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An estimate of maximum ground surface motion for non zero surface velocity

Introduction

The increasing use of Probabilistic Seismic Hazard Assessment (PSHA) for critical facilities leads to the consideration of earthquake scenarios with a probability of occurrence as low as 10 -7 per year. For such low probabilities the computed ground accelerations, based on extrapolations of statistical attenuation relationships, may reach values as high as a few g, which poses tremendous difficulties for the earthquake resistance design [START_REF] Bommer | The challenge of defining upper limits on earthquake ground motions[END_REF]. Obviously such large motions cannot exist because the soil profile, through which the seismic waves travel to reach the ground surface, has a limited resistance capacity and cannot transmit any motion. When failure is reached at any depth within the soil profile, the incident motion is filtered and no motion larger than the motion reached at that stage can be transmitted to the upper strata. The soil acts as a fuse to safely limit the maximum ground surface acceleration. It is therefore necessary to develop an approach that takes into account the soil resistance to derive an upper bound estimate of the ground surface motion.

The approach presented herein is an extension of the previous approach developed in [START_REF] Pecker | An estimate of maximum ground motion[END_REF], for which is has been shown that, not only reasonable estimates of the maximum peak ground acceleration at the ground surface can be obtained, but predictions are not contradicted by observations. It is based on an analytical solution to the wave equation in an inhomogeneous soil profile: in [START_REF] Pecker | An estimate of maximum ground motion[END_REF] the stiffness of the soil column was assumed to be zero at the ground surface and to increase with depth; the condition of zero velocity at the ground surface is relaxed in the present paper. Therefore, almost any, reasonably smooth, experimental variation of the shear wave velocity with depth can be accommodated.

Equations of motion

Let us consider a soil layer of finite thickness overlying a stiff bedrock, which for the purpose of this study will be considered as a rigid boundary. The soil is assumed to be isotropic elastic, with a shear wave velocity increasing with depth according to some power law:

V (z) = V S z + d d + h p/2 (1)
where h is the layer thickness, p a real positive parameter smaller than 2 and V S the shear wave velocity at depth h; d is a strictly positive parameter that can be chosen to fit Eq. ( 1) to the experimental data. In [START_REF] Pecker | An estimate of maximum ground motion[END_REF] this parameter was equal to zero giving a zero shear wave velocity at the ground surface. It is convenient to make a change of variable and to define ζ = (z + d)/(d + h) and H = d + h. The wave equation for a plane vertically incident shear wave can be written:

V 2 S H 2 ∂ ∂ζ ζ p ∂u ∂ζ = ∂ 2 u ∂t 2 + vg (t) ( 2 
)
where u is the horizontal displacement, relative to the bedrock, and v g the bedrock displacement motion. The boundary conditions express that the relative displacement at the bedrock interface and the shear stress at the ground surface are equal to 0:

ζ = d H = ζ 0 , τ(ζ 0 ) = 0 ⇒ ∂u ∂ζ ζ =ζ 0 = 0 (3) ζ = 1, u(1, t) = 0
Eq. ( 2) is solved with the mode superposition technique. The modes equation can be written:

d dζ ζ p dX dζ + H 2 V 2 S ω 2 X(ζ ) = 0 ( 4 )
and its solution is given by (p < 2):

X(ζ ) = ζ (1-p)/2 AJ ν λζ (2-p)/2 + BY ν λζ (2-p)/2 (5)
where J ν (•) and Y ν (•) are Bessel's functions of the first and second kind and of order ν

= (p -1)/(2 -p); λ = 2ωH /(2 -p)V S .
Taking into account the recurrence formula, [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF], valid for J ν (•) and Y ν (•):

C ν (z) = -C ν+1 (z) + ν z C ν (z) (6) 
The derivative of Eq. ( 5) can be written:

X (ζ ) = - 2 -p 2 λζ (1-2p)/2 AJ ν+1 λζ (2-p)/2 + BY ν+1 λζ (2-p)/2 (7)
Enforcing the boundary conditions, one obtains a linear system of two equations for the unknowns A and B which has a non zero solution provided that:

J ν (λ)Y ν+1 λζ (2-p)/2 0 -Y ν (λ)J ν+1 λζ (2-p)/2 0 = 0 ( 8 )
Eq. ( 8) is the frequency equation with roots ρ i ; the soil column frequencies are given by:

f i = ρ i V S (2 -p) 4πH = ρ i V S (2 -p) 4π(h + d) (9)
The roots ρ i can be computed once and for all as functions of ζ 0 ; an example, which will serve for illustration below, is given in Fig. 1(a) for p = 1.0. Finally for convenience the mode shapes are normalized to unity at the ground surface ζ = ζ 0 ; the final solution for the mode shapes is given, in dimensionless form, by:

X i (ζ ) = π 2 ρ i ζ 0 ζ (1-p)/2 Y (p-1)/(2-p) ρ i ζ (2-p)/2 J 1/(2-p) ρ i ζ (2-p)/2 0 -J (p-1)/(2-p) ρ i ζ (2-p)/2 Y 1/(2-p) ρ i ζ (2-p)/2 0 (10)
Following the methodology of [START_REF] Pecker | An estimate of maximum ground motion[END_REF], the maximum ground surface acceleration due to the contribution of the first N modes is: where S a (ω i , ξ i ) is the spectral pseudo acceleration and α i the modal participation factor:

ümax (z = 0) = N i=1 α i S a (ω i , ξ i ) 2 1/2 (11) 
α i = 1 ζ 0 X i (ζ ) dζ 1 ζ 0 X 2 i (ζ ) dζ (12) 
As for the roots, the modal participation factors can be computed once and for all as a function of ζ 0 (Fig. 1(b)).

The shear strain is given, for each mode, by:

γ i (z) = ∂u i (z) ∂z = α i S a (ω i , ξ i ) H ω 2 i dX i (ζ ) dζ ( 13 
)
which can be expressed in dimensionless form by:

χ i (ζ ) = γ i (z)ω 2 i S a (ω i , ξ i ) H = α i (2 -p)π 4 ρ 2 i ζ 0 ζ (1-2p)/2 J 1/(2-p) ρ i ζ (2-p)/2 Y 1/(2-p) ρ i ζ (2-p)/2 0 -Y 1/(2-p) ρ i ζ (2-p)/2 J 1/(2-p) ρ i ζ (2-p)/2 0 (14)

Soil constitutive model

Although the soil behavior is highly non linear from very small strains, as illustrated by the shear stress-shear strain curve in Fig. 2, a simplified elastic-perfectly plastic constitutive relationship is assumed for the soil layer; the shear stress-shear strain curve is defined by two parameters which may depend on the depth z:

• the shear strength τ max (z); • the yield engineering shear strain γ f (z) where the engineering shear strain is defined as twice the shear strain.

The shear modulus is then given by G = τ max /γ f . As soon as, at any depth within the soil profile, the shear strain reaches γ f , the maximum shear stress that can be transmitted is limited by τ max ; the ground surface acceleration cannot therefore exceed the value reached when γ (z) = γ f . The procedure involves the following steps:

(i) define the input motion at the rock interface by its pseudo acceleration response spectrum S * a . This is typically the result of the PSHA; (ii) compute the eigenfrequencies and mode participation factors from Eqs. ( 8) and ( 12); (iii) plot the shear strain (Eq. ( 14)) versus depth together with the yield strain γ f ; (iv) determine the depth z 1 and the scaling factor µ for which γ f = µγ (z 1 ); (v) define S a = µS * a the maximum possible pseudo acceleration from which the maximum ground surface acceleration ümax (z = 0) is determined (Eq. ( 11)).

Example of application

The procedure outlined above is illustrated with reference to an actual project for which a PSHA and truly non linear site response analyses have led to a ground surface acceleration equal to 4.8 m/s 2 for a 2000 year return period earthquake. The soil profile is composed of 100 m of alluvial deposits underlain by stiffer strata. The undrained shear strength of the top layers has been measured and can be approximated by:

S u (kPa) = 2.85z(m) + 25 (15) 
A typical stress strain curve for the alluvia, measured in laboratory tests on a sample retrieved at 15 m depth, is presented in Fig. 2; it is approximated by the simplified elastic perfectly plastic model with a yield strain, determined as shown, equal to γ f = 0.03. The other relevant parameters for the analysis take the following values: p = 1.0, ζ 0 = 0.08 and V S = 71.9 m/s. The 'bedrock' motion, as determined from the PSHA, is represented by the pseudo acceleration response spectrum of Fig. 3, scaled for convenience to 10 m/s 2 . In reality, the result of the PSHA indicates that for the 2000 year return period earthquake the 'rock' acceleration is equal to 5.0 m/s 2 . The response has been computed with 10 modes to achieve a modal mass greater than 97%. The first three circular frequencies are equal to: ω 1 = 0.91 rd/s, ω 2 = 2.26 rd/s, ω 3 = 3.67 rd/s and the corresponding spectral accelerations for 20% damping, which is relevant for a near failure condition, are equal to S * a1 = 0.51 m/s 2 , S * a2 = 3.74 m/s 2 , S * a3 = 8.46 m/s 2 . The yield strain becomes equal to the induced strain for µ 0.59 at a critical depth z 1 = 6 m below the ground surface. The associated spectral accelerations of the first three modes are: S a1 = µS * a1 = 0.30 m/s 2 , S a2 = µS * a2 = 2.21 m/s 2 , S a3 = µS * a3 = 4.99 m/s 2 from which the maximum peak ground acceleration (Eq. ( 11)) is equal to: ümax = 5.6 m/s 2 . The approximation of the stress strain curve by the bilinear elastic plastic model involves some arbitrary choice. If instead of 0.03 the yield strain is taken within the range 0.025 to 0.035, which represents reasonable alternatives, the maximum peak ground acceleration varies between 5.4 and 5.8 m/s 2 . These values compare favorably with the results of the analyses for the 2000 year return period: for those analyses the PSHA indicated a "bedrock" acceleration of 5 m/s 2 and the non linear site response analyses a surface acceleration of 4.8 m/s 2 . The proposed methodology indicates that above a rock ground acceleration of 5.9 m/s 2 the surface motion is limited to 5.4 m/s 2 to 5.8 m/s 2 . These maximum values are in good agreement with the empirical relationships derived from field observations, which indicate maximum surface ground accelerations in the range 4.5 m/s 2 to 5.5 m/s 2 for cohesive soils [START_REF] Seed | Non linear dynamic response of soft and deep cohesive deposits[END_REF].

Conclusions

A simple method has been proposed to estimate the maximum ground surface motion that can be observed at the surface of a soil profile whatever the amplitude of the input rock acceleration. The proposed method is robust because the shear strength is a parameter that is routinely measured, rather reliable, and also because the results are not too sensitive to changes in the yield strain. It has been compared to more rigorous numerical site response analyses based on a sophisticated soil constitutive model from which the ground surface acceleration has been found equal to 4.8 m/s 2 for a potential event with a return period of 2000 years. The method indicates that the maximum ground surface acceleration should not exceed 5.4 to 5.8 m/s 2 for a rock motion slightly larger than that associated with the 2000 year return period event. These values are also in good agreement with the empirical relationships derived from field observations.
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 1 Fig. 1. Roots of the frequency equation; (b) mode participation factors.
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 2 Fig. 2. Soil shear stress-shear strain curve.
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 2 Fig. 2. Courbe effort-déformation en cisaillement du sol.
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 3 Fig. 3. 20% damped bedrock response spectrum.
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 3 Fig. 3. Spectre de réponse au rocher à 20 % d'amortissement.