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This article presents a recent result on the feasibility of reconstruction of the radioactivity distribution of an
object from a sequence of Compton-scattered radiation data in emission imaging. This may be regarded as a
novel inverse principle as opposed to the traditional one in which the object is reconstructed only from the
non-scattered rays collected at different incident directions. The new inversion procedure is described by an
invertible linear integral transform which may be viewed as a generalized Radon transform and has several
advantages over the old one. It improves significantly the contrast of the reconstructed image. The required
data for reconstruction is easily acquired from an energy and position sensitive gamma camera under the form
of scattered distribution images classified by their Compton-scattering angle. The motion of the camera in
standard tomographic procedure is here no longer necessary for data taking.
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1. INTRODUCTION

The aim in �-ray emission imaging is to provide a representation of the hidden inner

structure of objects, without having to alter or to destroy them. This modality makes

use of the penetrating power of � rays and their interactions with matter. The object

itself, after ingestion or absorption of radioactive material (radioisotope), becomes

an emitting source of � rays. Measured photon intensity distributions (hereafter

called images) on a planar detector (gamma camera), along a certain number of view

axis, are then exploited to reconstruct the object [2]. In this work we shall address

the problem of object reconstruction in �-ray emission imaging from an entirely new

point of view.

Before getting into the crux of the subject, let us point out that in recent years

�-emission imaging has played a crucial role in many fields of application such as
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industrial testing (detection of defects and faults), astrophysics (imaging of galactic

sources of gamma rays) and most importantly nuclear medicine, where the availability

functional information on human organs (tumors, brain, heart, etc.) or on metabolism

helps to provide accurate diagnostic and efficient therapy in oncology, neurology,

cardiology, etc.

In principle, �-emission imaging works with emitted photons of energy E0. Ideally the

data registered by the gamma camera as images, comes from the so-called primary

(or non-scattered ) photons. However this image is considerably affected by numerous

factors such as absorption, noise etc. and above all the unavoidable Compton-scatter

effect. Up to now, most object reconstruction methods discard the scattered photons

and operate only with primary ones. Nevertheless, such reconstruction methods

remain unsatisfactory, due to the very small number of detected primary photons

(the noise in the image increases unacceptably with scatter elimination) and statistical

fluctuations. To date the solution to the scattering problem has remained a major

technical challenge in �-ray imaging.

In this work, we propose an alternative approach to this problem by taking advan-

tage of the properties of scattered photons, instead of discarding them as usually done.

Actually we show that not only can these photons be used to improve the image quality,

as found at first [1], but they also generate an original new imaging process. In fact, we

establish a new relation between the object radioactivity density and a series of images

formed by the single-scattered photons and parameterized by various angles of scatter-

ing. This relation appears as a weighted sum of conical linear integral transforms. It

may be viewed as a Compound Conical Radon Transform (integral of functions on

cone surfaces) [5]. Let us recall that the usual Radon transform (integrals of functions

on lines or planes) is the corner stone of modern X-ray Computer Assisted

Tomography (CAT). It turns out that the kernel of the new transformation, called

Scatter Point Spread Function (SPSF), can be analytically computed. Moreover and

most importantly, we prove that this new transformation is invertible and the kernel

of the inverse transformation can be explicitly evaluated. These theoretical results

allow the reconstruction of a 3D-object from a series of images parameterized by the

angle of scattering (instead by an angle of spatial rotation). Consequently in this new

imaging procedure, the recording of these images can be made without the motion of

the detector as in the case of conventional tomography.

The idea of exploiting scattered radiation for imaging purposes has been proposed

before, but in other contexts (e.g. Compton scattering Tomography [9] or

electronic collimation in Compton camera [10]). In Compton scattering Tomography,

the aim is to determine the electron density in bulk matter (instead of the radioactivity

density) from Compton scattered radiation from an �-ray external pencil beam

whereas, in emission imaging with a Compton camera, the efficiency of the detector

is meant to be enhanced by the collecting of all Compton scattered photons through

a planar scattering medium placed ahead of the detector. Thus the use of scattered

radiation in these cases is very different from what we propose in this article. In fact

no theoretical inversion formulas in three dimensions have been yet established.

The article is organized as follows. By performing a physical analysis on single

Compton-scattered photons we first establish, in Section 2, the so-called imaging

equation which relates the single scattered photon flux density recorded on the detector

to the radioactive volume density of the object. We then give in the next section the

explicit evaluation of the kernel (SPSF) of this mapping. Next we prove the most

2



important property of this mapping which is the existence of an inverse mapping

with an explicit computable kernel. The approach adopted here is different from the

one adopted in our previous work [5] (there, an alternative treatment is given using

the derivative of the imaging equation, which is free from formal divergences).

Instead a direct treatment of this equation is presented and it leads to the expressions

of the kernels of the Compound Conical Radon Transform and its inverse, from which

an inversion theorem can be explicitly proved [7]. Conclusions and comments are given

in the last section.

2. IMAGE FORMATION BY COMPTON-SCATTERED PHOTONS

2.1. Compton Scattering

Our point of view in this work is to focus on the emitted photons which undergo at least

one Compton scattering and study how they may turn out to be relevant for image

formation process [1].

First, we recall the relation between energy and scattering angle for the Compton-

scattered photon [2]:

E ¼ E0

1

1þ "ð1� cos �Þ ð1Þ

where � is the scattering angle as measured from the incident photon direction; E0, the

photon initial energy; " ¼ E0=mc2 and mc2 the rest energy of the electron. Equation (1)

shows that single-scattered photons have a continuous energy spectrum: 0 � E � E0,

which is related to the scattering angle �. But Compton scattering is also a quantum

phenomena: the emergence of the scattered photon has a probability of occurrence

given by the Compton differential cross-section:

d�

d�
¼ r2e

2
Pð�Þ ð2Þ

where re is the classical radius of the electron and Pð�Þ the so-called Klein–Nishina

probability for deflection by an angle �:

Pð�Þ ¼ 1

½1þ "ð1� cos �Þ�2
1þ cos2 � þ "2ð1� cos �Þ2

1þ "ð1� cos �Þ

� �

: ð3Þ

As a result of Compton scattering, photons leaving an emitting point source can

enter the detector along the collimator’s direction after one or more scattering

events. However, since single-scattered photons dominate the process [8], we shall

limit ourselves to these in this article.

2.2. The Imaging Equation

Thus at a given angle �, let ~ggðD, �Þ be the photon flux density at detector site D. This

quantity describes essentially a secondary emission imaging process since it is based
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on secondary emission sites formed by the free electrons of the surrounding medium.

In conventional image processing for �-ray camera, they are discarded by filtering or

by other correction techniques. We study now the secondary image formation process

by such scattered photons.

Let V denote an object voxel of coordinates ð�V , �V , �V Þ and f ðVÞ be the object

density function, defined as f ðVÞ ¼ f ð�V , �V , �V Þ. It represents the number of photons

emitted per unit time and per unit object (or source) volume, uniformly distributed

around the 4� solid angle at site V. f ðVÞ is a positive function with compact support

in R3. Thus in one given direction, making an angle � with the vertical downward

direction O� (see Fig. 1), the number of photons emitted in a small solid angle d�M

around site M by an elemental source volume dV, per unit time is:

1

4�
f ðVÞ dV d�M :

Now, by definition of the solid angle we have d�M ¼ d�M=MV2, where d�M is the

area element around site M normal to the direction VM. Consequently the flux of

photons arriving at M in the VM direction is:

f ðVÞ dV
4�

1

MV2
expð��rÞ

where r ¼ VM and � is the linear mean coefficient of absorption in biological tissues

(i.e. organ and/or surrounding medium).

But site M is located either inside the studied organ or inside the surrounding bio-

logical medium, and there are neðMÞ dM free electrons in a small volume element dM.

Note that in general the density of electrons is not uniform. Now since ðd�=d�Þ d�D
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FIGURE 1 Coordinate system for the calculation of T .
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is the differential cross-section of photons scattering in the �-direction, and since

d�D ¼ ðd�DÞ=ðMD2Þ, the number of photons reaching a unit detector surface at D

per unit time (after division by the area d�D) is the flux density recorded by the detector

at site D:

f ðVÞ dV
4�

e��r

MV2
neðMÞ dM r2e

2
Pð�Þ e

��ð�M�lÞ

MD2
,

which depends on dV and dM.

Consequently, the number of photons recorded per unit time and unit detector area

at site D ¼ ð�D, �DÞ, ~ggðD, �Þ, is due to all emitting point sources V situated on a cone

with opening angle �, the axis parallel to O� and with apex at the scattering site on

the vertical line MD:

~ggðD, �Þ ¼
Z

d�Md�M
d�M

�2M
	ð�D � �MÞ	ð�D � �MÞneðMÞe��ð�M�lÞ

�
Z

f ðVÞ dV
4�

	ðConeÞ expð��rÞ
MV2

r2e
2
Pð�Þ, ð4Þ

where 	ðConeÞ restricts the integration over V to the circular cone. In fact the cone

integral has appeared first in the process of image generation in a class Compton

cameras [11]. If one uses the local spherical coordinates centered at M in Fig. 1, we

have dV ¼ r2dr sin 
 d
 d� then 	ðConeÞ ¼ 1=r	ð� � 
Þ. Clearly ~ggðD, �Þ has the dimen-

sion of a photon flux through a plane (flux density) and is a positive function with

compact support on R2.

Thus the whole process defines the integral mapping:

T : f ðVÞ� ~ggðD, �Þ: ð5Þ

Note that T maps a function of three variables f ðVÞ to ~ggðD, �Þ which is also a function

of three scalar variables, since D 2 R2 and � 2 R.

2.3. Explicit expressions of T

In order to focus only on Compton effect features, other image degradations (absorp-

tion, imperfect detector) are now neglected and we set ne ¼ constant and � ¼ 0 for

simplicity. This is a plausible hypothesis since soft biological tissues have a mass density

close to that of water [2].

In Fig. 1, the measuring apparatus formed by the collimator, the detector and the

photomultiplier bank is collapsed into a rectangle in the horizontal plane O��.

Moreover, we assume that the object under study lies below the plane � ¼ l, i.e.

it does not touch the detector plane.

The coordinates of V in this system are:

�V ¼ �M þ r sin � cos�,

�V ¼ �M þ r sin � sin�,

�V ¼ �M þ r cos �,

ð6Þ
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where � is the scattering angle and � the azimuthal angle of V with respect to the

cone axis DM. The integration measure on the cone is r sin � d� dr. Equation (4) after

integration over �M and �M becomes our basic imaging equation:

~ggðD, �Þ ¼ ~KKð�Þ
Z 1

l

d�M

�2M

Z 2�

0

d�

Z 1

0þ

dr

r

� f ð�D þ r sin � cos �, �D þ r sin � sin�, �M þ r cos �Þ, ð7Þ

where the factor ~KKð�Þ contains terms dependent on �:

~KKð�Þ ¼ ne

4�

r2e
2
Pð�Þ sin �: ð8Þ

In this expression of ~ggðD, �Þ, the integral on r is formally divergent near the origin since

f ðVÞ is usually a bounded function (the activity density is everywhere finite).

Mathematically, the regularization of the integral in Eq. (7) is achieved by assigning

a cut-off for the integration in r; here the lower integration bound is noted 0þ.
In fact in practical numerical calculations this cut-off can be easily accomplished

by appropriate discretization of the integration range.

As f ðVÞ is of compact support, the � integration can be limited to the interval

l < � < L, which simplifies a great deal the numerical treatment in a real computation

of the image. This � integral can be understood as the sum, along a vertical line, of

integrals of f ðVÞ on cones of axis parallel to O�, apex M and opening angle �. The

image of f ðVÞ is thus represented by a set of conical integrals instead of planar integrals.

In this sense one may view this transformation T as a Compounded Conical Radon

Transform.

We can rewrite the transformation T in a more suggestive form using t ¼ tan �,
~KKð�Þ ¼ KðtÞ and ~ggðD, �Þ ¼ gðD, tÞ, as:

gðD, tÞ ¼
Z

dV pðD, tjVÞ f ðVÞ: ð9Þ

where pðD, tjVÞ stands for the kernel of the transformation T :

pðD, tjVÞ ¼ KðtÞ
Z 1

l

d�M

�2M

Z 1

0

dr

r

Z 2�

0

d�

� 	ð� � �D � r sin � cos�Þ 	ð�� �D � r sin � sin�Þ 	ð� � �M � r cos �Þ: ð10Þ

Physically this kernel is also called the Point Spread Function (PSF), or image of a point

source at site V ¼ ð�, �, �Þ. Nevertheless this image is due to single scattered photons

rather than primary photons. This is why this kernel is called Scatter PSF (SPSF).
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2.4. Computation of the SPSF kernel

Using the Fourier representation of the 	-function, and computing the integral in �M as

follows:

Z 1

l

d�M

�2M
	ð� � �M � r cos �Þ ¼ Yð� � l � r cos �Þ

ð� � r cos �Þ2
, ð11Þ

with Yð�Þ as the Heaviside unit step function. We can now represent the kernel pðD, tjVÞ
by its Fourier transform Pðu, vj�, tÞ:

pðD, tjVÞ ¼
Z Z

du dvPðu, vj�, tÞ exp 2i�½ð� � �DÞuþ ð�� �DÞv�,

with:

Pðu, vj�, tÞ ¼ 2�KðtÞ
Z 1

0þ

dr

r
J0ð2�r sin �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

ÞYð� � l � r cos �Þ
ð� � r cos �Þ2

: ð12Þ

This result shows that Pðu, vj�, tÞ is a function of the sole variable
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

. We can

now derive the SPSF by Fourier transformation. But in view of the rotational symmetry

in Fourier space, the Fourier transform is equivalent to a Hankel transform of order

zero [3]. If we introduce the following polar coordinates ð� � �DÞ ¼ � cos
, ð�� �DÞ ¼
� sin 
 and u ¼ � cos , v ¼ � sin , then :

pðD, tjVÞ ¼ 2�

Z 1

0

� d� J0ð2���Þ Pð�j�, tÞ: ð13Þ

Now observing that z ¼ r cos � ¼ �=t where t ¼ tan � and rearranging the expression

of Pðu, vj�, tÞ as Hankel transform of order zero of the function (or distribution):

1

z2
Yð� � z� lÞ
ð� � zÞ2

,

we have:

pðD, tjVÞ ¼ 2�

Z 1

0

� d� J0ð2���Þ
KðtÞ
t2

2�

Z 1

0

� d� J0ð2���Þ
1

z2
Yð� � z� lÞ
ð� � zÞ2

: ð14Þ

Now Hankel’s identity [4]:

ð2�Þ2
Z

� d� J0ð2��0�Þ
Z

� d� J0ð2���Þ f ð�Þ ¼ f ð�0Þ,

allows to conclude that for scattering angles 0 < � < �=2, ðt > 0Þ, the SPSF has the

expression:

pðD, tjVÞ ¼ pð�D, �D, tj�, ��Þ

¼ t2Kð�ÞYðtð� � lÞ � �Þ
�2ðt� � �Þ2

: ð15Þ
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The SPSF diverges as ��2 ! 1 near the origin at constant �, when the scattering

site M coincides with the point source V. It also diverges when the scattering site M

comes to the detection site D, or when t� ¼ �, but this will not occur because of the

limit � > l (recall that the object is not touching the detector plane). This kernel has

also translational invariance in the detector plane:

pðD, tjVÞ ¼ pðð� � �DÞ, ð�� �DÞjt, �Þ: ð16Þ

Now for scattering angles � in ½�=2,�½ or ðt < 0Þ, the SPSF is:

pðD, tjVÞ ¼ t2Kð�Þ 1

�2ðjtj� þ �Þ2
: ð17Þ

There is no need to insert the Heaviside function because the scattering point lies always

lower than the point source. To sum up we have the following expression for the SPSF:

pðD, tjVÞ ¼ YðtÞt2Kð�ÞYðtð� � lÞ � �Þ
�2ðt� � �Þ2

þ Yð�tÞt2Kð�Þ 1

�2ðjtj� þ �Þ2
, ð18Þ

valid in the whole range of t values.

It is noted that the SPSF has the general shape of a ‘‘Mexican hat’’ for 0 < � < �=2

and of a simple peak at the origin for other angles. Moreover, it has rotational symme-

try around the projection of the point source on the detector (horizontal) plane

(see Fig. 2). It is far from the Gaussian shape – a simplified form – considered in

most of the actual methods of treatment of scattered radiation.

As examples illustrating our idea of taking advantage of Compton-scattered rays, we

present in Fig. 3 an original object (disc of radius 6 units) and in Fig. 4 some of

its scattered-ray images at various deflection angles (� ¼ 36�, 53�, and 90�, which corre-

spond to energy losses of �5, �10 and �22% of the incident photon energy). These

images are observed on a gamma camera of dimensions 50 units � 50 units. It is

clear that the scattered-ray images carry useful information on the object structure

and deserve to be used in image reconstruction. Considering them as a pure noise

and discarding them as usually done is certainly not the most appropriate solution

for the improvement of image quality.

Remarks At this stage a few remarks are in order. Equation (9) represents the images

formed by single scattered photons. A similar equation can also be established

for doubly scattered photons but the corresponding kernel is no longer simple because

it is expressed as multiple integrals on different geometric variables as well as on

intermediate energies. However the doubly scattered events have a very small occur-

rence probability which is grossly equal to the square of the Klein–Nishina probability

of Eq. (3). More generally nth-order scattering events carrying the nth-power of the

Klein–Nishina term have even smaller occurrence probability. Monte-Carlo studies

[8] and experimental measurements [12] show that the first scattering is a dominant

process compared to higher order scattering ones. As an example, in biological

medium, single scattered radiation represents 36% of the total radiation against 4%

of higher order scattered radiations. Thus the higher order scattering contributions
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FIGURE 2 SPSF of the transform T at various scattering angles (�¼ 36�, 53� and 90� respectively).
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with decreasingly low intensities can be reasonably considered as noise with respect to

the dominant contributions of single scattered events. In this context, the image forma-

tion by scattered radiation considered here can be regarded as to be unique with respect

to the continuous form (infinite dimension) of the integral equation (see Eq. (9)).

Of course there is another problem of uniqueness related to the discretized form

(finite dimension) of the integral transform, but this is an entirely different problem.

A detailed study of higher order scattering effects would give an estimate on the

accuracy of the present theory based on first order scattering events (some of our

preliminary results on double scattering are presented in [14]).

Next we show how the reconstruction can be performed from the single scattered

rays by solving the inverse problem related to the Compound Conical Radon

Transform.

3. INVERSION OF THE TRANSFORM T

3.1. Computation of the Inverse Kernel

Having explicitly computed the kernel of the transformation T , we show now that this

transformation is invertible [5] and compute also the expression of the inverse kernel.

Introducing the two-dimensional Fourier transform ~FFðu, v, �M; �Þ of f ðVÞ under the form:

~FFðu, v, �M; �Þ ¼
Z Z

d�D d�D f ð�D, �D, �M; �Þ exp�2i�ðu�D þ v�DÞ, ð19Þ

0

5

10

15

20

0

5

10

15

20

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

η

SPSF (θ = 90°)

ξ

S
P

S
F

 f
lu

x
 d

e
n

s
it
y
 

FIGURE 2 Continued.

10



0

10

20

30

40

50

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

η

Original object

ξ

F
lu

x
 d

e
n

s
it
y
 

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

FIGURE 3 Original object (disc) and its cross-section.

11



5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

FIGURE 4 Series of secondary images parameterized by scattering angles (� ¼ 36�, 53� and 90�

respectively).

12



and similarly ~GGðu, v; �Þ for ~ggðD, �Þ, the imaging equation (7) reads now:

~GGðu, v; �Þ ¼ 2� ~KKð�Þ
Z 1

l

d�M

�2M

Z 1

0þ

dr

r
~FFðu, v, �M þ r cos �ÞJ0ð2�r sin �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

Þ: ð20Þ

Now using the variables t and z defined earlier, we can cast this last equation as

a Hankel transform of order zero (of course with the usual care for the lower bound

of the integration):

Gðu, v; tÞ ¼ 2�KðtÞ
Z 1

0þ

z dz J0ð2�zt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

Þ 1
z2

Z 1

l

d�M

�2M
Fðu, v, �M þ zÞ: ð21Þ

The fact that we integrate z over �0,1½ , means that we consider here only scattering

angles � 2 ½0,�=2� or t > 0 and z > 0.

Thus inverting ‘‘formally’’ the Hankel transform (the lower integration bound is

considered as to be 0), one obtains:

1

z2

Z 1

l

d�M

�2M
Fðu, v, �M þ zÞ ¼ 2�ðu2 þ v2Þ

Z 1

0þ

t dt J0ð2�zt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

ÞGðu, v; tÞ
KðtÞ : ð22Þ

In the other range of �, i.e. � 2 ½�=2,�½ we have t < 0 and z < 0, the previous relation

becomes:

1

z02

Z 1

l

d�M

�2M
Fðu, v, �M � z0Þ ¼ 2�ðu2 þ v2Þ

Z 1

0þ

t0 dt0 J0ð2�z0t0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

ÞGðu, v;�t0Þ
Kð�t0Þ , ð23Þ
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FIGURE 4 Continued.
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where z ¼ �z0 and t ¼ �t0 with z0 > 0 and t0 > 0. We can put the two inverse cases

together in a single formula, valid for all t, as follows:

Z 1

l

d�M

�2M
Fðu, v, �M þ zÞ ¼ 2�ðu2 þ v2Þ z2

Z 1

0þ

t dt J0ð2�jzjt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

Þ

� YðzÞGðu, v; tÞ
KðtÞ þ Yð�zÞGðu, v;�tÞ

Kð�tÞ

� �

: ð24Þ

Now the left hand side of the previous equation can be put under an alternative form

using Fourier analysis:

Z 1

l

d�M

�2M
Fðu, v, �M þ zÞ ¼

Z 1

�1
dwJ lðwÞ �FFðu, v,wÞ exp½�2i�wðl þ zÞ�, ð25Þ

where �FFðu, v,wÞ is the three-dimensional Fourier transform of f ðVÞ, J l the Fourier

transform of YðsÞðsþ lÞ�2 is given in Fourier tables as:

J lðwÞ ¼ 2i�w e2i�lw Cið2�ljwjÞ � i ðwÞSið2�ljwjÞ½ � � i

2�wl

� �

, ð26Þ

here the variable s is related to �M by �M ¼ ðsþ lÞ and ðwÞ is the sign function of w. The

variable ðzþ lÞ may take now any value in R.

To extract �FFðu, v,wÞ, we make an inverse Fourier transform on the last form of the

imaging Eq. (24):

�FFðu, v,wÞ ¼ 1

J lðwÞ

Z 1

�1
dz e2i�wðzþlÞ ðu2 þ v2Þ z22�

Z 1

0þ

t dt J0ð2�jzjt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

� YðzÞGðu, v; tÞ
KðtÞ þ Yð�zÞGðu, v;�tÞ

Kð�tÞ

� �

: ð27Þ

Finally, performing the three-dimensional Fourier transform on the previous Eq. (27)

and reexpressing Gðu, v; tÞ as inverse two dimensional Fourier transform of gðD, tÞ, the
inverse transform T �1 can be put as:

f ðVÞ ¼
Z Z 1

�1
dD

Z 1

0

dt p�1ðVjD, tÞ gðD, tÞ, ð28Þ

with the inverse kernel:

p�1ðVjD, tÞ ¼
Z Z 1

�1
du dv e2i�½uð���DÞþvð���DÞ�ðu2 þ v2Þ

� 2�

Z 1

�1
z dz J0ð2�jzjt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

Þ zHlð� þ zþ lÞ tKt, ð29Þ

14



where:

Z 1

�1
dw exp½2i�ð� þ zþ lÞw� 1

J lðwÞ
¼ Hlð� þ zþ lÞ,

and Kt is a discrete linear operator defined by:

Kt gðD, tÞ ¼ YðzÞ gðD, tÞ
KðtÞ þ Yð�zÞ gðD, � tÞ

Kð�tÞ

� �

:

Now by splitting up the integration range of z into two parts: � �1, 0� and ½0,1½
and taking care of the action of Kt, we obtain a new form of the inversion formula:

f ðVÞ ¼
Z 1

�1
d�D

Z 1

�1
d�D

Z 1

0

dt

Z Z 1

�1
dudve2i�½uð���DÞþvð���DÞ�ðu2 þ v2Þ

� 2�

Z 1

0

zdzJ0ð2�jzjt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

Þ z Hlð�þ zþ lÞ tgðD, tÞ
KðtÞ þHlð�� zþ lÞ tgðD, � tÞ

Kð�tÞ

� �

:

ð30Þ

The integration on z in Eq. (30) may be viewed as a Hankel transform of the function

zHlð� � zþ lÞ:

2�

Z 1

0

z dz J0ð2�jzjt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

Þ zHlð� � zþ lÞ ¼ H�ð� þ l, t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

Þ: ð31Þ

Then the two-dimensional Fourier transform of the kernel p�1ðVjD, tÞ reads simply:

P�1ðu, vj�, tÞ ¼ ðu2 þ v2ÞKtðu2 þ v2, �Þ, ð32Þ

where Ktðu2 þ v2, �Þ is a linear discrete operator defined by:

Ktðu2 þ v2, �ÞgðD, tÞ ¼ tHþð� þ l, t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

Þ
KðtÞ gðD, tÞ þ tH�ð� þ l, t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

Þ
Kð�tÞ gðD, � tÞ

" #

:

ð33Þ

The integration over t in Eq. (30) has the meaning that one must use a series of images

labelled by the scattering angle � to reconstruct the object. Thus this angle � plays the

role of a scanning parameter (spatial rotation angle) in a standard tomographic imaging

procedure. This inverse kernel has obviously translational invariance in the detector

plane. Let S be the projection of V on the detector plane, then we may write:

p�1ðVjD, tÞ ¼ p�1ðS, �jD, tÞ ¼ p�1ðDSj�, tÞ

¼
Z Z 1

�1
du dv e2i�½uð���DÞþvð���DÞ�ðu2 þ v2ÞKtðu2 þ v2, �Þ: ð34Þ
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3.2. Proof of the Inversion Relation

In this section we shall give the proof of:

Z

dD dt p�1ðVjD, tÞp�ðD, tjV0Þ ¼ 	ðV� V0Þ ð35Þ

where the star means complex conjugate. By going to the two dimensional Fourier

transform, the left hand side can be written as:

Z 1

0

dt

Z Z 1

�1
du dv e2i�½uð���

0Þþvð���0Þ�P�1ðu, vj�, tÞPðu, vj�0, tÞ: ð36Þ

In order to perform this calculation an alternative form for Pðu, vj�0, tÞ using a

Fourier representation is needed. We first express:

Yð�0 � z0 � lÞ
ð�0 � z0Þ2

¼
Z 1

�1
dw0 J lðw0Þe2i�ð�0�z0�lÞw0

, ð37Þ

and insert it in:

Pðu, vj�, tÞ ¼ 2�KðtÞ
Z 1

0þ

dz0

z0
J0ð2�z0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

Þ
Z 1

�1
dw0 J lðw0Þe2i�ð�0�z0�lÞw0

: ð38Þ

Now using the expression of P�1ðu, vj�, tÞ in Eq. (32) and the previous form of

Pðu, vj�0, tÞ we can perform the t integration in:

Z 1

0

dtP�1ðu, vj�, tÞPðu, vj�0, tÞ

¼ 2�

Z 1

0

dtKðtÞ
Z 1

0þ

dz0

z0
J0ð2�z0t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

Þ

�
Z 1

�1
dw0 J lðw0Þe2i�ð�0�z0�lÞw0

2�
t

KðtÞ ðu
2 þ v2Þ

Z 1

�1
z dz J0ð2�jzjt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

Þ z

�
Z 1

�1
dw

e2i�ð�þzþlÞw

J lðwÞ
, ð39Þ

and we see here that the K(t) factors cancel out. The integration on t can be carried out

using the Bessel identity:

Z 1

0

� d� J0ðz0�ÞJ0ðz�Þ ¼
1

z0
	ðz� z0Þ: ð40Þ
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Then after integration over dz for t > 0 and also z > 0, we get:

Z 1

0

dtP�1ðu, vj�, tÞPðu, vj�0, tÞ ¼
Z 1

0

dz0

z0

Z 1

�1
dw0J lðw0Þe2i�ð�0�z0�lÞw0

� 1

z0
	ðz� z0Þ

Z 1

�1
z2 dz

Z 1

�1
dw

1

J lðwÞ
e2i�ð�þzþlÞw: ð41Þ

The integration with respect to z0 removes all the z factors, and we are left with:

Z 1

0

dtP�1ðu, vj�, tÞPðu, vj�0, tÞ ¼
Z 1

�1
dz e2i�ðw�w0Þ

Z 1

�1
dw0 J lðw0Þe2i�w0ð�0�lÞ

Z 1

�1
dw

1

J lðwÞ
e2i�wð�þlÞ ¼

Z Z 1

�1
dw dw0J lðw0Þ 	ðw� w0Þ

J lðwÞ
e2i�w

0ð�0�lÞ e2i�wð�þlÞ

¼
Z 1

�1
dw e2i�ð�

0��Þw ¼ 	ð�0 � �Þ: ð42Þ

The remaining integrations over du and dv yield obviously 	ð�0 � �Þ 	ð�0 � �Þ. The
product of the kernels p�1ðVjD, tÞ with the SPSF kernel pðD, tjVÞ is thus the identity [7].

3.2. Numerical Results

As an illustration of the inversion procedure discussed in the previous section, we

present some numerical simulations which have been carried out with the following

working conditions:

. the used �-detector is a SPECT (Single Photon Emission Computed Tomography)

camera. It has discretized dimensions N length units �N length units. We have

chosen N¼ 16 to keep the volume of calculations reasonable.

. the scattering medium is represented by a cube of dimensions N �N �N,

. the electron density in biological medium is ne ¼ 3:5� 1023 electrons/cm3,

. the radio pharmaceutical employed is Technecium 99 with an activity density

2:2� 10�2 Ci/cm3,

. the acquisition time per image is 0:1 s,

. the 3D original object (cylinder of height 6 units) is placed at the center of the

scattering medium (cube),

. the distance from camera to the upper face of the scattering medium cube is l¼ 200

units.

Figure 5(a) represents the original object. Figure 5(b) shows the series of images of

the object at various scattering angles � (58 < � < 1758). These images, respectively

without and with Poisson emission noise, observed on the detector, are shown respect-

ively in Fig. 6(a) and (b).

In Fig. 7(a) is the reconstructed object in the absence of noise with a RMSE ¼ 1:2%

whereas in Fig. 7(b) the reconstruction is realized in the presence of noise (S=N ¼ 9:7

dB) with a RMSE ¼ 8:9%, which is perfectly reasonable. We observe a good perform-

ance of the Compound Conical Radon Transformation for modelling the new imaging

process.
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FIGURE 5 (a) Original object (cylinder) in a cube formed by 16 planes; (b) series of images parameterized
by the angle of scattering � ð5� < � < 175�Þ.
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FIGURE 6 (a) Series of images without noise observed on the �-camera; (b) series of images with noise
observed on the �-camera (S=N ¼ 9:7 dB).
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FIGURE 7 (a) Reconstructed object in the absence of noise (RMSE = 1:2%); (b) reconstructed object in
the presence of noise (with S=N ¼ 9:7 dB and RMSE = 8:9%).
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Concerning the resolution, the intrinsic resolution depends on the type of used

camera (collimator, crystal, photo-multiplier and measurement electronics).

Theoretical resolution is determined by the reconstruction method and its

algorithm. The inclusion of scattered radiation increases considerably the number

of detected photons, and thus would contribute to improve the S/N and the resolution

of the imaging system. To evaluate accurately the resolution, it is necessary to

have access to real data and to compare it with other methods which do not make

use of scattered radiation. At the moment it is too early to use our preliminary results

of simulation for this purpose. This work is ongoing with more realistic experimental

conditions.

Since our main objective in this article is to show how to exploit advantageously

Compton scattered radiation to generate a new imaging principle, we present only

results on image formation as well as object reconstruction from scattered rays.

In real situations, of course, one must take into account other factors such as absorp-

tion by the medium, Poisson emission noise and the imperfections of the detector

(collimator and measuring electronics).

The case of constant mean absorption (often assumed in the literature) is included in

our recent work [7]. (The treatment of inhomogeneous absorption poses special math-

ematical difficulties. Recall that the inversion of the inhomogeneous attenuated X-ray

transform in transmission imaging has been just found recently in 2001 [13], despite the

fact that the inverse of the Radon transform is known since 1917).

Concerning emission noise there are well known methods to deal with it, such as the

method of Maximum Likelihood or the methods of wavelets. They may be used for

‘‘denoising’’ the measured data beforehand or jointly with the inversion process.

As for the imperfections of the detector, the standard way for treating this problem

is to make use of a response function of the Gaussian type operating with spatial

coordinates as well as with energy coordinate. These issues are discussed in detail in

references [1,12].

4. CONCLUSION AND COMMENTS

In this work we have given theoretical results showing the feasibility of object recon-

struction using Compton-scattered rays in gamma emission imaging. The new linear

integral transform as well as its kernel (SPSF) are derived directly from a Compton-

scattering physical analysis [5], which has been strongly recommended to be included

in quantitative imaging by experts of the field [6]. The new imaging principle proposed

here takes advantage of properties of scattered rays instead of rejecting them as usually

done in most actual scatter correction methods. It would improve the signal-to-noise

ratio, and consequently the contrast. Moreover, the fact that the angle of scattering

is a free parameter is used here as a disposable parameter to collect data, the multi-

views of the object are obtained without the need of moving the detector. This pos-

sibility is particularly interesting in the applications where the number of measurements

is very limited, e.g. in non destructive testing. Several perspectives of the proposed

approach are possible: for example extension of this result obtained in emission imaging

to transmission imaging and to prospective higher order Compton scattering imaging

processes.
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NOMENCLATURE

f (V) ¼ object density function

~ggðD, �Þ or gðD, tÞ ¼ image density function

ne ¼ electron density in medium

pðD, tjVÞ ¼ scatter point spread function

t ¼ tangent of the angle �, tan �

T ¼ integral transformation

Y(s) ¼ heaviside unit step function

� ¼ absorption coefficient

� ¼Compton scattering angle

2D/3D ¼ two/three-dimensional

S/N ¼ signal-to-noise ratio

RMSE ¼ root mean square error
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