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The origin of nucleation peak in transformational
plasticity

Lev Truskinovskya, Anna Vainchteinb;∗
aLaboratoire de Mechanique des Solides, CNRS-UMR 7649, Ecole Polytechnique, 91128,

Palaiseau, France
bDepartment of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

A typical stress-strain relation for martensitic materials exhibits a mismatch between the nu-
cleation and propagation thresholds leading to the formation of the nucleation peak. We develop
an analytical model of this phenomenon and obtain speci2c relations between the macroscopic
parameters of the peak and the microscopic characteristics of the material. Although the nucle-
ation peak appears in the model as an interplay between discreteness and nonlocality, it does
not disappear in the continuum limit. We verify the quantitative predictions of the model by
comparison with experimental data for cubic to monoclinic phase transformation in NiTi.

Keywords: Martensitic phase transitions; Lattice models; Nonlocal interactions; Peierls-Nabarro landscape;
Nucleation

1. Introduction

In displacement-controlled experiments shape memory alloys and other martensitic
materials display a nucleation peak: prior to nucleation of a new phase the load reaches
a maximum but then drops to a distinctly lower value. The subsequent plateau is associ-
ated with phase boundaries propagating along the specimen at essentially constant stress
(Lexcellent and Tobushi, 1995; Shaw and Kyriakides, 1995, 1997b; Sun and Zhong,
2000). The nucleation peak is not unique to transformational plasticity and is also ob-
served during initiation of a conventional plastic deformation in mild steels (Butler,
1962; Hall, 1970; Kyriakides and Miller, 2000; Froli and Royer-Carfagni, 2000), where

∗ Corresponding author.
E-mail addresses: trusk@lms.polytechnique.fr (Lev Truskinovsky), aav4@pitt.edu (Anna Vainchtein).

1



it has been attributed to the fact that the stress required to release the trapped disloca-
tions is higher than the stress needed to sustain their motion (Cottrell and Bilby, 1949;
Johnston and Gilman, 1959). For martensitic materials the nucleation-induced load drop
has been observed in 3D numerical simulations based on various plasticity-like phe-
nomenological models (Shaw and Kyriakides, 1997a; Kyriakides and Miller, 2000; Sun
and Zhong, 2000) but due to the complexity of these models, the physical parameters
responsible for the size of the peak have not been identi2ed. At a qualitative level, the
nucleation peak in these materials has been associated with the presence of suEciently
2ne grains and heuristically linked to the strong locking of phase boundaries and the
relative ease of their glide upon release (Shaw and Kyriakides, 1995, 1997b).
In this paper we develop an analytical model of the nucleation peak phenomenon in

martensites: our model supports the intuition developed in plasticity theory and adapts
it to the case when the principal carriers of inelastic deformation are phase boundaries.
Speci2cally, we consider a prototypical mass-spring system consisting of rigid ele-
ments (crystal planes) connected by bi-stable elastic springs representing transforming
shear layers. To mimic the three-dimensional nature of the actual problem, we comple-
ment the up-down-up interactions between the nearest neighbors (NN) by a harmonic
interaction of the next-to-nearest neighbors (NNN). The bi-stable discrete models with-
out NNN interactions (e.g. MFuller and Villaggio, 1977; Fedelich and Zanzotto, 1992;
Puglisi and Truskinovsky, 2000, 2002a, b) capture many important features of transfor-
mational plasticity but fail to predict the peak phenomenon. Recent numerical studies
of the models incorporating NNN interactions showed that the nucleation peak can be
recovered (e.g. Ye et al., 1991; Triantafyllidis and Bardenhagen, 1993; Rogers and
Truskinovsky, 1997; Froli and Royer-Carfagni, 2000; Pagano and Paroni, 2003); none
of these models, however, have been developed analytically to the extent that they
could explain the necessity of the peak phenomenon and identify the microparameters
controlling the size of the stress drop.
We begin by 2nding the limits of instability of a homogeneous state and deter-

mine an analytical expression for the nucleation threshold in the most general case.
In order to obtain an analytical characterization of the propagation threshold we use
a piecewise linear approximation for the NN interactions. This simpli2cation allows
us to reconstruct the non-equilibrium Peierls-Nabarro landscape for the propagating
phase boundaries and compute the martensitic analog of the Peierls stress. We show
that the presence of nonlocal interactions in the discrete model makes nucleation and
propagation thresholds diHerent and then prove that the nucleation peak does not dis-
appear in the continuum limit. An important question is whether the quasi-continuum
strain-gradient approximation of the discrete model (Mindlin, 1965; Triantafyllidis and
Bardenhagen, 1993) is capable of capturing the peak phenomenon. We show that the
nucleation threshold is approximated well only in the case of long-wave instability (see
also Triantafyllidis and Bardenhagen, 1996) and that although the peak is captured, the
stress drop is grossly exaggerated. Finally, we verify the quantitative prediction of the
model by using the experimental data for cubic to monoclinic phase transformation in
NiTi wires. The comparison with experiment leads to the bounds for the measure of
nonlocality which are in a good agreement with the independent estimates based on a
realistic interatomic potential.
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The proposed model stays in the same prototypical relation to transformational plas-
ticity as the well known Frenkel-Kontorova model to classical plasticity. A nontrivial
formal correspondence between the two models in the case of in2nite systems has been
established by Truskinovsky and Vainchtein (2003).
The structure of the paper is as follows. In Section 2 we formulate the discrete prob-

lem for a 2nite system and specify the boundary conditions. In Section 3 we analyze
stability of the single-phase equilibrium in the general setting discovering the possibility
of both macro and microinstabilities. In Section 4 we introduce a piecewise linear model
for the local interactions and obtain an explicit representation of a generic metastable
equilibrium state. In Section 5 we study the energy barriers between the neighboring
metastable states and show that propagation always reduces to a succession of trans-
formations inside individual elements, while nucleation can involve transformation of
several elements at once. Section 6 contains the derivation of the explicit formulae
for the size of the nucleation peak in both discrete and continuum problems. In Sec-
tion 7 we establish a correspondence between the microparameters of the lattice and
the experimental measurements of both the stress drop and the size of the nucleation
band. Finally, Section 8 contains comparison of the discrete and strain-gradient models
showing that the agreement is at most qualitative. The conclusions are summarized in
Section 9.

2. The model

Consider a system of N + 1 particles linked to their nearest and next-to-nearest
neighbors by elastic springs (see Fig. 1). Let uk , 06 k6N , be the displacements
of the particles with respect to a load-free homogeneous reference con2guration with
spacing �. Denote the strain in the kth NN spring by wk=(uk −uk−1)=�. Then the total
energy of the system can be written as

� = �
N∑

k=1

	1(wk) + 2�
N−1∑
k=1

	2

(
wk+1 + wk

2

)
+�B(w1; wN ); (1)

where 	1(w) and 	2(w) are the energy densities of the NN and NNN interactions,
respectively. The term �B corresponds to the energy of the boundary elements.

ii−1 i+10 1 N−1 N

ε

2ε

NNN springNN  spring

Fig. 1. A 2nite chain of particles with nearest-neighbor (NN) and next-to-nearest-neighbor (NNN)
interactions.
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We assume that the chain is placed in a hard device with the total displacement d:

uN − u0 = �
N∑

k=1

wk = d: (2)

Due to the nonlocality of the model, the boundary condition (2) must be complemented
by other constraints. For instance, to mimic an “extra hard device” one can additionally
impose conditions w1 = 0 and wN = 0, making the term �B irrelevant. Alternatively,
one may consider a “zero-moment device” by assuming that �B = 0.
Let fi(w)=	′

i(w), i=1; 2, denote the forces in NN and NNN springs, respectively.
The equations governing the equilibrium of the interior particles with 26 k6N − 1
have the form

f1(wk) + f2

(
wk+1 + wk

2

)
+ f2

(
wk + wk−1

2

)
= F; (3)

where F is the total force in the system. The natural boundary conditions read

f1(w1) + f2

(
w2 + w1
2

)
+
1
�
@�B

@w1
= F;

f1(wN ) + f2

(
wN + wN−1

2

)
+
1
�
@�B

@wN
= F; (4)

An additional assumption adopted in what follows,

�B = �	2(w1) + �	2(wN ) ; (5)

means that the boundary NNN springs are cut in half and reconnected parallel to the
NN springs (see the dashed springs in Fig. 1). The formal advantage of this choice of
�B is that the boundary equations (4) can be included into the bulk equations (3) if
we additionally assume the existence of 2ctitious 0th and (N + 1)th springs satisfying

w0 = w1; wN+1 = wN : (6)

The real advantage of (4) and (5), however, is that the corresponding boundary con-
ditions ensure the existence of a trivial solution with the uniform strain distribution
(Triantafyllidis and Bardenhagen, 1993; Charlotte and Truskinovsky, 2002). While in
the rest of the paper we will be using mostly (5), the eHect of switching to �B =0 is
brieNy discussed in Section 6.

3. Nucleation threshold

It is easy to see that for arbitrary spring potentials the trivial solution of the problem
(3), (4) and (5) is given by wk = d=L, where L = N�. The homogeneous response
of the system is then characterized by the formulae F = f1(d=L) + 2f2(d=L) and
� = L(	1(d=L) + 2	2(d=L)). To analyze the stability of this solution we introduce
the tangential moduli of NN and NNN springs: K(w) = 	′′

1 (w) and �(w) = 	′′
2 (w)=2.
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The homogeneous con2guration is stable if and only if the quadratic form Bv · v with

B=




K + 3� � 0 : : : 0

� K + 2� �
. . . 0

0
. . .

. . .
. . . 0

... 0 � K + 2� �

0 : : : 0 � K + 3�:




(7)

is positive de2nite for all v �= 0 such that
N∑

k=1

vk = 0: (8)

Finding the boundaries of stability in the space of parameters is important for the
subject of the paper because they coincide with the limits of a barrierless nucleation.
Before addressing the stability problem systematically, we observe that K + 4�¿ 0

and �6 0 are suEcient for stability. Indeed, in this case all terms in the quadratic
form

Bv · v = (K + 4�)
N∑

k=1

v2k − �
N−1∑
k=1

(vk+1 − vk)2: (9)

are nonnegative. Similarly, by writing the quadratic form as

Bv · v = K
N∑

k=1

v2k + �
N−1∑
k=1

(vk+1 + vk)2 + 2�(v21 + v2N ):

we obtain that conditions K ¿ 0 and �¿ 0 are also suEcient for stability. In terms of
the main nondimensional parameter of the problem,

� =
K
4�

; (10)

these stability intervals can be written as −∞¡�¡ − 1 and 0¡�¡∞ and hence
the instability limits are located in the interval

− 16 �6 0: (11)

To 2nd the exact locations of the stability boundaries, consider the (zero) eigenvalue
problem Bv = 0. In the bulk of the chain (16 k6N − 1) this means

(K + 2�)vk + �vk−1 + �vk+1 = 0: (12)

On the boundaries we obtain

(K + 3�)v1 + �v2 = 0; (13)

(K + 3�)vN + �vN−1 = 0: (14)
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The eigenvector v must be nonzero and satisfy (8). We seek solution in the form
vk = �k and obtain the characteristic polynomial

�2 + (4� + 2)�+ 1 = 0: (15)

This means that �1;2 = −1 − 2� ± 2√�(� + 1), and according to (11), we have to
consider the following cases:
Special case �=−1: Here �1 = �2 = 1 and vk = A1k + A2. The boundary equations

(13) and (14) reduce to v1 = v2 and vN = vN−1, implying that A1 = 0 and thus vk =A2.
The constraint (8) implies that A2 = 0. Since there are no nontrivial solutions, there is
also no stability change.
Special case �=0: Here �1 =�2 =−1 and vk =(A1k+A2)(−1)k . Applying (13) and

(14), we obtain A1 = A2 = 0 which again means that there is no change of stability.
Generic case −1¡�¡ 0. We 2rst observe that in this interval �1;2 can be written

as

�1;2 = e±i!;

where ! is de2ned by

� =−cos2 !
2
: (16)

Applying the boundary equation (13), we obtain (up to a multiple)

vk = cos[(k − 1=2)!]:
The second boundary equation (14) implies 2 sin(!=2) sin(N!)=0, and since 0¡!¡�,
we obtain sin(N!) = 0 and

!=
�n
N

; (17)

for 16 n6N − 1. All these solutions are nontrivial and satisfy (8). Therefore the
instability of the trivial solution can take place at any of the bifurcation points

K + 4� cos2
�n
2N

= 0:

The corresponding unstable modes are

vk = cos[(k − 1
2 )

�n
N ]: (18)

To locate the stability boundary, we begin with the case �¡ 0. Then

K + 4� cos2
�n
2N

¿K + 4� cos2
�
2N

and hence

K + 4� cos2
�
2N

¿ 0 (19)

is both necessary and suEcient for stability. The instability develops through the growth
of the long-wave mode

vk = cos[(k − 1
2 )

�
N ]:
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As N tends to in2nity, the unstable wave length also becomes in2nite and (19) reduces
to K+4�¿ 0. At 2nite N we have K+4� cos2 �

2N ¿K+4�, meaning that the discrete
homogeneous con2guration may still be stable when the macroscopic modulus E =
K + 4� is already negative. One can say that in the discrete problem the macroscopic
instability is delayed due to the 2nite size of the system (see also Triantafyllidis and
Bardenhagen, 1993).
The situation is diHerent when �¿ 0. In this case

K + 4� cos2
�n
2N

¿K + 4� cos2
�(N − 1)
2N

= K + 4� sin2
�
2N

;

and hence the necessary and suEcient condition for stability is

K + 4� sin2
�
2N

¿ 0: (20)

The instability develops through the growth of the short-wave mode

vk = (−1)ksin
[(
k − 1

2

)
�
N

]
:

In the limit of in2nite N , the wave length approaches the interatomic distance. Also
(20) becomes K ¿ 0, and since now K + 4� sin2(�=2N )¡K + 4�, this microscopic
instability develops before the macroscopic (or homogenized) system becomes unstable
(see also Triantafyllidis and Bardenhagen, 1996). In the context of martensitic phase
transitions, this eHect may be linked to the observation of the pre-martensitic tweed
microstructures (Kartha et al., 1995).
We now summarize the necessary and suEcient conditions for stability of the trivial

solution. In terms of elastic moduli K and � we obtain the following stability intervals

K + 4� cos2
�
2N

¿ 0; K + 4� sin2
�
2N

¿ 0: (21)

In the limit of in2nite N the inequalities (21) reduce to the known conditions K ¿ 0,
K + 4�¿ 0 (e.g. Mindlin, 1965). In terms of the nondimensional parameter � the
stability intervals take the form

�¡− cos2 �
2N

(�¡ 0); �¿− sin2 �
2N

(�¿ 0); (22)

which in the limit of in2nite N gives �¡−1 (�¡ 0) and �¿ 0 (�¿ 0). The structure
of the stability domain in the plane K − � is illustrated in Fig. 2a for both 2nite and
in2nite N ; in Fig. 2b, showing the plane �−N−1, we illustrate the dependence of the
stability boundaries on the size of the system. For the NNN system with the “moment
free” boundary conditions (�B=0) similar analysis of the stability for trivial equilibria
(which now have boundary layers) can be found in Charlotte and Truskinovsky (2002).

4. Nontrivial solutions and metastability

To model martensitic phase transitions, we assume that each NN spring has a
double-well energy generating a non-monotone “up-down-up” force-strain relation de-
picted in Fig. 3. If the negative slope of the force-strain relation for the NN spring is
suEciently steep, it is easy to show that the total strain can reach the threshold where
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0
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(a)
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0

µ

N-1

γ > 0

γ < 0 
µ = -1

µ = 0

microinstability

macroinstability

macroinstability

microinstability

K = 0

K+ 4γ =  0

Fig. 2. (a) Domain of stability for the trivial solution in K − � plane: solid lines—discrete model, N = 3;
dashed lines—continuum limit, N → ∞. (b) The dependence of the stability limits on the size of the system.
In both 2gures stability domain is in gray.

f1

wwc

K

K

phase I

phase II

Fig. 3. Up-down-up force-strain relation in an individual NN spring (solid line) and its bilinear approximation
(dashed lines).
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the homogeneous phase is absolutely unstable. To study the resulting nucleation and
the subsequent growth of the new phase, we need to describe the postcritical behav-
ior of the system. More precisely, in the domain of loadings where trivial solution
is unstable, we need to 2nd the nontrivial solutions of the equilibrium equations (3)
corresponding to either local or global minima of the energy.
Although the instability limits for the trivial solution can be found in the general

case, we succeeded in obtaining a complete analytical description of the postcritical
behavior only in the case when the functions f1(w) and f2(w) are either linear or
piecewise linear. Speci2cally, we considered

f1(w) =

{
Kw for w¡wc

K(w − a) for w¿wc

(23)

and

f2(w) = 2�w: (24)

The parameters of the NN potential are the critical strain wc, transformation strain a
and elastic modulus K (see Fig. 3). The linear NNN spring is characterized by the
elastic modulus � which will also be used as the measure of nonlocality. We assume
that K ¿ 0 and �¡ 0, which is suggested by the linearization of the Lennard-Jones
potential (see Charlotte and Truskinovsky, 2002); to ensure that independently of N
the homogeneous states are stable in their domain of de2nition, we also assume that
K+4�¿ 0. In terms of the nondimensional parameter �, the assumptions on the moduli
can be summarized as

−∞¡�¡− 1: (25)

It is not hard to see that under these assumptions the microinstability is excluded while
the macroinstability always takes place at w = wc.
For the piecewise linear model (23), (24) the total energy (1) reduces to

� = �
{
1
2
Bw · w− q · (w− wc)

}
; (26)

where the vector qk = Ka!(wk − wck) prescribes distribution of phases, !(x) is a unit
step function and wck = wc, k = 1; : : : ; N . The equilibrium equations (3) together with
the boundary conditions (6) can then be rewritten as

Bw= F+ q; (27)

where Fk = F , k = 1; : : : ; N . To eliminate the redundant parameters we rescale the
variables. By selecting L = N� as the length scale and K as the scale of force, we
de2ne

Tuk =
uk
N�

; Td=
d
N�

; TF =
F
K
; T� =

�
KN�

; TB=
1
K

B: (28)

Unless specially mentioned, in what follows, we will be using only rescaled variables
with the bars dropped. The dimensionless problem depends on the two main parameters:
� and N .
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To 2nd the metastable states we can simply prescribe the distribution of phases q and
solve the linear problem (27). The resulting equilibrium con2gurations are automatically
local minimizers of the energy (26), because the stiHness matrix B is positive de2nite.
To obtain the global minima of the energy, we need additionally to minimize � with
respect to the phase geometry q.
The solution of the linear system (27) can be written as

w= B−1F+ B−1q = w0 + w1: (29)

The 2rst term in (29) corresponds to the uniform con2guration with all springs in the
2rst phase. Without explicitly computing B−1 one can see that

w0k =
F�
1 + �

: (30)

It is convenient to express w1 not in terms of the variables q, but in terms of their
discrete derivatives p de2ned by

pi =
qi+1 − qi

a
: (31)

Notice that these relations can always be explicitly inverted, yielding

qk = q1 + a
N∑
i=1

pi!(k − i − 1): (32)

The physical meaning of the variables pi is clear from the representation

pi =



1 if wi ¡wc and wi+1¿wc (I to II phase switch)

0 if sign(wi − wc) = sign(wi+1 − wc) (no phase switch)

−1 if wi ¿wc and wi+1¡wc (II to I phase switch):

(33)

To simplify the subsequent formulae we also set pN = 0.
In the interior nodes (26 k6N − 1) w1k must satisfy the diHerence equation(

1 +
1
2�

)
w1k +

1
4�
(w1k+1 + w1k−1) = q1 + a

∑
i

pi!(k − i − 1): (34)

We seek the general solution of (34) in the form

w1k = wh
k + win

k ; (35)

where wh
k satis2es the homogeneous equation and win

k is a particular solution. The
general solution of the homogeneous problem can be represented (Mickens, 1990)
as a linear combination of �k1 and �k2, where �1;2 are the roots of the characteristic
polynomial (15). By writing �1;2 = e±%, where

%= 2 arccosh
√

|�|; (36)

we obtain

wh
k = C1e%k + C2e−%k : (37)

The constants C1 and C2 are to be found from the boundary conditions (6).
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To obtain a particular solution of (34) with q1 = 0 and pj =0 for j �= i, we observe
that in this case the right hand side of (34) is zero for k6 i and constant for k¿ i+1.
Therefore we can write

wpi
k =




wp−
k = A1e%k + A2e−%k for k6 i

wp+
k = A3e%k + A4e−%k +

a�pi

1 + �
for k¿ i;

(38)

and then “glue” the two sides together by requiring that

wp−
i = wp+

i ; wp−
i+1 = wp+

i+1: (39)

Since we are looking for a particular solution, we may always let A1 = A2 = 0, and
thus consider wp−

k = 0. Solving (39) for A3 and A4, we obtain

wpi
k = (

{
!(k − i − 1=2)

[
1− cosh[(k − i − 1=2)%]

cosh(%=2)

]}
;

where

(=
a�

� + 1
(40)

is the macroscopic transformation strain. Finally, by superposition, we obtain the par-
ticular solution in the form

win
k =

q1�
1 + �

+ (
N∑
i=1

pi!(k − i − 1=2)
[
1− cosh[(k − i − 1=2)%]

cosh(%=2)

]
: (41)

The general solution of (34) is now given by (35), (37) and (41). Applying the
boundary conditions (6), we obtain

w1k =
q1�
1 + �

+ (
N∑
i=1

pi

{
sinh[(N − i)%] cosh[(k − 1=2)%]

cosh(%=2) sinh(N%)

+ !(k − i − 1=2)
(
1− cosh[(k − i − 1=2)%]

cosh(%=2)

)}
: (42)

Before combining (30) and (42), we notice that the relation between the force F and
the total displacement d can be written in the form:

F =
1 + �
�

(
d− (

l
N

)
; (43)

where l is the number of springs in phase II related to q1 and p via

l=
Nq1
a
+

N∑
i=1

(N − i)pi: (44)
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Finally, substituting (43), (44) into (29), (30) and (42), we obtain the representation
for a generic metastable con2guration

wk = d+ (
N∑
i=1

pi

{
sinh[(N − i)%] cosh[(k − 1=2)%]

cosh(%=2) sinh(N%)
+

i
N

− 1

+ !(k − i − 1=2)
(
1− cosh[(k − i − 1=2)%]

cosh(%=2)

)}
: (45)

To compute the energy we introduce a new variable w̃ with components w̃k = wk − d
representing the p-dependent part of the strain 2eld w̃. Then (26) can be rewritten as

� =
1 + �
2�

d2 − a(d− wc)
l
N
+ �̃; (46)

where

�̃ =
1
N

(
1
2
Bw̃− q

)
· w̃ (47)

is the contribution due to phase changes. Observing that in equilibrium

�̃ =− 1
2N

q · w̃
and using (32) to eliminate q, we obtain

� =
1 + �
�

{
1
2
d2 − ((d− wc)

l
N
+

(2

2N
Jp · p

}
; (48)

where the kernel J is given by

Jki =
sinh[(N − i)%] sinh[%k]

sinh(N%) sinh %
+ k

(
i
N

− 1
)

+ !(k − i − 1)
[
k − i − sinh[(k − i)%]

sinh %

]
: (49)

For a given distribution of phases the loading parameter d cannot take arbitrary values
since the strains must satisfy the constraint

pi(wi − wc)¡ 0; pi(wi+1 − wc)¿ 0 for i :pi �= 0: (50)

Conditions (50) generate bounds on d(i1; i2; : : : ; in), where i1; i2; : : : ; in are locations of
the phase boundaries, parameterizing a particular metastable branch. For example, if
n= 1 we obtain the limits d−(i)¡d(i)¡d+(i), where

d±(i) = wc + (

{
sinh[(N − i)%] cosh[(i ± 1=2)%]

cosh %
2 sinh(N%)

+
i
N

− 1
}
: (51)

Formulae (43), (48) and (51) describing single-interface solutions are illustrated in
Fig. 4. An equilibrium branch parametrized by i begins at d= d−(i), where wi = wc,
and terminates at d = d+(i), where wi+1 = wc. In the interval d−(i)¡d¡d+(i) the
force is linear, while the energy is quadratic. Due to the symmetry of the problem, the
ith branch is indistinguishable from the (N − i)th branch.
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Equilibria with two interfaces are illustrated in Fig. 5 for a chain with N = 6.
Notice that unlike the case without NNN interactions (e.g. Puglisi and Truskinovsky,
2002b), here not only the volume fractions but also the actual locations of the interfaces
distinguish the branches. For example, the blow-up in Fig. 5b shows that the energy of
the branch p=(0 −1 0 1 0 0) is higher than the energy of a branch p=(−1 0 1 0 0 0)
although both branches have the same fraction of phase II.
To 2nd the global minimum of the energy we can 2rst minimize among metastable

solutions with a given number of interfaces n. The resulting lower envelopes �̂(n; d)
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are shown in Fig. 6 for N=6 and n6 4. One can see that the single-interface solutions
have the lowest energy, which is expected since our choice of nonlocal interactions
leads to the penalization of interfaces. Similar observation has been made by Rogers
and Truskinovsky (1997) for a discrete model with long-range forces.

5. Peierls-Nabarro landscape

To understand the degree of relative stability of various metastable states we need
to evaluate the energy barriers. Since con2gurations with at most one interface are
expected to have the lowest energy, it is instructive to start the analysis with the
corresponding section of the energy landscape. By focusing on the con2gurations with
a single phase boundary we obtain an analog of the Peierls-Nabarro landscape known
in the theory of dislocations; it is also consistent with experimental observations for
martensitic materials (e.g. Krishnan, 1985).
Consider a generic metastable con2guration with a single phase boundary at k = i.

To evaluate the barrier between this and the neighboring local minimum we need to
choose a path connecting the con2guration wk(i) to the con2guration wk(i + 1) with
one extra spring in phase II. Since the (i+1)th spring must change phase, it is natural
to choose the strain wi+1 as a parameter and minimize the total energy with respect to
all wk with k6 i and k¿ i + 2. We obtain the system of equations

(
1 +

1
2�

)
wk +

1
4�
(wk+1 + wk−1) =

{
F + a for k6 i

F for k¿ i + 2;
(52)

which must be supplemented by the boundary conditions (2) and (6).
The con2gurations satisfying (52), (2) and (6) have the lowest energy among all

states with a given wi+1. This follows from the positive de2niteness of the matrix
B(i+1) obtained from (7) by deleting the (i + 1)th row and the (i + 1)th column. It is
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convenient to write the explicit representation for these con2gurations by using instead
of wi+1 another parameter +:

wk(+) =




d− (
{ +
N

− 1 + C1(sinh(%k)− sinh(%(k − 1)))
}
; k6 [+] + 1

d− (
{ +
N
+ C2(e%k − e%(k−1) − e%(2N−k) + e%(2N−k+1))

}
; k¿ [+] + 1;

(53)

where [+] denotes the integer part of +. It can be directly checked that (53) solves (52)
for k6 [+] and k¿ [+] + 2, with [+] = i and the total force F given by

F =
1 + �
�

(
d− +

N
(
)
: (54)

By matching the strains at k= i+1=[+]+1 and imposing (2), we compute the values
of the constants

C1 =
2{e(2N−[+])%[+− [+]− e%(+− [+]− 1)]− e%([+]+1)[+− [+]− 1− e%(+− [+])]}

(e2% − 1)(e2N% − 1)

and

C2 =
2{(+− [+]) sinh[([+] + 1)%]− (+− [+]− 1) sinh[[+]%]}

(e2% − 1)(e2N% − 1) :

In particular, we obtain an explicit relation between the parameters wi+1 and +:

w[+]+1(+) = d− (
( +
N

− 1
)
+ C1(sinh[([+] + 1)%]− sinh[[+]%]): (55)

One can see that parameter wi+1 oscillates as the function of i with period 1, while +
increases monotonically. Since the integer values of + correspond exactly to metastable
con2gurations, the function �(+) obtained by substituting (53) in (46) is exactly the
Peierls-Nabarro (PN) potential of our system. In order to move from one valley of this
potential at + = i to the neighboring one at + = i + 1 the system must overcome the
Peierls barrier. It is located at += +i de2ned by

wi+1(+i) = wc: (56)

The height of the Peierls barrier ,�i→i+1 =�(+i) −�(i) can be explicitly computed
from (46) and (47).
The typical structure of the PN landscape is illustrated in Fig. 7 for a chain with

N = 10. One can see that at d = 0:5 the metastable con2gurations correspond to the
integer values + = 2 (or 3), + = 1 (or 4), + = 0, + = 5 and + = 6. The corresponding
strain pro2les are shown in Fig. 8 for the metastable states +=0, +=1 and +=2 and
for the saddle point con2gurations with += +0 and += +1.
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Fig. 7.

6. Propagation threshold and nucleation peak

It is realistic to assume that the system driven by external loading d remains in a
local minimum con2guration until the minimal energy barrier around this state reaches
a critical threshold H determined by the level of Nuctuations (imperfections). In partic-
ular, the maximal delay strategy, associated with the gradient-Now dynamics, requires
that the system stays on a given metastable branch until it becomes absolutely unstable
(H = 0) and then evolves towards the nearest local minimum along the path of steep-
est descent. Various resulting force-strain paths for the NN system are discussed in
Puglisi and Truskinovsky (2002a, b). For the NNN system the two characteristic paths
with and without a threshold are shown in Fig. 9. One can see that as the elongation
increases the system initially stays in the trivial con2guration but eventually reaches
the state where the smallest energy barrier becomes equal to H . Then nucleation takes
place and the system escapes from the local minimum through the 2rst saddle point
with a subcritical height. After the nucleation event the phase boundary propagates
along the chain in a stick-slip fashion, with the system getting temporarily trapped in
each of the single interface metastable equilibria (parametrized by i). The resulting
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graphs of the force F(d) exhibit characteristic serrations. A visible nucleation peak
originates from the fact that the nucleation event involves two springs transforming at
once while the propagation involves only one spring changing phase at a time.
To understand why the 2rst two springs change phase simultaneously, which never

happens in the NN system (Puglisi and Truskinovsky, 2002a, b), we need to compare
the height of the energy barrier for the transition 0→ 1 with the height of the barriers
for several subsequent transitions. The height of the barriers is shown in Fig. 10 for
the chain with N = 10 and � =−2. Notice that the barrier for the transition 1→ 2 is
lower than the barrier for the transition 0 → 1, moreover, the barrier 1 → 2 vanishes
at d+(1) and beyond this point the branch i = 1 does not exist any more (transition
0 → 1 deteriorates into 0 → 2). A similar calculation for N = 20 and � = −2 shows
that the barrier for the transition 0→ 1 is higher than two subsequent barriers for the
transitions 1→ 2 and 2→ 3; as the last two barriers vanish at suEciently large d, the
transition 0 → 1 2rst deteriorates into 0 → 2 and then into 0 → 3. One can see that
in this case nucleation event involves simultaneous transformation of three springs.
Our computations show that “massive” nucleation and the associated nucleation peak

phenomenon occur only when NNN interactions are suEciently strong (large |�−1|).
Physically, it is the consequence of the nonlocal character of the model. The nonlocality
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does not have to be of the NNN type: a diHerent nonlocal model with long-range
interactions also exhibits the nucleation peak (Rogers and Truskinovsky, 1997).
To understand what is going on, we observe that before the nucleation all springs

are stretched uniformly, whereas after the nucleation, due to the presence of the in-
ternal boundary layers, the springs that are closer to the phase boundary have higher
strain and hence are closer to the critical threshold than the springs far away. This
facilitates the subsequent switching events and results in the smaller force required for
the propagation of a phase boundary comparing to nucleation. In the system without
nonlocality (� = −∞), all springs outside the interface are stretched uniformly, and
therefore the propagation of the interface does not take place until the critical strain
is reached in all springs simultaneously. In this case the nucleation peak is absent:
phase propagation eHectively reduces to successive nucleation events in the shorter and
shorter chains which requires the same critical force.
To obtain the upper bound for the size of the nucleation peak it is enough to consider

the maximum delay strategy. In our model barrierless nucleation takes place when the
force reaches the spinodal limit Fmax = (1 + �−1)wc. On the other hand, the advance
of the interface from k = i to k = i + 1 takes place at F(i; N ) = FM + FP(i; N ), where

FM =
1 + �
�

wc − a
2

(57)

is the Maxwell force and FP(i; N ) is the Peierls force given by

FP(i; N ) = F(d+(i); i)− FM = a

(
cosh[( 12 + i)%] sinh[%(N − i)]

cosh %
2 sinh(N%)

− 1
2

)
: (58)

One can show that the function FP(i; N ) depends on i weakly away from the narrow
boundary layers near i = 1 and i = N − 1. In the limit of in2nite N the Peierls force
(58) approaches the constant value (Truskinovsky and Vainchtein, 2003)

lim
N→∞

FP(i; N ) = FP =
a
2

√
1 + �
�

: (59)

As the NNN interactions get weaker (� → −∞), the Peierls force tends to the spinodal
limit Fmax − FM and the nucleation peak disappears.
The con2guration of the resulting hysteresis loop in the continuum limit is shown in

Fig. 11. Although the serrations disappeared, the nucleation peak remains 2nite with
the force dropping by the amount

/=
1 + �
�

wc − FP =
1
2
a

(
1−

√
1 + �
�

)
: (60)

This quantity is positive as long as −∞¡�¡− 1 and is always less than a=2—the
diHerence between the spinodal and Maxwell forces. The half-height of the narrow part
of the hysteresis loop is given in the continuum limit by (59).
To estimate the number of springs involved in the nucleation event, we recall that

the nucleation always takes place at d = wc. Therefore we must 2nd the metastable
branch with the smallest nonzero i which is de2ned at this value of d. Setting d± from
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(51) equal to wc, we obtain the equation for the number of participating springs i
sinh[(N − i)%] cosh[(i ± 1=2)%]

cosh %
2 sinh(N%)

= 1− i
N
: (61)

For suEciently large N and generic � the solution of this equation can be approximated
by

inuc =
N

1 + e%
: (62)

In particular, (62) implies that in the continuum limit the number of springs involved
in the nucleation event is in2nite. The dimensionless size of the transformed portion
of the chain (martensite band) remains 2nite:

l0 =
1

1 + e%
: (63)

When nonlocal interactions are absent (�=−∞), the nucleus contains only one spring
and l0 = 0.
To illustrate the eHect of the outside boundary layers on the nucleation phenomenon

we replace the special boundary conditions (6), which suppress boundary layers, by
the “zero-moment” conditions (4) with �B = 0. In this case the zero-interface solution
is no longer trivial because the strain decreases exponentially near the boundaries (see
Fig. 12b).
Suppose that the chain is originally in phase I. When the critical value d = d+(0)

is reached, the strains in the middle of the chain pass the threshold w = wc and the
one-phase solution becomes unstable (point A in Fig. 12). This leads to the formation
of either two symmetric interfaces in the center (point C in Fig. 12) or of a single
interface near one of the boundaries (point B in Fig. 12). Our computations show
that the single-interface con2guration B has a lower energy than the two-interface
con2guration C. However, during transition from A to C only two springs (7th and
9th) transform into phase II, while transition from A to B requires transformation of
at least three springs which are also initially farther below the threshold. As a result,
transition from A to B may encounter a higher barrier than transition from A to C, and
then the nucleation will take place in the interior of the chain. While this possibility
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can be investigated rigorously, for the subject of this paper it is enough to mention
that the nucleation peak survives in both cases (see Fig. 12a).

7. Veri*cation of the model

The explicit formulae from the previous section can be used to obtain bounds on
the value of the nonlocality measure �. The expression for � from (10) and (60) has
the form

�=
E
4

[
1−

(
1− 2/

E(

)−2]
; (64)

where E = K + 4� is the macroscopic elastic modulus of the homogeneous chain and
( is the macroscopic transformation strain. The magnitude of the stress drop at the
peak / and the transformation strain ( are available from the experimental data of
Shaw and Kyriakides (1995) on NiTi wires. For instance, in the experiment conducted
at 70◦ and the loading rate 4× 10−5 s−1, the measurements gave /= 0:039 GPa, and
(=3:97%. The Young’s moduli of the two participating phases are diHerent, E=56:7
and 27:5 GPa. By using two separate values we estimate � to be between −1:1 and
−1 GPa, which implies that � is in the range −14:7¡�¡− 7:3. Similar comparison
of experiment and theory for CuAlNi yields �=−33:4 (Truskinovsky and Vainchtein,
2003).
To obtain an independent estimate of � we can assume that the interactions bet-

ween particles are governed by the Lennard-Jones potential. In this case we have
�	1(r=�− 1) = 2�	2(r=2�− 1) =U (r), where 	1(w) and 	2(w) are the energies of the
NN and NNN springs, respectively, and U (r) has the form

U (r) =
K�
72

[( �
r

)12
− 2

( �
r

)6]
: (65)

The coeEcients in (65) are chosen to ensure that the elastic modulus at equilibrium
r=� equals K . Linearizing around the unstretched homogeneous state with the spacings
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r = � and r = 2�, we obtain (Charlotte and Truskinovsky, 2002)

� =
U ′′(�)
4U ′′(2�)

:

This yields � = −56:5. Taking E = 56:7 GPa as the value of the Young’s modulus
we obtain �=−0:255 GPa which despite the rather rigid form of the potential (65) is
within a reasonable range from the values obtained above.
Finally, we can use the above estimates of � to predict the initial size of the marten-

site band L0. By taking −14:7¡�¡− 7:3 we obtain 0:001¡L0=L¡ 0:005, where L
is the size of the specimen. While we could not 2nd direct experimental measure-
ments for L0 in the literature, this parameter is usually estimated to be of the order
of the specimen’s diameter D (e.g. Sun and Zhong, 2000). This would be in agree-
ment with our estimate since for thin NiTi wires used in experiment D=L∼0:0025 (Leo
et al., 1993).

8. Strain-gradient approximation

Now we can compare the exact results obtained in the discrete model with the predic-
tions of the quasi-continuum strain gradient approximation which neglects discreteness
but retains the original internal length scale. To obtain the approximate model we
temporarily reintroduce dimensional variables and perform the Taylor expansion in the
small parameter �=L=N . By preserving the 2rst nonlocal term in the energy functional
we obtain

� =
∫ L

0

[
	(w) +

1
2
A�2(w′)2

]
dx; (66)

where we omitted nonessential null Lagrangian contributions and introduced

A=− 1
12
(K + 16�): (67)

The functional (66) must be minimized subject to the constraint∫ L

0
w(x) dx = d (68)

and the clamping boundary conditions

w′(0) = w′(L) = 0 (69)

which represent the continuum analog of (6). The Euler-Lagrange equations can be
written in the form 	′(w)−A�2w′′=F (analog of (3)), where 	′(w)=Ew−Ka!(w−wc).
Recall that E = K + 4� is the macroscopic modulus.
The trivial solution of the Euler-Lagrange equations w(x) = d=L is stable whenever

the second variation of energy

,2� =
∫ L

0
(Ev2 + �2Av′2) dx (70)

21



is positive for all v(x) �= 0 satisfying the constraint∫ L

0
v dx = 0: (71)

The zero eigenvalue problem determining the stability boundaries reduces to solving
linear equation Ev′ − �2Av′′′ = 0. The general nontrivial solution of this equation com-
patible with (71) takes the form

v(x) = cos
�nx
L

;

where n¿ 1 is an integer. The solution exists for

E +
(�n�

L

)2
A= 0: (72)

If A = 0, the stability condition obviously reduces to E¿ 0. When A¿ 0, we obtain
E + (�n�=L)2A¿E + (��=L)2A and the trivial state is stable if and only if

E +
(��
L

)2
A¿ 0: (73)

The instability takes place through the growth of a long-wave mode v = cos(�x=L).
When A¡ 0, the trivial solution is always unstable because one can always 2nd large
enough n at which E+(�n�=L)2A¡ 0; the corresponding instability is of the short-wave
type.
To compare the stability limits in the strain gradient model with the ones obtained

in the discrete model, we shall 2rst rewrite them in terms of dimensionless �, and
replace L=� by N . In the case when A¿ 0, we obtain

− 4¡�¡− 1− �2=3N 2

1− �2=12N 2
(�¡ 0): (74)

Recall that in the discrete case the corresponding interval is −∞¡�¡ − cos2 �=2N
(�¡ 0). It is easy to see that for large N both models predict the same upper boundary
� = −1 (E = 0), which means that the strain-gradient model captures the onset of
macroscopic instability in the discrete model rather well.
As we showed above, when A¡ 0 the stability range does not exist due to the

short-wave instability. However, in view of the underlying discrete structure, a short-
wave instability is unphysical if its wave length is less than the length scale of the
lattice �. If we assume that the mode number cannot exceed n = N , we obtain the
following stability condition:

E + �2A¿ 0; (75)

which in terms of � can be written as a combination of two intervals,

�¡− 4 (�¡ 0) (76)

and

− 1− �2=3
1− �2=12

¡�¡∞ (�¿ 0): (77)
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While the former stability range obviously complements (74), the latter has its own
analog in the discrete model, −sin2 �=2N ¡�¡∞ (�¿ 0). Observe that the lower
limit in the strain-gradient model is signi2cantly higher than in the discrete model sug-
gesting that even with the restriction on the minimum wave length, the strain-gradient
approximation grossly exaggerates the instability domain on the side of the short-wave
instability. The general trend, however, is predicted correctly: as in the discrete model,
the short-wave instability in the gradient model develops before the strain enters the
macroscopic spinodal region (see also Bardenhagen and Triantafyllidis, 1994).
Fig. 13 summarizes the stability analysis in both the K − � and � − N−1 planes.

It should be compared with the analogous stability diagrams for the discrete model
(Fig. 2).
Now consider the nontrivial solutions of the variational problem (66), (68). As

shown in Carr et al. (1984), the strain-gradient model allows for local minima with at
most one interface. For the piecewise linear model all these metastable con2gurations
can be obtained analytically (Truskinovsky and Zanzotto, 1996). A representative pic-
ture is shown in Fig. 14, with the parameters chosen to match those for the discrete
model with N = 20. We observe that while the strain-gradient approximation captures
the structure of the absolute minimizers of the discrete problem, it fails to reproduce
the rich structure of the metastable equilibria which in the quasi-continuum model all
collapse into a single branch. This is the reason why the strain-gradient approxima-
tion does not generate a realistic hysteresis. Also, while all multiple-interface equilibria
of the discrete model are metastable, con2gurations with more than one interface are
absolutely unstable in the quasi-continuum approximation. This diHerence is due to
the fact that in the discrete model one cannot vary the volume fraction of phases
continuously, and thus certain perturbations that make multiple-interface solutions un-
stable in the continuum case are impossible in the discrete model. Finally, we remark
that the estimate −14:7¡�¡− 7:3 obtained in the previous section from the experi-
mental data implies that A¡ 0, contrary to the typical assumption in the strain-gradient
models that the coeEcient A is positive.
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9. Conclusions

Our study clari2es why the behavior of the local and nonlocal systems with bi-stable
elements is diHerent. In the case of nonlocal interactions the elements around the
phase-boundary are “pre-conditioned” due to the presence of the boundary layers. This
results in smaller energy barriers for the propagation of the phase boundary compared
to the local model and gives rise to the 2nite mismatch between the spinodal stress and
the Peierls stress. Another diHerence is that in the nonlocal models the nucleation event
typically involves transformation of more than one element. This produces nucleation
peak which has been long known from experiment. We showed that the nucleation
peak persists in the continuum limit where it manifests itself through an instantaneous
formation of a 2nite band scaled with the length of the sample. Although the nu-
cleation peak is captured by the strain-gradient approximation, the resulting shape of
the hysteresis loop is unrealistic. This suggests that the nonlocal coupling in the actual
physical system is weaker than what is required for the gradient model to be applicable.
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