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Solutions exactes de fissure d'interface sous contact frottant avec un milieu indéformable
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On étudie une fissure à l'interface d'un massif élastique semi-infini avec un demi-plan rigide, en présence de frottement de Coulomb. Il existe deux solutions singulières à la tête d'une fissure semi-infinie correspondant physiquement aux deux problèmes d'enfoncement et d'arrachement de la fibre indéformable dans une matrice élastique. Les solutions exactes montrent que seul le mode II est présent et qu'il n'y a pas de comportement oscillant près de la pointe de la fissure. La solution pour une fissure d'interface de longueur finie montre qu'il n'y a pas d'oscillations près des pointes de la fissure, mais qu'il y en a plus loin à la transition avec la zone décollée. Il y a quatre types de solutions singulières pour une fissure finie dans un solide borné, mais une seule solution dans un milieu infini.

Abridged English version

Let the elastic medium Ω + be bonded to the rigid body Ω -except on the crack. The general boundary conditions are given by Eqs. ( 4)-( 6) and [START_REF] Deng | An asymptotic analysis of stationary and moving cracks with frictional contact along bimaterial and in homogeneous solids[END_REF]. The method of solution is based on the use of the classical conjugate transform of function g(z) → ḡ(z) and the assumption that the function φ(z) defined in Ω + can be continued in Ω -along the bonded zone, which can be verified a posteriori on the solution. Then the conditions (4) of vanishing displacement suggest the definition of the function ψ(z) on the entire complex plane with the cut along the crack as Eq. ( 11) ψ(z) = κ φ(z)φ (z).

From the contact condition on the interface crack u 2 = 0, we show that for the finite interface crack φ (z) = -φ (z) + C 0 (14). We first derive the solution for the non-opening case. From Coulomb's law, we obtain Eq. ( 17) φ (t + ) = gφ (t -) + B 0 on the crack with g given by (18). The homogeneous equation possess two singular solutions φ (z) = C(za) -1/2±α . The sign (+) corresponds to the push-in type solution (A solution), the (-) sign corresponds to the pull-out type solution (B solution). The general feature of the solutions are: unbounded stresses at the crack tip; singular compressive stress σ 22 (x 1 < 0, x 2 = 0) in the crack, vanishing normal stress σ 22 ahead the crack tip, confirming Comninou's result on the boundedness of this component of stress, derived in the frictionless case. Therefore, from the classical definition of the stress intensity factor in mode I, one gets K I = lim r→0 √ (2πr)σ 22 (r > 0, θ = 0) = 0. The unusual definition of the mode I stress intensity factor using the compressive normal stress behind the tip is meaningless. There is no oscillatory behavior of stress and displacement at the crack tip, but only at the transition points with the stress free zone.

The interface crack under friction propagates only in mode II. Since there is friction in the crack, the energy release rate cannot be determined in the singular solution, but only in the case of finite geometry of interface crack. In the case of finite crack, four types of solutions are derived, The A-B, A-A, B-B, B-A solutions. Contrary to common belief, there exists an oscillatory behavior of the solution at the transition points with the stress free zone. Physically, only one type of solution of finite energy (the A-A solution) exists in an infinite medium, the other solutions are not acceptable for physical reasons unless one changes the friction law.

Introduction

On trouve les fissures d'interface dans le délaminage entre les couches qui constituent un composite, dans l'arrachement d'une fibre hors de la matrice ou encore dans l'enfoncement d'un pieu etc. Sur le sujet considéré, il y a déjà de nombreux travaux : citons parmi les premiers travaux ceux de Williams [START_REF] Williams | The stress around fault or crack in dissimilar media[END_REF], Rice et Sih [START_REF] Rice | Plane problems of cracks in dissimilar media[END_REF] et Willis [START_REF] Willis | Fracture mechanics of interfacial cracks[END_REF] et bien d'autres. La solution asymptotique des champs de déplacements et de contraintes diffère notablement de celle du milieu homogène par le fait que, d'après les travaux connus pour le cas sans frottement, les potentiels de Muskhelishvili ont des singularités de type puissances à exposants complexes z -1/2-i , avec la « constante bi-élastique » en déformation plane

= 1 2π Log{ (3-4ν 1 )µ 2 +µ 1 (3-4ν 2 )µ 1 +µ 2 }, cf. [4]
. Ce résultat a été obtenu avec les conditions aux limites de surface libre de contraintes sur la fissure, σ 12 = σ 22 = 0 sur R -. Deux conséquences résultent du modèle. La singularité des contraintes sur le ligament (z = r e iθ ∈ Ω + ou Ω -) est oscillante, de longueur d'onde de plus en plus courte à mesure que l'on se rapproche de la pointe de la fissure [START_REF] Wang | The interface crack between dissimilar anisotropic composite materials[END_REF] ont traité le problème de fissure finie, avec contact mais sans frottement. L'objet de cette Note est de réexaminer le problème d'une fissure d'interface R -, dans un cas très particulier, celui d'un demi-plan élastique collé à un substrat indéformable le long de R + en considérant le contact unilatéral avec frottement de Coulomb à coefficient f constant (f > 0). Notre analyse diffèrera notablement de celle de Comninou [START_REF] Comninou | The interface crack[END_REF] par la méthode de prolongement analytique utilisée ici, utilisée également dans Deng [START_REF] Deng | An asymptotic analysis of stationary and moving cracks with frictional contact along bimaterial and in homogeneous solids[END_REF], nous conduisant à une solution explicite, alors que celle de Comninou, basée sur l'étude des équations intégrales singulières couplées pour les dislocations inconnues, requiert une résolution numérique. En outre nous donnons la solution exacte de la fissure d'interface de longueur finie. Le cas de vrais bi-matériaux fera l'objet d'une autre publication.

(σ 22 + iσ 12 )(r, θ = 0) = Kr i √ 2πr = K √ 2πr cos( Log r) + i sin( Log

Équations du problème

Nous considérons un solide élastique occupant le demi-plan Ω + , soudé au demi-plan indéformable Ω -le long de l'axe réel, sauf sur la fissure d'interface de longueur 2a, cf. (

σ 22 + iσ 12 ) = φ (z) + φ (z) + zφ (z) + ψ (z) (3) u 1 = u 2 = 0 sur la partie collée (4) u 2 = 0, |σ 12 | = -f σ 22 (σ 22 0) sur la partie en contact frottant (5) (σ 22 -iσ 12 ) = 0 (u 2 > 0) sur la partie décollée (6) σ ik → t ∞ 11 , t ∞ 22 , t ∞ 12 quand |z| → ∞ dans Ω + (7) φ (z → ∞) = 1 4 t ∞ 11 + t ∞ 22 -i(k + 1) -1 t ∞ 12 (8) ψ (z → ∞) = 1 2 t ∞ 22 -t ∞ 11 + 2it ∞ 12 ( 9 
)
où κ = 3 -4ν en déformation plane et z désigne la variable complexe définie par z = x 1 + ix 2 . Dans ( 5) et ( 6) les inégalités entre parenthèses ne sont pas imposées, mais sont à vérifier a posteriori pour la cohérence physique du modèle.

Bien que φ (z) soit seulement définie dans Ω + nous supposons qu'elle soit prolongeable dans Ω -, à travers la zone collée (point à vérifier a posteriori). Donc φ (z) est holomorphe dans tout le plan complexe avec la coupure suivant la fissure. Soit la transformation de conjugaison définie par g(z) → ḡ(z) := g(z) qui à toute fonction holomorphe dans Ω + (resp. Ω -) fait correspondre la fonction dite conjuguée, obtenue en remplaçant z par z puis en prenant le conjugué du résultat, qui est holomorphe dans Ω -(resp. Ω + ). La propriété essentielle est que sur l'axe réel z = z, là où la fonction g(z) est continue, on a l'égalité ḡ(z) = g(z) = g(z).

Méthode de résolution du problème. Cas sans décollement

Sur la zone soudée de l'axe réel, remplaçons dans (1) φ(z) par φ(z) et z par z, conformément à la remarque du paragraphe précédent. Nous obtenons de la condition d'adhérence (1)

2µ(u 1 -iu 2 ) = κ φ(z) -zφ (z) -ψ(z) = 0 (10) d'où ψ(z) = κ φ(z) -zφ (z) (11)
Le prolongement analytique utilisé ici, obtenu avec (4) diffère de celui fait classiquement à partir de [START_REF] Comninou | The interface crack[END_REF]. Nous définissons la fonction ψ(z) donnée par le second membre de (11) et la prolongeons non seulement dans Ω + mais dans tout le plan complexe coupé suivant la fissure. En dérivant (11) on obtient ψ (z) que l'on peut reporter dans l'expression de la contrainte sur la fissure (σ 22iσ 12 ) pour z = z + , z = z -ainsi que dans celle de la dérivée partielle ∂u 2 /∂x 1 qui est nulle dans la fissure, car le contact frottant est supposé maintenu partout. Nous trouvons 

σ 22 -iσ 12 = φ (z) + κφ (z) sur l'axe réel (12) La nullité de ∂u 2 /∂x 1 implique que 4iµ ∂u 2 ∂x 1 = κ φ (z) -φ (z) -φ (z) + φ (z) = 0 ( 
φ (z) = -φ (z) + C 0 C 0 = φ 0 + φ 0 ( 14 
)
Pour achever la détermination de φ (z), nous explicitons la condition de frottement en écrivant σ 12 = f σ 22 en présupposant σ 12 < 0 et σ 22 < 0, avec

2iσ 12 = -(κ + 1) φ (z) + φ (z) -C 0 , ( 15 
)
2σ 22 = (κ -1) φ (z) -φ (z) + C 0 (1 + κ) ( 16 
)
Nous obtenons l'équation suivante

φ (t + ) = gφ (t -) + B 0 sur [-a, a], ( 17 
) où g = - (κ + 1) + if (κ -1) (κ + 1) -if (κ -1) (18) avec B 0 = -C 0 (κ+1)(if -1) (κ+1)-if (κ-1) et |g| = 1.
En prenant les mêmes notations que celle du livre de Muskhelishvili [START_REF] Muskhelishvili | Some Basic Problems of the Mathematical Theory of Elasticity[END_REF], nous posons tg(πα

) = f κ-1 κ+1 , d'où 0 α 1 2 .
Les deux bornes de α réel proviennent de f 0 et de 17) est une variante d'un problème de Hilbert, dont la solution est donnée dans Muskhelishvili [START_REF] Muskhelishvili | Some Basic Problems of the Mathematical Theory of Elasticity[END_REF]. La solution singulière de l'équation homogène est 

κ -1 = 3 -4ν -1 = 2(1 -2ν) > 0. Par conséquent g = -e 2iπα = e 2iπ(α+ 1 2 ) . Posons γ = 1 2iπ Log(g) = α + 1 2 . L'Éq. (
X 0 (z) = (z + a) -1/2-α (a -z) -1/2+α (19) 
σ 12 = - b(κ + 1) 2 r -1/2+α , σ 22 = 0 et u 1 = u 2 = 0 (|x 1 | > a) ( 20 
)
σ 12 = - b(κ + 1) 2 sin(πα)r -1/2+α , σ 22 = - b(κ -1) 2 cos(πα)r -1/2+α (|x 1 | < a) (21) u 1 = - bκ µ(1 + 2α) cos(πα)r 1/2+α , u 2 = 0 (|x 1 | < a) (22)
La condition de contact est bien respectée. La constante b est ici positive pour que σ 22 et σ 12 soient toutes les deux négatives sur la fissure, comme il a été supposé. Dans ce cas, la face de la fissure se déplace par rapport au substrat vers la gauche (u 1 < 0) ce qui explique le cisaillement négatif. En l'abscence de frottement (α = 0), nous retrouvons la singularité de Comninou [START_REF] Comninou | The interface crack[END_REF], avec son surprenant résultat sur la finitude de σ 22 sur le ligament. Physiquement, la première singularité φ (z) = C(za) -1/2+α correspond cinématiquement à l'enfoncement de la fibre rigide dans le corps élastique (en anglais push-in), tandis que la deuxième singularité φ (z) = C(za) -1/2-α correspond à l'arrachement de la fibre (en anglais pull-out), cf. Fig. 1. Une solution de (17) est une combinaison des deux types de singularités, singularité arrachement ou enfoncement à gauche ou à droite.

φ (z) = 1 2πi B 0 X 0 (z) a -a 1 X 0 (t + ) dt t -z + C 1 B 0 X 0 (z) (23) = 1 2 B 0 1 -i tg(πα) + 1 2 B 0 i cos(πα) (z + 2aα) + 2C 1 X 0 (24)
La fonction X 0 (z), donnée par (19), dans le cas enfoncement-arrachement prend une valeur réelle pour z = z + , mais il y a d'autres types de fonctions X 0 (z) correspondant au type enfoncement-enfoncement etc. La constante complexe C 1 = C + iC est déterminée par deux conditions de fermeture pour assurer la continuité de u 1 (a) = u 2 (a) = 0, obtenues intégrant 2µ(u 1 + iu 2 ) sur la fissure

z = t + i0 2µ(u 1 + iu 2 )(x 1 , 0 + ) = x 1 -a κφ (z) -zφ (z) -φ (z) -ψ (z) dt (25)
En résumé, la solution sans décollement est déterminée entièrement, pourvu que l'on ait 

σ 12 x 1 + i0; t ∞ 11 , t ∞ 22 , t ∞ 22 < 0 et σ 22 x 1 + i0; t ∞ 11 , t ∞ 22 , t ∞ 22 < 0, ∀x 1 ∈ [-a, +a] (26 

Cas du décollement

Supposons qu'il y a un seul décollement sur l'intervalle [c, d] (-a < c < d < a) et que les zones de contact frottant sont les intervalles [-a, c] et [d, a]. Le cisaillement sur l'interface avant le glissement étant négatif, le mouvement de glissement de la face de la fissure va vers la gauche. On a une singularité de type enfoncement en z = +a et une singularité de type arrachement en z = -a. Nous cherchons s'il y a une solution sous la forme 11) demeure valable car elle résulte de la condition d'adhérence en dehors de la fissure. Les contraintes au niveau de la fissure sont données par

φ (z) = F (z)X 0 (z) avec X 0 (z) = (z + a) -1/2-α (a -z) -1/2+α (27) où F (z) est holomorphe dans C -[c, d]. L'Éq. (
σ 22 -iσ 12 = φ (z + ) + κφ (z -) (28) 
Si F (z) est continue, alors les deux conditions de contact frottant u 2 = 0 et σ 12 = f σ 22 , en présupposant σ 12 et σ 12 négatifs, sont remplies par la fonction discontinue X 0 (z). Maintenant, la condition de surface libre dans la zone décollée est

(σ 22 -iσ 12 = 0) sur [c, d], c'est à dire φ (z + ) + κφ (z -) = 0 sur [c, d] (29) 
En tenant compte de X 0 (t + ) = gX 0 (t -) nous obtenons l'équation de discontinuité

F (t + ) + κ g F (t -) = 0 ⇒ F (t + ) = g * F (t -) dans [c, d] (30) 
En posant g * = -κ g = e 2iπβ avec β = β 1 + iβ 2 complexe, on obtient β = -α -i 2π Log(κ). On pose β = -i 2π Log(κ). Une fonction satisfaisant à (30) est

F (z) = (z -c) α+(i/(2π)) Log(κ) (d -z) 1-α-(i/(2π)) Log(κ) (31) 
Remarquons que la coupure, pour la fonction F (z), se trouve maintenant sur [c, d]. Nous allons combiner les singularités pour respecter plusieurs conditions : les branches des fonctions φ (z) singulières de type (z -a i ) -γ (zb i ) γ -1 à choisir sont celles pour lesquelles elles tendent à l'infini vers ( 1 z ). Les fonctions φ (z) sont régulières en z = c et z = d, holomorphes dans tout le plan complexe coupé suivant la fissure, tendent vers une constante à l'infini et vérifient les conditions de discontinuités (contact frottant et surface libre). Pour l'holomorphie, il est nécessaire que la somme des exposants des fonctions puissances dans les solutions ci-dessous soit égale à un entier positif, négatif ou nul.

Solution de type (B-A)

. 2-α . Les zones d'interpénétration hors de la zone de contact sont de plusieurs ordre de grandeur plus petits (10 -6 a) par rapport aux zones oscillantes connues dans le cas des solutions sans contact ( de l'ordre de 10 -4 a). La deuxième condition (6) est vérifiée pratiquement sur la surface libre, exceptée deux petites zones.

φ BA = C(z + a) -1/2-α (z -c) -β +α (d -z) 1+β -α (a -z) -1/2+α (32) 
Ainsi, s'il n'y a pas d'oscillations à la pointe de la fissure, grâce au contact unilatéral, les oscillations se déplacent plus loin, aux points de décollement c et d, contrairement aux idées reçues reportées dans la littérature (sans frottement) soit sur des solutions asymptotiques avec frottement de Deng [START_REF] Deng | An asymptotic analysis of stationary and moving cracks with frictional contact along bimaterial and in homogeneous solids[END_REF], soit sur des calculs numériques sans frottement de Gautesen et Dundurs [START_REF] Gautesen | The interface crack under combined loading[END_REF]. Ceci tient à la nature mathématique des solutions des problèmes aux limites mixtes, conditions de Dirichlet et de Neumann, de part et d'autre part d'un point ou conditions mélangées (c'est notre cas). Dans Muskhelishvili [START_REF] Muskhelishvili | Some Basic Problems of the Mathematical Theory of Elasticity[END_REF] (page 486), un problème de poinçonnement avec les données de (u 1 + iu 2 ) d'un côté et (σ 22 + iσ 12 ) de l'autre, étudié par Abramov, donne un déplacement oscillatoire en dehors de la zone de contact.

Pour obtenir les résultats ci-dessus, il reste à préciser les constantes inconnues c et d, déterminées par les conditions de continuité du déplacement sur la fissure sachant que u 1 (-a, 0) = 0 et que u 2 (c, 0) = 0, à savoir les deux conditions de fermeture U(a) = 0 et V (d) = 0, avec les parties réelle et imaginaire de (25)

U(x 1 ) = x 1 -a 2µu 1 dt et V (x 1 ) = x 1 c 2µu 2 dt ( 33 
)
Convexes admissibles. En nous limittant à deux paramètres de chargement, on obtient finalement quatre types de convexes des contraintes définissant le convexe admissible par leur intersection

σ 12 x 1 + i0; t ∞ 12 , t ∞ 22 < 0 ∀x 1 ∈ [-a, c] ∪ [d, a] σ 22 x 1 + i0; t ∞ 12 , t ∞ 22 < 0 ∀x 1 ∈ [-a, c] ∪ [d, a] u 1 x 1 + i0; t ∞ 12 , t ∞ 22 < 0 ∀x 1 ∈ [-a, c] ∪ [d, a] u 2 x 1 + i0; t ∞ 12 , t ∞ 22 > 0 ∀x 1 ∈ [c, d] (u 1 et σ 12 sont de même signe sur [-a, c] et [d, a])
Remarque 2. Nous avons indiqué en détail la solution de type B-A en tête de fissure. La solution de type A-B en tête de fissure est obtenue par symétrie miroir. Ces deux solutions ont des singularités des contraintes ou de l'énergie non intégrable à une tête de fissure et donc ne sont pas physiques, comme l'a remarqué aussi Deng [START_REF] Deng | An asymptotic analysis of stationary and moving cracks with frictional contact along bimaterial and in homogeneous solids[END_REF]. Ce sont des solutions mathématiques, aussi non intégrables en énergie que les fonctions de Bueckner. 
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 121 Fig. 1. Délaminage par cisaillement et tension.
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 1 Fig. 1. Delamination by shearing and tension.

  13) sur la fissure, d'où en séparant les variables z d'un côté et z de l'autre on voit que la fonction φ (z) + φ (z) déja holomorphe dans C -[-a, +a] est continue à travers la fissure et donc holomorphe dans C. Cette fonction est une constante égale à sa valeur C 0 à l'infini. Par conséquent nous avons la relation qui définit la fonction conjuguée φ (z) dans tout C -[-a, a] en fonction de φ (z)

  Étudions d'abord la nature de la singularité à droite, en posant r = |z -a|, φ (z) = C(za) -1/2+α . Prenons C = i b 2 imaginaire pur pour que le cisaillement soit réel sur le ligament, d'où

  Elle est de type arrachement en z = -a et z = d et de type enfoncementen z = c et z = a. Cette fonction est régulière en z = c car α > 0 et en z = d car (1α) > 0. Enfin la constante C est déterminée par la condition à l'infini, d'où C = 1 4 (t ∞ 11 + t ∞ 22 )i(k + 1) -1 t ∞ 12 . Au voisinage de z = c et z = d, la solution B-A présente un comportement non singulier mais oscillatoire (η = 1 2π Log(κ)), φ (zc) ≈ r α r iη et φ (zd) ≈ r 1-α r -iη . Ceci n'entraine pas d'interpénétration sensible pour le déplacement normal, car au voisinage de z = c et z = d, le déplacement u 2 oscille entre les deux courbes ±Br 1+α et ±Br

Remarque 3 .Remarque 4 .Remarque 5 .Remarque 6 .

 3456 Il n'y a pas de solutions des deux types A-A et B-B en l'abscence de décollement parce que les potentiels définis comme précédemment ne sont pas holomorphes dans C -[-a, +a]. Il existe une seule solution physique à énergie intégrable de type A-A aux extrémités de fissure, avec décollement en c et dφ AA = C(z + a) -1/2+α (zc) 1-β -α (dz) 1+β -α (az) -1/2+α(34)Elle est de type enfoncement en z = -a et z = a et arrachement en z = c et z = d. Cette solution correspond, pour certain choix de C, à un état de contraintes de flexion t ∞ 22 = 0 et t ∞ 11 = λx 2 . La singularité de (34) est faible aux pointes de fissure, le taux de restitution d'énergie, défini par une intégrale J[START_REF] Deng | An asymptotic analysis of stationary and moving cracks with frictional contact along bimaterial and in homogeneous solids[END_REF] (limitée ici à un demi-cercle de rayon tendant vers 0) est nul. L'intégrale J dépend du contour parce qu'elle exprime la dissipation par frottement sur les lèvres de la fissure situées à l'intérieur du contour considéré. La solution de type B-B aux extrémités de fissure et décollement en c et d n'est pas physique (énergie non intégrable). Elle est de typearrachement en z = -a et z = a et enfoncement en z = c et z = d. φ BB = C(z + a) -1/2-α (zc) 1-β +α (dz) 1+β +α (az) -1/2-α(35)On a donné une solution pour le milieu infini. Pour un milieu borné, pour des singularités de type arrachement comme en (32) et (35) on obtient une énergie finie en multipliant respectivement les potentiels par des polynômes, par exemple on multiplie (32) par (z + a) et (35) par (z 2a 2 ). Les singularités dans ce cas (milieu borné) ont un comportement ϕ BA (z + a) 1/2-α (zc) -β +α (dz) 1+β -α (az) -1/2+α ϕ BB (z + a) 1/2-α (zc) 1-β +α (dz) 1+β +α (az) 1/2-α

)

  Dans l'espace des chargements, ces inégalités définissent deux familles de convexes (des demi-espaces), indexées par x 1 , dont l'intersection commune définit le convexe admissible pour le chargement donnant une solution sans décollement. Prenons le cas de chargement à deux paramètres (t ∞ 22 et t ∞ 12 ) avec une compression forte (tension négative) et un cisaillement faible ou nul, il est clair que le point (t ∞ 22 = -∞ et t ∞ 12 = 0) fait partie du convexe admissible. Par contre, le point (t ∞ 22 = +∞ et t ∞ 12 < 0) ne fait partie de ce convexe, d'après les travaux antérieurs sur les solutions existantes dans le cas sans frottement. Le convexe admissible n'est pas vide. Notons que la contrainte σ 22iσ 12 = φ (z) + κφ (z) au niveau de la fissure σ 22 qui contribue au délaminage dépend uniquement de C 0 = (φ 0 + φ 0 ). Or d'après (8) on voit que la contrainte normale de tension horizontale t ∞ 11 > 0 joue le même rôle vis à vis du délaminage que la tension verticale t ∞ 22 > 0. Intuitivement, sous la contrainte par exemple résiduelle de traction horizontale t ∞ 11 > 0 la matière s'allonge horizontalement, mais son déplacement horizontal est empêché au niveau de l'interface adhérente (|x 1 | > a), d'où un mouvement de flexion vers le haut qui peut ouvrir la fissure, cela même si la contrainte t ∞ 22 est compressive. En outre, une tension t ∞ 11 > 0 entraîne par effet de Poisson une contraction dans le sens vertical, empêchée par l'adhérence avec le substrat. Ceci tend aussi à ouvrir la fissure.
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