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Abstract

The increasingneedfor probability seismichazardassessmer(PSHA) of critical facilities sometimedeadsto unrealistic
earthquakescenarioswith very high inducedground motions. From a physical standpointthesehigh motions cannotexist
becausef thelimiting resistanceapacityof the soil stratathroughwhich the seismicwavestravel. A simpleanalyticalmodel
is proposedo boundthe maximumgroundsurfaceacceleratiorthatany soil depositcantransfer.This modelis an extensiorto
nonzerogroundsurfacevelocity of apreviouslypresentedanodel.

Résumé

Estimation du mouvement sismique maximal & la surface du sol pour une celerite d’ondes non nulle en surface. La
demande croissante d'études probabilistes de I'aléa sismique pour les installations essentielles pour la s(reté conduit parfois a
des scénariosismiques irréalistes donnant naissance a des mouvements trés élevés. D’un point de vue physique ces
mouvements ne peuveexister en raison de la capacité de résistance limitée des couches de sol que traversent les ondes
sismigues. Un modéle analytique simple est proposé pour estimer I'accélération maximale en surface que tout profil de sol est

susceptiblale transmettreCe modélereprésent@neextensioraucasd’une céléritéd’ondesnonnulle ensurfaced’'un modele
présentérécédemment.
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La demande croissant&tlides probabilistes de I'aléa sismique pour les installations essentielles pour la s(reté
conduit & considérer des scénarios sismiques présentant des probabilig@sdioce de I'ordre de 18 par
an donnant parfois naissance a des mouvements trés élevés, qui calculés sur la base d’extrapolations de lois
d’'atténuation statistiques, peuvent atteindre plusiguf$]. D’'un point de vue physique ces mouvements ne
peuvent exister car la capacité de résistance limitée des couches de sol, que traversent les ondes sismiques, limite
les mouvements susceptibles d’étre transmis. Danarticle précédent [2] un mot&analytique simple a été
proposé pour estimer I'accélération maximale en surfacergorofil de sol surmontant un substratum rocheux est
susceptible de transmettre. Ce modéle de type élastoplastique parfait, dont le critére de résistance est de type Mohr—
Coulomb, prenait en compte une célérité des ondes variant comme une fonction puissance de la profondeur. Dans
le présent article on étend la solution au cas d’une couche de sol pour laquelle la célérité des ondes varie comme
une fonction puissance de la profondeur mais présentealaer non nulle a la surface. Cette configuration permet
de traiter, en particulier, le cas des profils de sol argileux surconsolidés, comme illustré sur un exemple pratique.

1. Introduction

The increasing use of Probabilistic Seismic Hazasbdssment (PSHA) for critical facilities leads to the
consideration of earthquake scenaridshwa probability of occurrence as low as 10per year. For such low
probabilities he computed ground accelerations,dzhen extrapolations of statistil attenuation relationships,
may reach values as high as a feywhich poses tremendous difficulties foetearthquake resistance design [1].
Obviously such large motions cannot exist because the sifilgy through which the seismic waves travel to reach
the ground surface, has a limited resistance capacitycandot transmit any motion. When failure is reached at
any depth within the soil profile, ¢hincident motion is filtered and no rion larger than the motion reached at
that stage can be transmitted to the upper strata. Thadsias a fuse to safely limit the maximum ground surface
acceleration. It is therefore necessary to develop an apptbattakes into account the soil resistance to derive an
upper bound estimate of the ground surface motion.

The approach presented herein is an extension of the previous approach developed in [2], for which is has been
shown that, not only reasonable estimates of theimarn peak ground acceleration at the ground surface can be
obtained, but predictions are not contradicted by observations. It is based on an analytical solution to the wave
equation in an inhomogeneous soil profile: in [2] the stiffness of the soil column was assumed to be zero at the
ground surface and to increase with depth; the conditfareco velocity at the ground surface is relaxed in the
present paper. Therefore, almost any, reasonably smooth, experimental variation of the shear wave velocity with
depth can be accommodated.

2. Equations of motion

Let us consider a soil layer of finite thickness overlying a stiff bedrock, which for the purpose of this study will
be considered as a rigid boundary. The soil is assumed to be isotropic elastic, with a shear wave velocity increasing
with depth according to some power law:
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wherer is the layer thicknesg; a real positive parameter smaller than 2 &dhe shear wave velocity at depih
d is a strictly positive parameter that can be chosen to fit Eq. (1) to the experimental data. In [2] this parameter was
equal to zero giving a zero shear wave velocity at tteaigd surface. It is convenient to make a change of variable

V()= Vs(



and to defing = (z +d)/(d + h) and H = d + h. The wave equation for a plane vertically incident shear wave
can be written:
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whereu is the horizontal displacemenglative to the bedrock, andy the bedrock displacement motion. The

boundary conditions express that the tieka displacement at the bedrock interface and the shear stress at the
ground surface are equal to O:
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Eq. (2) is solved with the mode superposition technique. The modes equation can be written:
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and its solution is given byp < 2):
X() = é—(l*p)/z[AJv ()@(2*17)/2) + BY, ()@(2*17)/2)] (5)

where J,(-) and Y, (-) are Bessel's functions of the first and second kind and of ovder(p — 1)/(2 — p);
r=2wH/(2—p)Vs.
Taking into account the recurrence formula, [3], valid #o¢-) andY, (-):
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Cv(Z) =—Cypy1(2) + ZCV(Z) (6)
The derivative of Eq. (5) can be written:
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Enforcing the boundary conditionsne obtains a linear system of two equations for the unknowaisd B which
has a non zero solution provided that:
LW Yi1(18877) = Yo dusa (s> PP =0 ®
Eq. (8) is the frequency equation with rogis the soil column frequencies are given by:
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The rootsp; can be computed once and for all as functionggfan example, which will serve for illustration
below, is given in Fig. 1(a) fop = 1.0.

Finally for convenience the mode shapes are normalized to unity at the ground sutfagethe final solution
for the mode shapes is given, in dimensionless form, by:
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Following the methodology of [2], the maximum groundfage acceleration due to the contribution of the fivst
modes is:
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Fig. 1. Roots of the frequency equati (b) mode participation factors.
Fig. 1. (a) Racines de I'équation aux fréquences propres ; (b) facteurs de participation.
whereSz(w;, &) is the spectral pseudo acceleration apthe modal participation factor:
1
[ Xi(©)dg
g=0 (12)
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As for the roots, the modal participation factors can be computed once and for all as a fun¢tdkigf 1(b)).
The shear strain is given, for each mode, by:
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which can be expressed in dimensionless form by:
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3. Soil constitutive mode

Although the soil behavior is highly non linear from vempall strains, as illustrated by the shear stress-shear
strain curve in Fig. 2, a simplified elastic-perfectly plastic constitutive relationship is assumed for the soil layer;
the shear stress—shear strain curve is defined by two parameters which may depend on the depth

o the shear strengthnax(z);
o the yield engineering shear strai(z) where the engineering shear straimefined as twice the shear strain.

The shear modulus is then given 6y= tmax/ys.
As soon as, at any depth within the Igmiofile, the shear strain reachgs the maximum shear stress that can
be transmitted is limited bymax; the ground surface acceleration cannetéiore exceed the value reached when

v (2) = yr.
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Fig. 2. Soil shear stress-shear strain curve.
Fig. 2. Courbe effort-déformation en cisaillement du sol.

The procedure involves the following steps:

(i) define the input motion at the rock interfaegits pseudo acceleration response spect{inThis is typically
the result of the PSHA,
(i) compute the eigenfrequencies and mode participation factors from Eqs. (8) and (12);
(iii) plotthe shear strain (Eq. (14)) versus depth together with the yield strain
(iv) determine the deptly and the scaling factqe for which ys = ny (z1);
(v) define Sq = nS; the maximum possible pseudo accelematioom which the maximum ground surface
acceleratioriimax(z = 0) is determined (Eq. (11)).

4. Example of application

The procedure outlined above is illustrated with reference to an actual project for which a PSHA and truly
non linear site response analyses have led to a ground surface acceleration equal 6 4@ m 2000 year
return period earthquake. The soil profile is composed of 100 m of alluvial deposits underlain by stiffer strata. The
undrained shear strength of the top layers has been measured and can be approximated by:

Su(kPa = 2.85z(m) + 25 (15)

A typical stress strain curve for the alluvia, measurediainoratory tests on a sample retrieved at 15 m depth,
is presented in Fig. 2; it is approximated by the simplified elastic perfectly plastic model with a yield strain,
determined as shown, equalyo= 0.03. The other relevant parameters for the analysis take the following values:
p=10,70=0.08 andVs = 719 m/s. The ‘bedrock’ motion, as determined from the PSHA, is represented by
the pseudo acceleration response spectriufigp 3, scaled for convenience to 10/8. In reality, the result of the
PSHA indicates that for the 2000 year return periodreprake the ‘rock’ acceleration is equal to 5.0sh

The response has been computed with 10 modes to achieve a modal mass greater than 97%. The first three
circular frequencies are equal i = 0.91 rd/s, wp = 2.26 rd/s, w3 = 3.67 rd/s and the corresponding spectral
accelerations for 20% dampingihich is relevant for a near failure condition, are equalStg = 0.51 mys,
Sy =374 mys%, Sra = 8.46 my/s®. The yield strain becomes equal to the induced strainufar 0.59 at a
critical depthz; = 6 m below the ground surface. The associated spleatcelerations of the first three modes
are:Sa1 = Sk = 0.30 NYS?, Saz = 1Sk, = 2.21 NYS?, Saz = pSi; = 4.99 ny's? from which the maximum peak
ground acceleration (Eq. (11)) is equal figiax = 5.6 m/s°.



20

]

o

Pseudo acceleration (m/s?)
>

\\
[}
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
Period (s)

Fig. 3. 20% damped bedrock response spectrum.
Fig. 3. Spectre de réponse auliec a 20 % d’amortissement.

The approximation of the stress strain curve by the bilinear elastic plastic model involves some arbitrary choice.
If instead of 0.03 the yield strain is taken within the range 0.025 to 0.035, which represents reasonable alternatives,
the maximum peak ground acceleration varies between 5.4 and /5% Tinese values compare favorably with
the results of the analyses for the 2000 year return period: for those analyses the PSHA indicated a “bedrock”
acceleration of 5 g2 and the non linear site response analyses a surface acceleration ofs4.g he proposed
methodology indicates #t above a rock ground acceleration of 5.8sfthe surface motion is limited to 5.4 f&
to 5.8 nys?. These maximum values are in good agreement with the empirical relationships derived from field
observations, which indicaimaximum surface ground accelerations in the range 4sbtm 5.5 nys? for cohesive
soils [4].

5. Conclusions

A simple method has been proposed to estimate the maximum ground surface motion that can be observed at
the surface of a soil profile whatever the amplitudehaf input rock acceleration. The proposed method is robust
because the shear strength is a parameter that is routinely measured, rather aglthblep because the results
are not too sensitive to changes in the yield strain. It has been compared to more rigorous numerical site response
analyses based on a sophisticated soil constitutive model from which the ground surface acceleration has been
found equal to 4.8 irs? for a potential event with a return period of 2000 years. The method indicates that the
maximum ground surface acceleration should not exceed 5.4 to A&Bfor a rock motion slightly larger than
that associated with the 2000 year return period event. These values are also in good agreement with the empirical
relationships derived from field observations.
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