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Initiation and propagation of fracture
in the models of Griffith and Barenblatt

J.-J. Marigd, L. Truskinovsky

L LPMTM, UPR-CNRS 9001, Université Paris-Nord, 93430 Villetaneuse, France
2 LMS, UMR-CNRS 7649Ecole Polytechnique, 91128 Palaiseau, France

Abstract. In the setting of the simplest debonding problem we give a systematic comparison of
the fracture models due to Griffith and Barenblatt. We prove that the Griffith model represents an
asymptoticI -limit of the Barenblatt model, when the ratio of the external and internal lengths
increases indefinitely. We then illustrate the character of convergence by solving explicitly two
sample problems with “initially rigid” and “initially elastic” cohesive energies. The geometrical
simplicity of the setting allows us to study the small parameter dependence of both global and
local minimizers of the total energy.

Key words: fracture mechanics, variational methods, gamma-convergence, pull-out test, Baren-
blatt model
PACS: 62.20.Mk, 68.35.Md, 81.40.Jj, 83.50.Lh

1 Introduction

While the well-known theories of fracture due to Griffith [1] and Barenblatt [2] take into account cohesive forces
in different ways, both have the same basic structure. The theory of Griffith assumes that the surface energy
density is equal to a constant that does not depend on the crack opening, while the theory of Barenblatt postulates
that the surface energy density is a monotonic function of the displacement discontinuity, approaching a constant
only at some sulfficiently large crack opening. For consistency of the two approaches, the constant appearing in
the Griffith model and representing the toughness of the material must be equal to the limiting cohesive energy
in the Barenblatt model. When the two models are consistent and when Barenblatt’s cohesive forces act over
sufficiently short range, a formal asymptotic analysis of [3] showed that the stress fields near the tip of the
crack predicted by the two models are asymptotically equivalent. In the present paper we explore the detailed
character of this asymptotic convergence in the most elementary shear-lag setting of the fiber pull-off problem.
The simplicity of the problem opens the way to studying the limiting behavior of both global and local minimizers
without any a priori specification of the fracture geometry. An equivalent mathematical treatment of the general
fracture problem presents a considerable challenge because of the complex technical issues associated with the
variation of the generic discontinuity sets.

It is well known that the experimental characterization of cohesion parameters is usually based on either
fiber pulling or pushing tests making the pull-out problem an important point of reference in the analysis of
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fiber—matrix interactions [4,5]. The shear-lag approximation and its dynamic extensions were derived from the
three-dimensional theory in [4,6—13]. The main conclusion of these and other investigations is that the shear-lag
model can be used for sufficiently long and thin fibers and that the solutions are accurate except in the vicinity
of the crack tip. Although the shear-lag approximation may misrepresent some fine features of the elastic fields,
the error is known to decrease with the slenderness parameter in a controlled fashion. In the present paper we
compare the Griffith and Barenblatt theories by explicitly solving the shear-lag problem for a composite bar in

a hard device.

The main focus of our analysis is the influence of the structure of the cohesive energy on the geometry of the
discontinuity set. The deficiencies of the simplest Griffith model in predicting the crack geometry are well known.
Forinstance, since the ultimate strength of the material in this theory is infinite, it fails to describe the infinitesimal
fracture (see e.g. [14]). The problem disappears in the Barenblatt formulation, in which the ultimate strength
is finite (see e.g. [15]); to achieve the same result in the Griffith theory, one needs to introduce an incremental
energy minimization (see e.g. [12,16]). It remains unclear, however, how close are the predictions of the two
theories concerning the maximally attained stress and the fine structure of the resulting fracture surface. Of
particular interest is the exact domain of applicability of the much simpler and therefore more attractive Griffith
approximation.

We show rigorously that the Griffith model furnishes the exact variational limit for a generic Barenblatt model
when either the length of the bar tends to infinity or the internal length scale, originating from the cohesive law,
tends to zero. We then predict the onset of debonding and compute the complete history of damage evolution until
the full rupture. In addition to confirming asymptotic results by [3], we obtain a detailed account of the character
of convergence for both the energy and the geometry of the crack. Thus, we show that the “good” quantities
that are continuous in the limit include the energy and the critical stress, but not the geometrical parameters of
the damage zone such as, for instance, the length of the debonding. The Barenblatt theory is shown to play a
major role when the crack is about to appear; in the corresponding range of loadings the convergence of the two
theories is not uniform.

Contrary to most other investigations of fracture focused on the global minimum of the energy only, we
explicitly study the local minimizers. The only other comparison of the local minimizers in the theories of Griffith
and Barenblatt has been previously performed for a bar in tension (see e.g. [15,17-19]). The analysis of the
associated one-dimensional problem shows that, while Griffith’s global minimizer asymptotically approximates
Barenblatt’'s global minimizer, the two theories generate rather different predictions concerning the structure of
the local minima of the energy. Our pull-out problem for the fiber in a hard device is both simpler and more
complex than the problem for a bar in tension. Itis more complex because the displacement field in both the matrix
and the fiber must be considered. It is more simple because, as we show, the bifurcation from the uncracked state
is always supercritical so that the only local minimizer is the global one. The special structure of the bifurcation
diagram in the pull-out problem is the result of the unavoidable stress concentration around the boundary of the
domain of application of the kinematic boundary condition which creates a permanent nucleation site.

The paper is organized as follows. In Sect. 2 we introduce the shear-lag energy functional and set the formal
variational problem by defining the appropriate space of competitors. We then reduce the vector problem to the
scalar one and prove that both local and global energy minimizers can have at most one crack. In Sect. 3 the
problem is nondimensionalized and the set of dimensional parameters is reduced to two main nondimensional
criteria. We then prove the main theorem establishing the Griffith theory as an/éximcit of the Barenblatt
theory when one of the two nondimensional parameters tends to zero. In Sect. 4 we explicitly solve the local and
global minimization problem in the Griffith theory and reduce the corresponding solution to quadratures in the
general Barenblatt theory. In Sect. 5 we illustrate the general solution of the Barenblatt problem by explicitly
solving two special cases: with “initially rigid” cohesive response (Dugdale model) and with “initially elastic”
cohesive response (piece-wise quadratic model with zero ultimate strength). Finally in Sect. 6 we present a
sketch of the theory in the case of a soft device. The paper ends with a discussion of the parameter sensitivity
and of the size effect. All technical proofs of the mathematical statements are collected in the Appendix.



Main symbols

R Radius of the cross-section

R; Radius of the fiber

S, Area of the matrix cross-section

Sy Area of the fiber cross-section

L Length of the bar

E;  Young modulus of the fiber

FE,, Young modulus of the matrix

v Poisson ratio

~ Tangential toughness of the interface

Oc Internal length of Barenblatt model

K Surface energy function

uy  Longitudinal displacement field of the fiber

u,,  Longitudinal displacement field of the matrix

Difference of the longitudinal fields of the fiber and of the matrix
Total elastic energy of the bar

Total surface energy of the bar

Total energy of the bar

Prescribed longitudinal displacement of the end of the bar
Force needed for sustain the displaceniént

Ratio of the internal length of the material and the length of the bar
Ratio of the stiffness of the matrix and of the fiber

h h g
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2 Setting of the problem
2.1 Preliminaries

Consider a circular cylindrical composite bar of lendthwhich includes a fiber of radiug; centered in the

matrix of inner radiug? ; and outer radiu®. Both the fiber and the matrix are isotropic, linearly elastic materials

with Young moduliE'; and E,,,, respectively, and with the same Poisson rati@oth the matrix and the fiber

are assumed to have infinite strength so that the fracture may only occur along the common interface. Before
loading, the fiber is assumed to be glued to the matrix and the interface is assumed to be breakable. We adopt
the following boundary conditions:

— the lateral part of the boundary & R) is free;

— atone end (= L) the matrix is free, while the fiber is loaded in a hard device generating a given longitudinal
displacement;

— at the other end (== 0) both the matrix and the fiber are fixed.

In order to compute the equilibrium response we adopt the energy minimization point of view. Specifically, we
require that, at each value of the loading parameter, the displacement field in the composite bar must deliver at
least docal minimum to the corresponding energy functional. To give the precise definition of the minimization
problem, we have to define

— the set of admissible displacement fields;

— the expression of the energy associated with these displacement fields;

— the norm in the set of admissible displacements allowing one to evaluate the closeness between different
displacement fields.

To simplify the analysis we consider a limiting case of sufficiently slender bars and approximate the 3D problem
by a 1D problem (see [6] for more details). The longitudinal displacement fields inside thedjiband inside

the matrixu.,,, are assumed to depend only on the longitudinal coordindtés convenient to take as unknowns

the pairu = (uy, uq), whereu; = uy — u,,. The difference of displacementg vanishes if the bond remains
unbroken and accordingly we can define the two sets

D(u) ={z €[0,L] : ug(z) #0}, C(u)={z€[0,L]: u4(z) = 0}. (1)



The displacements; andu, must satisfy the following kinematic boundary conditions:
’LLf(L) =U, Uf(O) = ud(o) =0, (2
where the prescribed displaceméhbf the endL of the fiber plays the role of the loading parameter. The total

energy associated with the admissible displacement fields(u s, u4) contains two terms: the elastic energy
&.(u) and the cohesive (or surface) ene&gyu). The elastic energy can be written as

1

L
&) =3 | (BSr( + BuSuluty (o) = i) 3)

whereS,, = m(R? — R?c) andSy = WR} represent the area of the matrix and fiber cross-sections. For the
cohesive energy we assume
L
&) = [ 2nRynlus())dz, @
0

where the presence of the absolute value means that the energy cost of sliding is independent of its sign.
We consider the following two main choices fer

o Griffith model: « is discontinuoust zero and is constant elsewhere

0,6=0
o ={3 20 ®
e Barenblatt model:x is acontinuoudunction of§ such that
k(0)=0, k(0)>0 whend >0, k(c0)=r. (6)

In both casesy represents the (tangential) toughness of the interface. For the Barenblatt apodek’(0)
represents the ultimate shear stress, which may either be finite (“initially rigid” cohesive response) or zero
(“initially elastic” cohesive response); in the Griffith model the ultimate strength is equal to infinity. We remark
that the model with finite ultimate strength appears as the natural limit of a lattice model with Lennard-Jones-
type interactions (see e.g. [20]), while the model with zero ultimate strength can be linked to the presence of
pre-existing fracture surfaces (see e.qg. [21]).

Now notice that the total energy of the bar,

g(u) = ge(u) +&s (u)a (7)

is finite provided that, ; andu, belong to the spadé’2(0, L); the set of admissible displacements then consists
of pairs of functions belonging to this functional space and satisfying the boundary conditions (2). This set will
be denoted by/. The precise statement of the local minimization problem reads

find wcU suchthat 3h > 0,Yv : lv —ul < h, E(u) < E(v). (8)

To complete the setting of the mathematical problem we choose the ndirn-6f0, L) as defining the notion

of a (strong) local minimum and denote it By ||. We emphasize that this assumption is of an entirely physical
nature. Weaker norms, considered for instance in [15], would mean a broader set of local minimizers but would
not affect the choice of the global minimum of the energy (and our main Theorem in Sect. 3.2).

2.2 Reduction to a scalar problem

We begin by eliminating:; and formulating the problem in terms af; alone. Sincef is a strictly convex
function ofu s, we can minimize it out by using the following Euler—Lagrange equation:

(EySy 4 EmSm)u’s(2) — EnmSmuy(z) = const = F, 9)

meaning that the normal force is constant along the entire bar. By using the boundary canditios: u4(0) =
0 we can integrate (9) to give
Am o
us(z) = 1 ug(z) + T (10)

Here we introduced the following notation:
Af = Efo, A, = E, S, A= Af + A, (ll)




From the boundary conditions (L) = U, we obtain

FL =AU — Apuq(L). (12)
By inserting these relations in the expression of the energy, we can rewrite (7) as
N o Py A A 2 L
E(ug) = 24 ), uy(z)*dz + oL U - Tud(L) +27er/O K(Jug(z)])dz. (13)

Hereuy belongs tol#’1:2(0, L) and must satisfy the boundary conditiop(0) = 0. The energy is positive
and hence bounded from below. Since it is also weakly lower semi-continuous, there always exists a global
minimizer of the semi-linear minimization problem for (13) and therefore of the original problem (8).

2.3 Monotonicity of the minimizers

Proposition 1. Assume that the surface energy functiois an increasing function. Then the local minimizer
of the energy(13) u,4 is a monotonic function of, increasing whe/ > 0, and decreasing whefii < 0.

Proposition 2. Letw be a local minimizer of the energy addu) be the set of points where the fiber and the
matrix are bonded. If the surface energys an increasing function, thefi(«) is a closed interval of the form
[0, 4], with0 < ¢ < L.

Proof. The proof of Proposition 1 is given in the Appendix, whereas Proposition 2 is a consequence of the
monotonicity ofuy and of the boundary conditian; (0) = 0.

3 Relationship between the models of Griffith and Barenblatt
3.1 Dimensionless formulation

For the minimization of it is convenient to introduce dimensionless quantities. We define

z=Lz,  ug(z) =Lug(z), U=

4TRsvA 4vA
£ \/ AfAp, \/ RiE; Ay, (15)

is the main internal length scale of the Griffith model. A nondegenerate Barenblatt model contains another
internal length scalé. = ~/x’(0), which can be used to form a dimensionless parameter

LU, F=A,=F, a=2-", (14)

where

de
= —. 1
c=7 (16)
In terms of the nondimensional variables the cohesive energy in the Barenblatt model can be written as
i
Alua) =7 R(-0). (17)
Now, if we normalize the total energy
4 ArAn, L2
26 (ug) = =L e (), (18)
we obtain
B 1 1 ’ad(Z) N2
E(g) = / @y (2)2dz + / fa(i)dz + a(ada) - U) . (19)
0 0 €
The relation between the dimensionless faFcand the dimensionless total displacement takes the form
F=U- ﬂd(l) (20)

As we see, the general Barenblatt problem contains two dimensionless parameters anavhally represents
the relative stiffness of the matrix with respect to the fiber, anehich measures the ratio of internal (cohesive)
and external (geometrical) length scales.



3.2 Limiting behavior ag — 0

Since in the Griffith theory the nondimensional parameisridentically equal to zero, it is instructive to study

how the structure of the minimizers changes &nds to 0. One of the goals is then to show that the longer the

Barenblatt composite bar is, the closer its response is to that of a composite bar with the Griffith cohesive energy.
In what follows the main parameters of the Barenblatt theory will be explicitly marked by the suhbscript

while all other unnecessary subscripts will be dropped. For instance, we assumeatblaters a local minimum

to the energy functional,,

Ec(v) = /01 v (2)%dz + a(v(1) — U)* + /01 E(M>dz, (21)

€

among allv from W*2(0, 1) such that(0) = 0. A local minimizer in the Griffith model can then be denoted
by @g. By using Proposition 2 we can rewrite the corresponding energy functgnalthe form

1
Eo(v) = / V'(2)%dz +a(v(l) = U)* +1— length({z €[0,1] :v(z) = 0}) (22)
0
The relationship between the two theories is established by the following theorem:

Theorem 1. Suppose thai > 0,U € R, e > 0, and~ is a bounded positive function which satisfigs) = 0
andlim;_,, (&) = 1. Then the global minimizer ét converges (strongly in the sense of thé-2(0, 1)-norm)
to the global minimizer of, whene goes ta0.

Proof. The proof is given in the Appendix.

We emphasize that this theorem is rather general and remains true gv&nat monotonic or not continuous.
The only limitation is that it ensures the convergence of the global minimizer and does not say anything about the
local minimizers. As we show in the next section, in the case of a general Barenblatt surface energy, the unique
local minimizer is also the global one, and therefore our Theorem ensures that the response of the Barenblatt
tends to the response of the Griffith bar unconditionally.

4 Exact solution of the minimization problem

As a part of the proof of Proposition 1 we have shown that, when 0, u = (0, 0) is the unique local minimizer
of £. Also, by symmetry, if. is a local minimizer corresponding &6, then—uw is a local minimizer corresponding
to —U. Therefore in what follows we consider only the cése- 0.

4.1 Griffith model

Owing to its simplicity, the Griffith problem can be solved in closed form. Recall that for a local minimizer
theseC(a) = {z € [0,1] : uq(Z) = 0} is an interval of the fornj0, £(@)] with 0 < ¢(u) < 1. In the subspace
of admissible displacementsg in W2(0,1) such thats,;(0) = 0 andC(v) = [0, £], the energy functional of
the Griffith theory reduces to

E(L,vq) :A @;(z)2d2+(1—€)+a(U—ﬁd(1))2.

Since this functional is strictly convex with respectitpfor fixed /, its unique (global) minimizer is given by

(23)

0 ,0<z</
uq(z) = N . (24)
a(z—0U t<a<1
l+a—al ' — —
To determine the value dfwe insert (24) into (23) to obtain
. al?

E(0) = E(L,uy) +1—¢. (25)

- 14+a—al
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Fig. 1. Debonding process and global response in the Griffith model

Since€ is strictly convex with respect t there exists one and only one local minimizer of this one-dimensional
problem which is also the global one. The minimum is reached at 0 when > 0, at 1when&’(1) < 0, and
at¢ such that’(¢) = 0 otherwise. Therefore, we obtain three different phases of behavior:

1 , alU <1 (phase 1)
1 _
(=¢14+-—-U,1<alU <1+a (phasell). (26)
a
0 ., 1+a<aU (phaselll)

~ The global response of the composite bar can also be illustrated by the following relation between the force
F and the displacemet:

U , 0<U<1/a (phasel)
e 1{(1 ,1/a<U<1+1/a (phasell)’ 27)
U _
— <
T o 1+1/a<U (phaselll)

which is plotted in Fig. 1. Notice that the force remains constant in the phase of progressive debonding of the
fiber.

The overall behavior of the composite bar in the Griffith model can be described by the language of the theory
of phase transformations. In fact, the undamaged state with efigffyy = £(1) = aU? (our phasd) and the
completely debonded state with ened@yU) = £(0) = 1 + al?/(1 + a) (our phasd IT) can be viewed as
two different “phase modifications” of the “averaged material” of the composite bar. Now, since in the Griffith
model these two “phases” can coexist without interaction, we can write for the mixed state (ouf phase

E(x,Uy,Us) = E(0) = 2&1(U1) + (1 — x)E5(Ua), (28)

wherex = (/L is the fraction of the length of the bar occupied by the first phase. The constraint of the total
displacement of the fiber can be written in the form

Uy + (1 —2)Uy = U. (29)
Now by minimizing the energy (28) under the constraint (29) we obtain the standard conditions of “phase
equilibrium” furnishing the convexification of the total energy. The resulting overall response can be obtained
through the common tangent (Maxwell) construction illustrated in Fig. 2. For a similar description of a broader
class of partially damaged materials see [22].

Since in the Griffith problem the external length scale dominates, one can get an impression that in this theory
the size effect is absent. This is not exactly so. Indeed, we have seen that the interface entirely debonds when the
dimensionless forcé’ reaches the valuk/a. In terms of the physical parameters this corresponds to a critical
normal stress, given by (see (15))

[ATRsvA EfR?c l;
=FE¢ | ————— =2FE#4/1 —. 30

Here the parametéy = +/E; with a dimension of length represents the ratio between the energy of the surface
(v) and the energy of the bulk (EThe critical debonding stressg is therefore proportional to the dimensionless




|
l T l ‘U Fig. 2. The Maxwell construction providing the overall re-
a sponse of the composite bar in the Griffith model.

ratio \/¢;/ Ry of the two (internal) length scaleé;, associated exclusively with toughness, @d giving the
inner radius of the fiber. We conclude that the thicker the fiber, the lower the debonding stress.

Some important features of the debonding process will be different if instead of a hard device we consider a
composite bar in a soft device. To illustrate the new possibilities we sketch in Sect. 6 the theory of a pull-out test
for a Griffith fiber which is free at = 0 and stretched by a forcg at z = L. In particular, we find that there
exists a limiting load above which no local minimizer exists. This means that the composite bar cannot support
sufficiently large forces and, if overloaded, the fiber completely debonds. It is also interestingithat jfthe
debonding is first initiated at = 0 and ifa > 1, it starts atz = 1.

4.2 Barenblatt model

Now assume that the surface energy is an arbitrary continuous and monotonically increasing fungtion of
satisfying the conditions(0) = 0, x(J) > 0 whend > 0, andlims_,~ x(d) = v > 0. To determine the local
minimizers in the general Barenblatt model we cannot use Euler—Lagrange equations because they require the
surface energy function to be differentiable, eliminating for instance an important case of the Dugdale theory (see
below). An alternative approach is to use a Noether identity representing a first integral of the Euler—Lagrange
equations.

Proposition 3. Let f : R — R be a continuous functiod/ € R, anda > 0. Then a field: € W2(0,1) such
that«(0) = 0 is a local minimum (in the sense of the norni’t-2(0, 1)) of the functionall defined by

1
I(u) = / o' ()% + flu(z))dz + a(u(l) — U)?
0
only if it satisfies the following first integral condition and boundary conditions:

30 € R: —/(2)* + f(u(x)) = C, Yz € (0,1),
aU = u'(1) + au(1).

Proof. The proof is given in the Appendix.

By applying Proposition 3 to a general Barenblatt model, we obtain that i§ a local minimizer of€ it
necessarily satisfies the following set of equations:

Ug IS increasing, (31a)
(2)? — ﬁ(“dT(Z)) —C on (0,1), (31b)
uq(0) = 0, (31c)
(1) + atig(1) = aU. (31d)

Due to the monotonicity ofi;, we know thatC(z) = [0, £]. It is convenient to consider the cases- 0 and
¢ > 0 separately.



e ¢ > 0. In this case, since, vanishes o0, ¢, the constan€ is necessarily zero. Then we obtain

,(z) = <K(“d’(z)))é on [4,1]. (32)

€

This differential equation can be solved explicitly oricis known. Definel/; = w4(1). By using (32), (31c),
and (31d), we obtain thdtandU; must satisfy

1— 0= go(Thy) /OUIE(z)_%du, (33a)

U= fo(0) = (g())zwl. (33b)

Since the continuous functiofy is strictly increasing from 0 too asU, grows from 0 toco, (33b) has a unique
solutionU; > 0 for any givenU > 0. Concerning (33a) we must consider two possibilities depending on the
behavior of the functior(5)~2 nears = 0:

1. If the integral in (33a) is divergent (the case of a model with zero strength; see below), then (33a) has no
solution and the minimizer must be in the other class0 (andC > 0).

2. Ifthe integral is convergent, the functiggincreases continuously from 04o with U/; . Hence (33a) admits
a unique solutior? € (0, 1] provided thatl7; € [0,U5), with Uf = g5 ' (1), which in turn requires that

the loadingU lies in [0, U¢) with U¢ = f,(Uf). Oncel; and/ are determined, the field; can be found
explicitly: @g(2) = 0 for z € [0, 4], andug(2) = g5 * (2 — ¢) for z € [¢, 1].

To summarize, fo0d < U < U¢, there exists a unique functian, satisfying the necessary conditions of
optimality (31a)—(31d) and havingngth(C()) > 0. WhenU > U*¢, this type of a minimizer does not exist.
e ¢/ = 0. Now consider local minimizers with an entire debonding of the interface. In this case, since
uq(0) = 0, we have C= @,(0)> > 0. We consider separately the cagés= 0 andC > 0. We still set
U, = ﬂd(l)
(i) C = 0. We can use (33a) and (33b) with= 0 and obtain that/ must satisfyl = go(U;) and
U = fo(U,). That requires the integral @{6) 2 neard = 0 to converge. Thell = U¢ = f, o g5 (1) and the
field u, can be written explicitly ag,(z) = g, (2) on [0, 1].

(i) C > 0. In this case we gat);(z) = <m(ud(z)) + C) on [0, 1]. This differential equation can be
€

solved as soon as is known. By using (31b)—(31d), we obtain th@tand{/; must satisfy

U:f(O,U1)E[71+é (C—&-H(U;))Q, (34a)

Uy _1
1=g(C,0,) = /0 (5(9 n O) ? du. (34b)
Consider the function(C, U;) for C > 0 andU; > 0. At fixed C, g is strictly increasing witi/; from 0 tooo,
while, at fixedU, it is strictly decreasing from the valug(U; ) — which can be infinite — to zero. Now, at fixed
C > 0, (34b) admits a unique solutidi, = G(C'). Moreover,GG(C) increases from the valug (1) — with
the convention thag, ~!(1) = 0 whengy is not finite — toco asC grows from 0 toco. Inserting the relation
between/; andC in (34a), we obtain the following equation for.

U = f(C,G(C)). (35)

Since, at fixed/;, f increases from the valug (U;) to co asC grows from 0 toco and since, at fixed”, f
increases from 0 teo asU; grows from 0 tooo, we conclude that the functiofi(C, G(C)) increases from
the valuef (0, G(0)) = fo(go~ (1)) = U° to 0 asC goes from 0 toxo. Thus (35) admits one (and only one)
solutionC > 0 for a givenU provided that/ > U*°.

OncelU; andC are determined, the field; can be obtained explicitly becausg(z) is the unique solution

/Oud() (n(%) +C>7%du:2. (36)

of
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Fig. 3. Different cohesive energy functions and the corresponding cohesive stress-opening relations

This solution is obviously a strictly increasing functiorzotVe have therefore found that for > U* there exists
aunique functiom, satisfying the necessary conditions of optimality (31a)—(31d) and h&wigh (C(z)) = 0.
Such a minimizer does not exist whéh< U*.

By comparing different cases, we can conclude that there exists at most one local minimizer. Since we have
already shown that there is always a global minimizer, we may conclude that the only local minimizer is also
the global one.

5 Explicit examples of the minimizers in the Barenblatt problem

To illustrate the general existence and uniqueness results for the Barenblatt model, here we present two particular
examples. To cover different physical situations we consider two exactly solvable models with either “initially
rigid” or “initially elastic” cohesive response (see Fig. 3). Specifically, we define

1. The Dugdale model (“initially rigid” response) :

vén0§5§&

w(6) = Oc ) (37)
Y, 620
2. The piece-wise linear model with zero ultimate strength (“initially elastic” response) :
2
v(é),0§6§&

k(6) = de . (38)

Y, 620

5.1 Dugdale model

Consider first the case where the surface energy is given by (37). The calculation of the integrals and solution
of (34a) and (34b) is then straightforward. It remains to distinguish the points where the relative @lidihg

the fiber is less than the critical valdg(partial debonding) from those where it is larger (total debonding). The
detailed succession of various phases of debonding is different depending on the alu= oh whether the

bar is long or short.

— Case of along bar :e < 1/2. We can distinguish three phases of debonding:
1. Phase |:0 < U < e+ 1/a. The bar is totally bonded along the interyal /] and partially debonded
along the remaining paft, 1). The relation betweehandU is given by

1 1 —
C=1+=— /= +4eU. (39)
a a



The relative sliding of the fiber takes the form

| /\
~

0 ,0<
ua(z) = § (z—1)? 0 : (40)

IA
W
\/\

At the end of this phase, i.e. whéh= ¢ + 1/a, the relative sliding of the fiber reaches the critical value
1 at the loaded end:(1) = 1), which marks the beginning of the second phase. During the first phase,
the forceF needed to sustain the displacemé&ns
_ 2U
F=————. 41
1+ V1 +4a2eU “1)

2. Phasell:e+1/a < U < 1 — e+ 1/a. During this phase, the bar is split into three parts with perfect
bonding along the intervdd, ¢], partial debonding along the intervid, d), and total debonding along
the remaining parfd, 1]. The two limit points are given by

521—6—5—1—07 d="0+ 2e. (42)
a
Notice that the (dimensionless) length of the partially debonded part élxulaﬂwe return todimensional
tities, this lengthisind dentofthe length ofthe b di 26Th lati
quantities, this length is independent of the length of the bar and is ec(% e relative

displacement is now

0 L 0<z</
= 52

da(z) = { © 465) Cr<z<d (43)
z—tl—¢ , d<z<1

At the end of this phasé = 0, which means that the perfectly bonded domain ceases to exist, marking

the beginning of the third phase. During the second phase, the foremains constant:
Fel (a4)
a

3. Phase lll : U > 1 — ¢ + 1/a. Since the end = 0 of the fiber is fixed, there always remains a zone in
which the debonding is partial. The length of this zone decreases t&/@ass to infinity. Outside this
partially debonded zone, the debonding is total. From an analytical point of view, it is more convenient
to useF as the parameter. The location of the limit point between the two zones is given by

- ZG(aF Va2F? _1 ) (45)

whereas the displacement field is now

5 _ 2 _
GO Ve =1 0<z<d
iq(z) = 4e . (46)

aFzZ+d—e¢ ,d 1

IN

Z

IN

Finally, the forceF' needed to sustain the displacem&ris implicitly given by
U:(1+Q)F7€+26<17&2F2+CLF\/(Z2F2—1). 47)

One can show that strictly increases from 1/a teo asU grows from1 — ¢ + 1/a to co. The explicit
inversion of this relation requires solving an algebraic equation of the third order.
The three phases of the debonding process and the global response of the bar are illustrated in Fig. 4.

— Case of a short bar :e > 1/2. We can again distinguish three phases of debonding, the first and the last
being the same as in the former case and the second corresponding to a case in which every point of the bar
is partially debonded. The difference is due to the fact that the limiting goutitich separates the perfectly
bonded zone from the partially debonded one reaches 0 before the totally debonded zone appedrs at
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Fig. 4. Debonding process and global response in the Dugdale model

Specifically, the different phases are now delimited by

_ 1 1

Phasel: 0<U< —+ —
4e = 2ae
_ 1
Phasell: — + — <U <e+ <+ (48)
4e = 2ae a 4dae

€ 1 _
Phaselll: e+ -4+ — < U

a 4ae

The relations giving,, 4, andF as functions ofJ/ during the first phase and those gividgig, andU as

functions of F' during the third phase are the same as in the case of long bars. During the second phase, the

whole bar is partially debonded, and the relative displacement of the fiber is now given by

z2 a [~ 1 1
o 2 IR T 4
W) =t (U de zae)z’ (49)
whereas the forcé& is no longer constant but is strictly increasing:
_ 1 _ 1
F= (T+5). 50
14+a +46 (50)

The three phases of the debonding process and the global response of a short bar are illustrated in Fig. 4.

5.2 A piece-wise linear model with zero ultimate strength

Finally, consider the case in which the surface energy is given by (38) and is characterized by zero ultimate stress.

As we have already pointed out, in this model the integgain (33a) is divergent. As a result, the perfectly
bonded phase does not exist: as sooli as 0, all points of the fiber slide with respect to the matrix. As in the
case of the Dugdale surface energy, we need to distinguish here the points where the relative dispigdgement

below the critical valué, from those where it is above. We obtain two phases of the debonding process (Phases
Il'and 111):
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Fig. 5. Debonding process and global response in the piece-wise linear model with zero ultimate strength

1. Phase Il :0 < U < e+ 1/(atanh(1/e)). The relative displacement of the fiber and the fofteeeded to
sustain the total displacemdiitare given by

acy sinh 2, (51)
€

ﬂd(f) = -
cosh % + aesinh %

U

_ . 52
1+ ae tanh% (52)

F =
Both increase witl/. At the end of this phase, the relative displacement of the fiber-atl reaches the
critical valuee. At this point the totally debonded zone appears and the third phase begins.
2. Phase lll : U > ¢+ 1/(atanh(1/¢)). Since the end’ = 0 of the fiber is fixed, there always remains a
zone in which the debonding is partial. The length of this zone simply decreases t6 §raws to infinity.

Outside this zone, the debonding is total and the fiber does not interact with the matrix. From the analytical

point of view, it is again convenient to ugeas the parameter. The location of the limit point between the
two zones is then given by

1
d=esinh ™! ———, 53
vVa?F?2 -1 (3)
whereas the displacement field takes the form
e\/aQFQ—lsinhE ,0<z<d
€
aq(z) = ) ) 1 . (54)
Z —esinh™ ———— <z<
e—i-aF(z € sinh m) ,d<z<l1
During this last phase, the fordéneeded to sustain the loadibgis implicitly given by
_ 1 _
_ S N R
U=c+ (1 +a— aesinh W)F, (55)

One can show thaf is a strictly increasing function df . The explicit inversion of this relation requires the
solution of a transcendental equation.

The two phases of the debonding process and the global response of the bar are illustrated in Fig. 5.

6 Soft device

For a bar in a soft device, the general energy functional takes the form
1 L

L
E(u) = 5/0 (Eka”fu’f(z)2 + B Sy (up(2) — u;l(z))Q)dz —&—/0 2rRyk(|ug(2)|)dz — Fuy(L), (56)

where the displacement of the matrix must satisfy the boundary conditi¢d) = 0, while the displacements
of the fiber are free. For each valuefwe are searching for the local minimizers&éatisfying the boundary



conditions. By choosing the Griffith surface energy and following a procedure similar to the one described in
Sect. 2, one can show that the dimensionless displacement discontimitgt minimize the energy,

£(v) = /0 ¥ (2)2dz — 20(5(0) + av(1)) — aF2 + 1 — length(C(7)). (57)

Notice that, contrary to the case of a hard device, the configurationAvith 0 is not trivial. Since£(0) =
0 < &(v), with equality only at=0, the global minimum always correspondsite= 0. To see that this is not
the only local minimizer, consider the fields= const # 0 corresponding to rigid translations of the fiber
inside the unstretched matrix. All these fields have the same edgrgy.st) = 1. Since in any sufficiently
small neighborhood of each one of these fields a perturbedifidltes not vanish, the corresponding surface
energy is equal td, whereas the bulk energy is nhon-negative. Consequently these “rigid translations” are all
local minimizers and, as we prove below, there are no others. Moreover, although one can approach the trivial
state by a sequence of such local minimizers, the limiting configuratien0 is separated from any of these
local minimizers by an energy barrier of finite height (equal to 1).

Another peculiar feature of the soft device is that the energy is no longer bounded from belov'when
Indeed, by takingi(z) = ¢F for all z, £(v) = —(2¢ + a)F? and tends to-co wheng — oo provided that
F # 0. Consequently, the global minimum does not exist as long as a nonzero force is applied. A minimizer
then is necessarily a local one, if one exists at all. To find the local minimizers, we proceed as in Sects. 2 and 3.

Proposition 4. Assume for determinacy that< 1, meaning that the fiber is stiffer than the matrix. Then

1. If F = 0, the perfectly bonded state & 0) and totally debonded states & const) are the global and the
local minimizers, respectively;
2. If[F'| < 1, the perfectly bonded state & 0) is the unique local minimizer;
3. If |[F| = 1, there is a one-parametric family of local minimizers’} _, .,
Ft—z <z<
al(z) = (L —2) ,0__2'_5. (58)
0 HA<z<1
This family contains the state of perfect bonding=(0) as well as configurations with partial debonding of
the fiber along the intervalo, ¢);
4. If |[F| > 1, there are no local minimizers.

Proof. The proof is given in the Appendix.

7 Discussion

In this concluding section we provide some additional arguments concerning the influence of the two main
parameters characterizing the cohesive law — the toughness, measured by the interngl lendthe effective
strength, measured by the internal length- on the resulting equilibrium response of the composite bar.

The effective strength of the interface enters the description of the debonding process through the parameter
e. When the strength decreases, the parametdso decreases. Since this is equivalent to a transition from
shorter to longer bars, we can conclude that the smaller the effective strength, the closer the response of the
Barenblatt bar to that of a Griffith bar. The detailed character of convergence can be illustrated in the case of
the Dugdale surface energy, for which the explicit relations for the mininaizand for the overall forcé’. are
available (see (39)—(47)). Since we are interested in the limit of small toughness, it is sufficient to consider the
caser < 1/2. In particular, wher) < U < 1/a, we obtain from (39)—(41) that. converges uniformly to 0 and
that F. converges td/, which corresponds to the first phase in the response of the Griffith bar (see (24), (26),
and (27)). When /a < U < 1 + 1/a, we obtain from (42)—(44) that andd. converge tdy = 1 + 1/a — U,
thatu. converges uniformly to 0 of0, 4y] and toz — ¢, on [¢y, 1], and thatF, remains constant and equal to
1/a. This corresponds to the second phase in the response of the Griffith bar. Finally{/whein+ 1/a, we
obtain from (45)—(47) that, converges to 0, that, converges uniformly taz/(1+a), and thatF, converges to
U /(14 a). This corresponds to the third phase in the response of the Griffith bar. All these phases of the pull-out
test are illustrated in Fig. 6, where the overall response of the Dugdale bars is plotted for different values of the
effective strength of the interface against the response of the Griffith bar with the same toughness.

The value of the slop& (0), characterizing the ultimate strength of the surface, also has animportantinfluence
on the character of the debonding process. Indeed,
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1. Inthe Griffith model, in whiclk’(0) = oo, there exists an interval of loading where the interface is entirely
bonded;

2. In the model with zero ultimate strength, in whiglj0) = 0, a (partial) debonding appears along the entire
bar as soon as the load is applied;

3. Inthe intermediate cases, wher: z’(0) < oo, the debonding zone appears as soon as the load is applied,
but it spreads only along a finite segment of the bar. The lehgtt¥ of this segment increases with the
loading. In particular, we can compute the derivative

L) = s

dU"  LE'(0)
confirming that the incipient debonding length is infinite when the skgpe) is zero (“initially elastic”
model) and vanishes when the slope is infinite (Griffith model).

(59)

The above differences in the detailed character of the debonding process do not contradict our general
conclusion concerning the convergence of the Barenblatt and Griffith models in the limit of zero effective strength.
Thus, although in the piece-wise linear model with zero ultimate strength (but nonzero effective strength) a partial
debonding appears along the entire bar as soon as the load is applied, one can show that the smaller the effective
strength, the smaller the relative displacement of the fiber. In particular, in the limit of zero effective strength,
the sliding disappears completely.

This discussion confirms that the important parameter determining the detailed structure of the response is the
effective strength, not the ultimate strength. Notice, also, that if the pull-out test is performed for sufficiently long
composite bars, then the only material parameter that can be extracted from the experiment is the (tangential)
toughness of the interface which survives the transition from the Barenblatt to the Griffith description. The
situation here is completely different from the one in a simple tension test, in which the structure of the set
of local minimizers is much richer than in the present model and, therefore, in the absence of fluctuations (or
imperfections) only the ultimate strength can be measured, the toughness playing a relatively minor role (see
[19]). In that and related cases, the predictions of the Griffith model are not satisfactory and preference should
be given to the Barenblatt model.

Appendix
Proof of Proposition 1.First recall that (being i)' +2) u, is continuous and that;(0) = 0. Assume now that
ug4 iS not monotonic. Then there exist, 2o, andug such that
0<z1<2z2<L, ug(z1)=ug(z2) =ug, |ua(z)] >|uog|, Vz € (21,22).
Leth be such thab < h < 1 and define/ by
hyy _ uq(z) s 2 & (21, 22)
(2) = { (1—h)

K ug(z) + hug , z € (21,22)



This displacement field is admissible: it satisfies the boundary condi}i@ = 0, it is as smooth as, in each
subinterval delimited by; andzs, and itis continuous at; andz,, where it takes the same valug as the field
ugq. Let us note also thaty(L) = v (L) and that{(1 — h)ua(z) + huo| < (1 — h)|ua(2)] + hluo| < |ua(z)]
whenz € (21, 22). Moreovervg tends toug whenh tends to 0. Hence, for sufficiently smal| it must have a
larger energy than,. But a straightforward computation shows that

0 < E@Wh) — E(uq)

_ ((1 )2 - 1) A;ff / uly(2)%dz + 27 Ry / <n((1 — W) ua(2)] + hluo|) — /<;(|ud(z)|)>dz.

z1

Sincex is increasing, both terms on the right hand side are not positive and so they must vanish for the inequality
to hold. That requires/, = 0 on (z1, z2) and therefore;(z) = up 0on (z1, z2). This is a contradiction, so, is
monotonic.

It remains to be proven that; increases or decreases depending on the sigh 8fnceuy is monotonic and
vanishes at 0, it has the same sign on the whole int¢dyal]. Thus it suffices to prove théf andu,(L) have
the same sign.

Leth > 0 andv’ = (1 — h)ug. Sincev)y is admissible and since! converges ta,; whenh goes to 0p”
must have a larger energy thapwhenh is sufficiently small. That leads to the following inequality:

AnA; [T A Ap®
0< ((1 — )% - 1) e /0 (=) dz + h =" Uua(L) + ((1 —R)? - 1)mud(L)2 +

+27 Ry / ’ (5 = Wua(2)]) = K(lua(2)]) ) d=.

If Uugq(L) < 0, the four terms on the right hand side are not positive and we obtain a contradictian(lf) = 0
the inequality is satisfied if and onlyif; = 0. Consequently, wheti > 0, thenu,(L) > 0, which means that
uq IS increasing. Similarly whety < 0, thenuy(L) < 0, meaning that.,; is decreasing, and whén = 0, then
ugq(L) = 0, anduy = 0is the only possible local minimizer. In this latter case, itis easily checked thaeally
the (unique) global minimizer.

Proof of the TheoremThe proof is divided into four steps. Essentially we are establishing a point-wise con-
vergence of the Barenblatt functional to the Griffith functional and dealing with an elementary example of
I’-convergence (see, for instance, [23]).

(i) We first verify the basic inequality. Let be an element ofi’1:2(0, 1) such that/(0) = 0 and letv, be a
sequence of such elements weakly convergingwiene — 0. Then we need to show that

Eo(v) < lirerl)i(rff Ec(ve). (A1)

To prove (A1), we must consider separately the three terms in the energy expression. For the bulk elastic energy,
since) < fol (v/(2) —vg(z))de, we easily obt<';1in:thq,f01 v'(2)%dz < liminf, o fol v!(2)%dz. For the boundary

term, sincev (1) converges ta(1) we get(v(1) — U)? = lim_,o(v.(1) — U)?. To prove the required inequality
for the surface energy I€t{v) be the set of points wherevanishes an®(v) the set of points where it does not.
Due to the positivity ok, we have lim inf_, fc(v) R(|v(z)|/€)dz > 0. Furthermore, sinckm,_,o & (v.(z)) = 1

onD(v), we can use Fatou's Lemma to obtain

1
1 — length(Qv)) = length(D(w)) = / 1dz < liminf / g(‘”f(z)‘)dz.
D(v) e—0 0 €
This confirms that (A1) holds.
(i) Now we need to ensure the existence of a recovery sequence. It suffices to show that, far ievery
W12(0,1), that ) )
50 (U) = }g% 56(”)' (A2)

Notice first that only the surface energy depends.@ince the surface energy function vanishes at 0, we need to

prove thafim,_, fD(v) E(|v(2)|/€)dz = length(D(v)). But this follows from the assumption th&f|v(z)|/¢)

converges to 0 ib(z) = 0 and to 1 ifv(z) # 0. Sincer is bounded, we can apply the Lebesgue dominated
convergence theorem and the result follows.



(i) We can now prove that a global minimizer, of £ weakly converges to the global minimizeg of
&. Sinceé (u.) < £.(0) = aU?, the sequence, is bounded inlW12(0,1) and hence we can extract a
subsequence (also denoted which weakly converges to a certainThen, due to (A1), (A2), and the fact that
i, is a minimizer of€,, we obtain for any

&o(@) < liminf & (i) < lim &, (v) = & (v), (A3)
e—0 e—0

which ensures that is the unique global minimizer &, and therefore that = .
(iv) By choosingv = g in (A3) we obtain thatSy(uy) < lim_, & (i) and hence thaﬁ)1 ul(2)%dz
converges t(;{'o1 g(2)%dz. That ensures that. converges strongly tag. O

Proof of Proposition 3The analysis below is based on a standard use of inner variations (see [24] for a somewhat
different derivation in a more general case).

The minimizers must belong to the closed subspad® 6f (0, 1) satisfyingu(0) = 0. Letv be inC5° (0, 1)
andh € R. When|h| is sufficiently smallz — ¢, (z) = = + hv(z) is a direct diffeomorphism ontfy, 1].
Moreover, ifu is in W'2(0,1) andu(0) = 0, S0 is u, = u o ¢; *, anduy, converges ta: whenh goes to 0.
Consequently, it is a local minimizer off, the inequalityl (u;,) > I(uw) must hold forh sufficiently small. A
straightforward calculation gives

-1 ' u' () ’ 2

o) = [ (5775 + i) flu(@) )de + au(l) - U)* )
0o \¢,(x)

By noticing that/ (u o qﬁ;l) is now differentiable with respect toand that it has a minimum at= 0, we can

conclude that its derivative at O must vanish. This leads to

0= %(o) - /O (— ' (z)? + f(u(x)))v’(x)d:c, Vo € C2(0,1). (A5)

Now it is straightforward to show that there exists a constasich that:/ (z)? — f(u(z)) = C forallz € (0, 1).
Let us derive the boundary condition. Lebe a local minimizerh > 0, 6 € R, and defineu;, by

() u(x), if 0<z<1-h
u = .
" wz)+ 0z —1+h), if 1-h<z<l

Notice that forh sufficiently smallu, is admissible and convergesdash goes to O; then we can obtain the
following inequality:

1

0< / (291/(3:) 0% 1 f(lun(z)]) — f(\u(x)|))da: + 2ah0u(1) + ah0® — 2ahoU.
1-h

Dividing by h and passing to the limit wheh goes to 0 we obtain that < 26(u/(1) + au(1) — aU) + 62.

This last inequality will be satisfied for &l if and only if u'(1) + au(1) = aU, which constitutes the desired

boundary condition. ad

Proof of Proposition 4.The proof is divided into two steps. We first determine the short list of candidates by
using necessary conditions of equilibrium and then select among them local minimizers. We adopt the following
notation:

B={veW"0,1) : C(v) #0}, A={veWwWh"*0,1) : C(v) = 0}.

(i) The candidatesSuppose thai is a local minimizer of (57). We first show thé{u) is either empty or a
closed interval of the forn¢y, ¢5], with 0 < ¢; < ¢5 < 1. Indeed, ifC(@) is not empty, definé; = min{z €
C(w)} andly = max{z € C(u)}, C(u) being closed becauseis continuous. Let > 0 and choose, to be
the following admissible displacement field:

%@):{M@ L2 (6, 0]
(]. — h)l_l,(Z) y 2 S [61,62]

Sincewy, tends taz whenh goes to 0, we must havd @) < &(v,) for h sufficiently small. Notice, however, that
the surface energy is equal for bathandu because they vanish at the same points. The energies of the loading
device for the two fields andvy, are also the same, because the fields are necessarily equal at 0 and 1. Now,



while the bulk energies outside the inter{él, /5] are equal, the energy stored in the inter¥a) ¢5] is less for
the fieldu;, than for the fieldz except wheri = 0 in this whole interval, which means théa) = [¢1, ¢2].

Now examine the possibility that € A. Consider;, = 4 + ho, ¢ € W12(0,1). For h sufficiently small,
o, € Aand€(u) < £(vy,). This is possible only if the derivative éfat in the directiony vanishes, meaning
thatfo1 ' (2)¢/ (z)dz = F(¢(0)+agp(1)). Thisin turn requires that = 0 andz’ = 0. We have therefore proved
that a local minimizer describing the state of total debonding is possible oAly=f0 and that is necessarily a
rigid translation of the fiber.

Finally, consider the possibility th&tu) = [¢;, ¢5]. For the corresponding displacement fielthe energy

E) = /051 v (2)%dz + /el v'(2)%dz — 2F (6(0) 4+ av(1)) — aF? +1 — by + £y

is a convex functional of and therefore the local minimizer
F(El—z) 70§ZS£1
u(z) =10 s b <2<ty (A6)
aF(z—1t) ,l<z<1

is necessarily the global one. Being projected on the family (A6) the energy becomes an affine funétion of
and/y: E(¢1,03) = (1 — F2); + (1 — a®F?)(1 — £3) — aF2. Sinceu depends continuously oy and /s,
it is a local minimizer only if the paif/;, £5) delivers a global minimum t& (¢, £5). Now, by recalling the
assumptioru < 1, we obtain that, if F| < 1, thent; = 0, ¢y = 1;if | F| = 1, then¢; € [0,1], £, = 1; and
finally, if || > 1, then¢; = ¢, = 1. In other words, we obtained that the local minimizersith C(a) # ()
must necessarily belong to the following setiif |F| < 1, the family{a‘}o<,<1 if |F| = 1, anda! if |F| > 1.

(ii) The local minimizersNow we need to select among candidates the local minimizers. We have already
seen that, whed = 0, all rigid translations of the fiber are local minimizers.

Consider now the candidates which belongitcRecall that whehF | < 1 @° = 0 is the only candidate, and
that when|F'| = 1 all the candidates’ have the same energy @$ = 0: £(a‘) = £(0) = —a. Letz, € [0,1]
and letB(zg) = {v € W2(0,1) : v(x) = 0}. Notice thati® € B(zo) and that admits a global minimizer
in B(xo): the functional is bounded from below and lower semicontinous in this closed subsgace’¢d, 1).
If we call this (or one of these) minimizei(x,) we can follow the steps of the analysis from (i) and obtain that
C(u(xg)) is necessarily of the forrfty, £5]. But we know also thati’ is the global minimizer of on the set
B(zo) when|F| < 1 and thereforef (0) = £(u(zo)). Since this property is independent of the choice of the
pointx, it remains true on the union of the sété&x ), that is on the whol&. In other words, we can guarantee
that when F| < 1 £(0) < (o), Vo € B. Similarly, when|F| = 1 we obtain that (a‘) < £(v), Vo € B.

To complete the proof we need to compare the energies of the candidate$ &mad. To prove that:® = 0
is really a local minimizer wheh?'| < 1, it suffices to show that for any sequengec A converging td) we
havelim,, . £(v,,) > £(0). Since for such sequencks.,, ., £(v,,) = £(0) + 1, @’ is a local minimizer. To
prove thatz’ is a local minimizer whehF| = 1, it suffices to show that for any sequengec A converging to
a’ we havelim,, ., £(7,) > £(u’). Since for such sequencis,, ., £(v,) = E(a’) +1 — ¢, @’ is alocal
minimizer when0 < ¢ < 1. Now, for ¢ = 1, consider the sequeneg = @' + F'/n € A converging tou'.
Since&(v,,) = E(u') — 2(1 4+ a)F?/n < E(u'), the candidat&! is never a local minimizer.O
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