A = {v̄ ∈ W 1,2(0, 1) : C(v̄) = ∅}.
(i) The candidates.Suppose that̄u is a local minimizer of (57). We first show thatC(ū) is either empty or a

closed interval of the form[ 1,  2], with 0 ≤  1 ≤  2 ≤ 1. Indeed, ifC(ū) is not empty, define 1 = min{z ∈
C(ū)} and 2 = max{z ∈ C(ū)}, C(ū) being closed becausēu is continuous. Leth > 0 and choosēvh to be
the following admissible displacement field:

v̄h(z) =

{
ū(z) , z �∈ [ 1,  2]
(1 − h)ū(z) , z ∈ [ 1,  2]

.

Sincev̄h tends tōuwhenh goes to 0, we must havēE(ū) ≤ Ē(v̄h) for h sufficiently small. Notice, however, that
the surface energy is equal for bothv̄h andū because they vanish at the same points. The energies of the loading
device for the two fields̄u andv̄h are also the same, because the fields are necessarily equal at 0 and 1. Now,
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while the bulk energies outside the interval[ 1,  2] are equal, the energy stored in the interval[ 1,  2] is less for
the fieldv̄h than for the field̄u except when̄u = 0 in this whole interval, which means thatC(ū) = [ 1,  2].

Now examine the possibility that̄u ∈ A. Consider̄vh = ū + hφ, φ ∈ W 1,2(0, 1). For hsufficiently small,
v̄h ∈ A andĒ(ū) ≤ Ē(v̄h). This is possible only if the derivative of̄E at ū in the directionφ vanishes, meaning
that

∫ 1
0 ū′(z)φ′(z)dz = F̄

(
φ(0)+aφ(1)

)
. This in turn requires that̄F = 0 andū′ = 0.We have therefore proved

that a local minimizer describing the state of total debonding is possible only ifF̄ = 0 and that is necessarily a
rigid translation of the fiber.

Finally, consider the possibility thatC(ū) = [ 1,  2]. For the corresponding displacement fieldv̄ the energy

Ē(v̄) =
∫ �1

0
v̄′(z)2dz +

∫ 1

�2

v̄′(z)2dz − 2F̄ (v̄(0) + av̄(1)) − aF̄ 2 + 1 −  2 +  1

is a convex functional of̄v and therefore the local minimizer

ū(z) =




F̄ ( 1 − z) , 0 ≤ z ≤  1

0 ,  1 ≤ z ≤  2

aF̄ (z −  2) ,  2 ≤ z ≤ 1
(A6)

is necessarily the global one. Being projected on the family (A6) the energy becomes an affine function of 1
and 2: Ē( 1,  2) = (1 − F̄ 2) 1 + (1 − a2F̄ 2)(1 −  2) − aF̄ 2. Sinceū depends continuously on 1 and 2,
it is a local minimizer only if the pair( 1,  2) delivers a global minimum tōE( 1,  2). Now, by recalling the
assumptiona < 1, we obtain that, if|F̄ | < 1, then 1 = 0,  2 = 1; if | F̄ | = 1, then 1 ∈ [0, 1],  2 = 1; and
finally, if |F̄ | > 1, then 1 =  2 = 1. In other words, we obtained that the local minimizersū with C(ū) �= ∅
must necessarily belong to the following set:ū0 if |F̄ | < 1, the family{ū�}0≤�≤1 if |F̄ | = 1, andū1 if |F̄ | > 1.

(ii) The local minimizers.Now we need to select among candidates the local minimizers. We have already
seen that, when̄F = 0, all rigid translations of the fiber are local minimizers.

Consider now the candidates which belong toA. Recall that when|F̄ | < 1 ū0 = 0 is the only candidate, and
that when|F̄ | = 1 all the candidates̄u� have the same energy asū0 = 0: Ē(ū�) = Ē(0) = −a. Let x0 ∈ [0, 1]
and letB(x0) = {v ∈ W 1,2(0, 1) : v(x0) = 0}. Notice that̄u0 ∈ B(x0) and thatĒ admits a global minimizer
in B(x0): the functional is bounded from below and lower semicontinous in this closed subspace ofW 1,2(0, 1).
If we call this (or one of these) minimizer̄u(x0) we can follow the steps of the analysis from (i) and obtain that
C(ū(x0)) is necessarily of the form[ 1,  2]. But we know also that̄u0 is the global minimizer of̄E on the set
B(x0) when|F̄ | ≤ 1 and thereforēE(0) = Ē(ū(x0)). Since this property is independent of the choice of the
pointx0, it remains true on the union of the setsB(x0), that is on the wholeB. In other words, we can guarantee
that when|F̄ | < 1 Ē(0) ≤ Ē(v̄), ∀v̄ ∈ B. Similarly, when|F̄ | = 1 we obtain that̄E(ū�) ≤ Ē(v̄), ∀v̄ ∈ B.

To complete the proof we need to compare the energies of the candidates fromB andA. To prove that̄u0 = 0
is really a local minimizer when|F̄ | < 1, it suffices to show that for any sequencev̄n ∈ A converging to0 we
havelimn→∞ Ē(v̄n) > Ē(0). Since for such sequenceslimn→∞ Ē(v̄n) = Ē(0) + 1 , ū0 is a local minimizer. To
prove that̄u� is a local minimizer when|F̄ | = 1, it suffices to show that for any sequencev̄n ∈ A converging to
ū� we havelimn→∞ Ē(v̄n) > Ē(ū�). Since for such sequenceslimn→∞ Ē(vn) = Ē(ū�) + 1 −  , ū� is a local
minimizer when0 ≤  < 1. Now, for  = 1, consider the sequencēvn = ū1 + F̄ /n ∈ A converging toū1.
SinceĒ(v̄n) = Ē(ū1) − 2(1 + a)F̄ 2/n < Ē(ū1), the candidatēu1 is never a local minimizer.��

References

1. Griffith, A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. LondonCCXXI-A, 163–198 (1920)
2. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech.7, 55–129 (1962)
3. Willis, J.R.: A comparison of the fracture criteria of Griffith and Barenblatt. J. Mech. Phys. Solids15, 151–162 (1967)
4. Marshall, D.B.: Analysis of fibre debonding and sliding experiments in brittle matrix composites. Acta Metall. Mater.40(3),

427–442 (1992)
5. Charalambides, P.G., Evans, A.G.: Debonding properties of residually stressed brittle-matrix composites. J. Am. Ceram. Soc.

72, 746–753 (1989)
6. Geymonat, G., Krasucki, F., Marigo, J.-J.: Stress distribution in anisotropic elastic composite beams. In: Ciarlet, P.G., Sanchez

Palencia, E. (eds.)Applications of Multiple Scalings in Mechanics, pp. 118–133. Masson Paris 1987
7. Hutchinson , J.W., Jensen, H.M.: Models of fibre debonding and pullout in brittle composites with friction. Mech. Mater.9,

139–163 (1990)

18



8. Müller, I., Müller,W.,Villaggio, P.: Static and dynamic pull out of an elastic rod from a rigid wall. In: Herrmann, K.P., Olesiak,
Z.S. (eds.)Thermal Effects in Fracture of Multiphase Materials. (Lecture Notes in Engineering, 59), pp. 195–2002. Springer
Berlin Heidelberg NewYork (1990)

9. Kerans, R., Parthasarathy, T.A.: Theoretical analysis of the fibre pullout and pushout tests. J. Am. Ceram. Soc.74, 1585–1596
(1991)

10. Bechel, V.T., Sottos, N.R.: Application of debond length measurements to examine the mechanics of fiber pushout. J. Mech.
Phys. Solids46(9), 1675–1697 (1998)
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