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A typical stress-strain relation for martensitic materials exhibits a mismatch between the nucleation and propagation thresholds leading to the formation of the nucleation peak. We develop an analytical model of this phenomenon and obtain speciÿc relations between the macroscopic parameters of the peak and the microscopic characteristics of the material. Although the nucleation peak appears in the model as an interplay between discreteness and nonlocality, it does not disappear in the continuum limit. We verify the quantitative predictions of the model by comparison with experimental data for cubic to monoclinic phase transformation in NiTi.

Introduction

In displacement-controlled experiments shape memory alloys and other martensitic materials display a nucleation peak: prior to nucleation of a new phase the load reaches a maximum but then drops to a distinctly lower value. The subsequent plateau is associated with phase boundaries propagating along the specimen at essentially constant stress [START_REF] Lexcellent | Internal loops in pseudoelastic behaviour of ti-ni shape memory alloys: experiment and modelling[END_REF]Shaw andKyriakides, 1995, 1997b;[START_REF] Sun | An inclusion theory for the propagation of martensite band in NiTi shape memory alloy wires under tension[END_REF]. The nucleation peak is not unique to transformational plasticity and is also observed during initiation of a conventional plastic deformation in mild steels [START_REF] Butler | L uders front propagation in low carbon steels[END_REF][START_REF] Hall | Yield Point Phenomena in Metals and Alloys[END_REF][START_REF] Kyriakides | On the propagation of luders bands in steel strips[END_REF][START_REF] Froli | A mechanical model for the elastic-plastic behavior of metallic bars[END_REF], where it has been attributed to the fact that the stress required to release the trapped dislocations is higher than the stress needed to sustain their motion [START_REF] Cottrell | Dislocation theory of yielding and strain ageing of iron[END_REF][START_REF] Johnston | Dislocation velocities, dislocation densities and plastic ow in lithium uoride crystals[END_REF]. For martensitic materials the nucleation-induced load drop has been observed in 3D numerical simulations based on various plasticity-like phenomenological models (Shaw and Kyriakides, 1997a;[START_REF] Kyriakides | On the propagation of luders bands in steel strips[END_REF][START_REF] Sun | An inclusion theory for the propagation of martensite band in NiTi shape memory alloy wires under tension[END_REF] but due to the complexity of these models, the physical parameters responsible for the size of the peak have not been identiÿed. At a qualitative level, the nucleation peak in these materials has been associated with the presence of su ciently ÿne grains and heuristically linked to the strong locking of phase boundaries and the relative ease of their glide upon release (Shaw andKyriakides, 1995, 1997b).

In this paper we develop an analytical model of the nucleation peak phenomenon in martensites: our model supports the intuition developed in plasticity theory and adapts it to the case when the principal carriers of inelastic deformation are phase boundaries. Speciÿcally, we consider a prototypical mass-spring system consisting of rigid elements (crystal planes) connected by bi-stable elastic springs representing transforming shear layers. To mimic the three-dimensional nature of the actual problem, we complement the up-down-up interactions between the nearest neighbors (NN) by a harmonic interaction of the next-to-nearest neighbors (NNN). The bi-stable discrete models without NNN interactions (e.g. M uller [START_REF] Villaggio | A model for an elastic-plastic body[END_REF][START_REF] Fedelich | Hysteresis in discrete systems of possibly interacting elements with a two well energy[END_REF]Puglisi andTruskinovsky, 2000, 2002a, b) capture many important features of transformational plasticity but fail to predict the peak phenomenon. Recent numerical studies of the models incorporating NNN interactions showed that the nucleation peak can be recovered (e.g. [START_REF] Ye | E ect of phonon anomalies on the shear response of martensitic crystals[END_REF][START_REF] Triantafyllidis | On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models[END_REF][START_REF] Rogers | Discretization and hysteresis[END_REF][START_REF] Froli | A mechanical model for the elastic-plastic behavior of metallic bars[END_REF][START_REF] Pagano | A simple model for phase transformations: from discrete to the continuum problem[END_REF]; none of these models, however, have been developed analytically to the extent that they could explain the necessity of the peak phenomenon and identify the microparameters controlling the size of the stress drop.

We begin by ÿnding the limits of instability of a homogeneous state and determine an analytical expression for the nucleation threshold in the most general case. In order to obtain an analytical characterization of the propagation threshold we use a piecewise linear approximation for the NN interactions. This simpliÿcation allows us to reconstruct the non-equilibrium Peierls-Nabarro landscape for the propagating phase boundaries and compute the martensitic analog of the Peierls stress. We show that the presence of nonlocal interactions in the discrete model makes nucleation and propagation thresholds di erent and then prove that the nucleation peak does not disappear in the continuum limit. An important question is whether the quasi-continuum strain-gradient approximation of the discrete model [START_REF] Mindlin | Second gradient of strain and surface-tension in linear elasticity[END_REF][START_REF] Triantafyllidis | On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models[END_REF] is capable of capturing the peak phenomenon. We show that the nucleation threshold is approximated well only in the case of long-wave instability (see also [START_REF] Triantafyllidis | The in uence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models[END_REF] and that although the peak is captured, the stress drop is grossly exaggerated. Finally, we verify the quantitative prediction of the model by using the experimental data for cubic to monoclinic phase transformation in NiTi wires. The comparison with experiment leads to the bounds for the measure of nonlocality which are in a good agreement with the independent estimates based on a realistic interatomic potential.

The proposed model stays in the same prototypical relation to transformational plasticity as the well known Frenkel-Kontorova model to classical plasticity. A nontrivial formal correspondence between the two models in the case of inÿnite systems has been established by [START_REF] Truskinovsky | Peierls-Nabarro landscape for martensitic phase transitions[END_REF].

The structure of the paper is as follows. In Section 2 we formulate the discrete problem for a ÿnite system and specify the boundary conditions. In Section 3 we analyze stability of the single-phase equilibrium in the general setting discovering the possibility of both macro and microinstabilities. In Section 4 we introduce a piecewise linear model for the local interactions and obtain an explicit representation of a generic metastable equilibrium state. In Section 5 we study the energy barriers between the neighboring metastable states and show that propagation always reduces to a succession of transformations inside individual elements, while nucleation can involve transformation of several elements at once. Section 6 contains the derivation of the explicit formulae for the size of the nucleation peak in both discrete and continuum problems. In Section 7 we establish a correspondence between the microparameters of the lattice and the experimental measurements of both the stress drop and the size of the nucleation band. Finally, Section 8 contains comparison of the discrete and strain-gradient models showing that the agreement is at most qualitative. The conclusions are summarized in Section 9.

The model

Consider a system of N + 1 particles linked to their nearest and next-to-nearest neighbors by elastic springs (see Fig. 1). Let u k , 0 6 k 6 N , be the displacements of the particles with respect to a load-free homogeneous reference conÿguration with spacing . Denote the strain in the kth NN spring by w k = (u k -u k-1 )= . Then the total energy of the system can be written as

= N k=1 1 (w k ) + 2 N -1 k=1 2 w k+1 + w k 2 + B (w 1 ; w N ); (1) 
where 1 (w) and 2 (w) are the energy densities of the NN and NNN interactions, respectively. The term B corresponds to the energy of the boundary elements. We assume that the chain is placed in a hard device with the total displacement d:

i i-1 i+1 0 1 N-1 N ε 2ε NNN spring NN spring
u N -u 0 = N k=1 w k = d:
(2)

Due to the nonlocality of the model, the boundary condition (2) must be complemented by other constraints. For instance, to mimic an "extra hard device" one can additionally impose conditions w 1 = 0 and w N = 0, making the term B irrelevant. Alternatively, one may consider a "zero-moment device" by assuming that B = 0. Let f i (w) = i (w), i = 1; 2, denote the forces in NN and NNN springs, respectively. The equations governing the equilibrium of the interior particles with 2 6 k 6 N -1 have the form

f 1 (w k ) + f 2 w k+1 + w k 2 + f 2 w k + w k-1 2 = F; ( 3 
)
where F is the total force in the system. The natural boundary conditions read

f 1 (w 1 ) + f 2 w 2 + w 1 2 + 1 @ B @w 1 = F; f 1 (w N ) + f 2 w N + w N -1 2 + 1 @ B @w N = F; (4) 
An additional assumption adopted in what follows, B = 2 (w 1 ) + 2 (w N ) ;

(5) means that the boundary NNN springs are cut in half and reconnected parallel to the NN springs (see the dashed springs in Fig. 1). The formal advantage of this choice of B is that the boundary equations ( 4) can be included into the bulk equations (3) if we additionally assume the existence of ÿctitious 0th and (N + 1)th springs satisfying

w 0 = w 1 ; w N +1 = w N : (6) 
The real advantage of (4) and ( 5), however, is that the corresponding boundary conditions ensure the existence of a trivial solution with the uniform strain distribution [START_REF] Triantafyllidis | On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models[END_REF][START_REF] Charlotte | Linear elastic chain with a hyper-pre-stress[END_REF]. While in the rest of the paper we will be using mostly (5), the e ect of switching to B = 0 is brie y discussed in Section 6.

Nucleation threshold

It is easy to see that for arbitrary spring potentials the trivial solution of the problem (3), (4) and ( 5) is given by w k = d=L, where L = N . The homogeneous response of the system is then characterized by the formulae F = f 1 (d=L) + 2f 2 (d=L) and = L( 1 (d=L) + 2 2 (d=L)). To analyze the stability of this solution we introduce the tangential moduli of NN and NNN springs: K(w) = 1 (w) and (w) = 2 (w)=2.

The homogeneous conÿguration is stable if and only if the quadratic form Bv • v with

B =              K + 3 0 : : : 0 K+ 2 . . . 0 0 . . . . . . . . . 0 . . . 0 K + 2 0 : : : 0 K+ 3 :              (7) 
is positive deÿnite for all v = 0 such that

N k=1 v k = 0: (8)
Finding the boundaries of stability in the space of parameters is important for the subject of the paper because they coincide with the limits of a barrierless nucleation. Before addressing the stability problem systematically, we observe that K + 4 ¿ 0 and 6 0 are su cient for stability. Indeed, in this case all terms in the quadratic form

Bv • v = (K + 4 ) N k=1 v 2 k - N -1 k=1 (v k+1 -v k ) 2 : (9) 
are nonnegative. Similarly, by writing the quadratic form as

Bv • v = K N k=1 v 2 k + N -1 k=1 (v k+1 + v k ) 2 + 2 (v 2 1 + v 2 N ):
we obtain that conditions K ¿ 0 and ¿ 0 are also su cient for stability. In terms of the main nondimensional parameter of the problem,

= K 4 ; (10) 
these stability intervals can be written as -∞ ¡ ¡ -1 and 0 ¡ ¡ ∞ and hence the instability limits are located in the interval

-1 6 6 0: (11)
To ÿnd the exact locations of the stability boundaries, consider the (zero) eigenvalue problem Bv = 0. In the bulk of the chain (1 6 k 6 N -1) this means

(K + 2 )v k + v k-1 + v k+1 = 0: (12)
On the boundaries we obtain

(K + 3 )v 1 + v 2 = 0; (13) (K + 3 )v N + v N -1 = 0: (14) 
The eigenvector v must be nonzero and satisfy (8). We seek solution in the form v k = k and obtain the characteristic polynomial 2 + (4 + 2) + 1 = 0: (15)

This means that 1; 2 = -1 -2 ± 2 ( + 1), and according to (11), we have to consider the following cases:

Special case = -1: Here 1 = 2 = 1 and v k = A 1 k + A 2 . The boundary equations ( 13) and ( 14) reduce to v 1 = v 2 and v N = v N -1 , implying that A 1 = 0 and thus v k = A 2 . The constraint (8) implies that A 2 = 0. Since there are no nontrivial solutions, there is also no stability change.

Special case = 0: Here 1 = 2 = -1 and v k = (A 1 k + A 2 )(-1) k . Applying ( 13) and ( 14), we obtain A 1 = A 2 = 0 which again means that there is no change of stability.

Generic case -1 ¡ ¡ 0. We ÿrst observe that in this interval 1; 2 can be written as 1; 2 = e ±i! ; where ! is deÿned by

= -cos 2 ! 2 : (16) 
Applying the boundary equation ( 13), we obtain (up to a multiple)

v k = cos[(k -1=2)!]:
The second boundary equation ( 14) implies 2 sin(!=2) sin(N!)=0, and since 0 ¡ ! ¡ , we obtain sin(N!) = 0 and

! = n N ; (17) 
for 1 6 n 6 N -1. All these solutions are nontrivial and satisfy (8). Therefore the instability of the trivial solution can take place at any of the bifurcation points

K + 4 cos 2 n 2N = 0:
The corresponding unstable modes are

v k = cos[(k -1 2 ) n N ]: (18) 
To locate the stability boundary, we begin with the case ¡ 0. Then

K + 4 cos 2 n 2N ¿ K + 4 cos 2 2N and hence K + 4 cos 2 2N ¿ 0 (19)
is both necessary and su cient for stability. The instability develops through the growth of the long-wave mode

v k = cos[(k -1 2 ) N ]:
As N tends to inÿnity, the unstable wave length also becomes inÿnite and (19) reduces to K + 4 ¿ 0. At ÿnite N we have K + 4 cos 2 2N ¿ K + 4 , meaning that the discrete homogeneous conÿguration may still be stable when the macroscopic modulus E = K + 4 is already negative. One can say that in the discrete problem the macroscopic instability is delayed due to the ÿnite size of the system (see also [START_REF] Triantafyllidis | On higher order gradient continuum theories in 1-D nonlinear elasticity. Derivation from and comparison to the corresponding discrete models[END_REF].

The situation is di erent when ¿ 0. In this case

K + 4 cos 2 n 2N ¿ K + 4 cos 2 (N -1) 2N = K + 4 sin 2 2N ;
and hence the necessary and su cient condition for stability is

K + 4 sin 2 2N ¿ 0: (20)
The instability develops through the growth of the short-wave mode

v k = (-1) k sin k -1 2 N :
In the limit of inÿnite N , the wave length approaches the interatomic distance. Also (20) becomes K ¿ 0, and since now K + 4 sin 2 ( =2N ) ¡ K + 4 , this microscopic instability develops before the macroscopic (or homogenized) system becomes unstable (see also [START_REF] Triantafyllidis | The in uence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models[END_REF]. In the context of martensitic phase transitions, this e ect may be linked to the observation of the pre-martensitic tweed microstructures [START_REF] Kartha | Disorder driven pretransitional tweed pattern in martensitic transformations[END_REF].

We now summarize the necessary and su cient conditions for stability of the trivial solution. In terms of elastic moduli K and we obtain the following stability intervals

K + 4 cos 2 2N ¿ 0; K + 4 sin 2 2N ¿ 0: (21)
In the limit of inÿnite N the inequalities (21) reduce to the known conditions K ¿ 0, K + 4 ¿ 0 (e.g. [START_REF] Mindlin | Second gradient of strain and surface-tension in linear elasticity[END_REF]. In terms of the nondimensional parameter the stability intervals take the form

¡ -cos 2 2N ( ¡ 0); ¿-sin 2 2N ( ¿ 0); (22)
which in the limit of inÿnite N gives ¡-1 ( ¡ 0) and ¿ 0 ( ¿ 0). The structure of the stability domain in the plane K -is illustrated in Fig. 2a for both ÿnite and inÿnite N ; in Fig. 2b, showing the plane -N -1 , we illustrate the dependence of the stability boundaries on the size of the system. For the NNN system with the "moment free" boundary conditions ( B = 0) similar analysis of the stability for trivial equilibria (which now have boundary layers) can be found in [START_REF] Charlotte | Linear elastic chain with a hyper-pre-stress[END_REF].

Nontrivial solutions and metastability

To model martensitic phase transitions, we assume that each NN spring has a double-well energy generating a non-monotone "up-down-up" force-strain relation depicted in Fig. 3. If the negative slope of the force-strain relation for the NN spring is su ciently steep, it is easy to show that the total strain can reach the threshold where the homogeneous phase is absolutely unstable. To study the resulting nucleation and the subsequent growth of the new phase, we need to describe the postcritical behavior of the system. More precisely, in the domain of loadings where trivial solution is unstable, we need to ÿnd the nontrivial solutions of the equilibrium equations (3) corresponding to either local or global minima of the energy.

Although the instability limits for the trivial solution can be found in the general case, we succeeded in obtaining a complete analytical description of the postcritical behavior only in the case when the functions f 1 (w) and f 2 (w) are either linear or piecewise linear. Speciÿcally, we considered

f 1 (w) = Kw for w ¡ w c K(w -a) for w ¿ w c (23) 
and

f 2 (w) = 2 w: (24) 
The parameters of the NN potential are the critical strain w c , transformation strain a and elastic modulus K (see Fig. 3). The linear NNN spring is characterized by the elastic modulus which will also be used as the measure of nonlocality. We assume that K ¿ 0 and ¡ 0, which is suggested by the linearization of the Lennard-Jones potential (see [START_REF] Charlotte | Linear elastic chain with a hyper-pre-stress[END_REF]; to ensure that independently of N the homogeneous states are stable in their domain of deÿnition, we also assume that K +4 ¿ 0. In terms of the nondimensional parameter , the assumptions on the moduli can be summarized as

-∞ ¡ ¡ -1: (25)
It is not hard to see that under these assumptions the microinstability is excluded while the macroinstability always takes place at w = w c .

For the piecewise linear model ( 23), ( 24) the total energy (1) reduces to

= 1 2 Bw • w -q • (w -w c ) ; (26) 
where the vector q k = KaÂ(w k -w ck ) prescribes distribution of phases, Â(x) is a unit step function and w ck = w c , k = 1; : : : ; N . The equilibrium equations (3) together with the boundary conditions (6) can then be rewritten as

Bw = F + q; ( 27 
)
where F k = F, k = 1; : : : ; N . To eliminate the redundant parameters we rescale the variables. By selecting L = N as the length scale and K as the scale of force, we deÿne

u k = u k N ; d = d N ; F = F K ; = KN ; B = 1 K B: (28) 
Unless specially mentioned, in what follows, we will be using only rescaled variables with the bars dropped. The dimensionless problem depends on the two main parameters: and N .

To ÿnd the metastable states we can simply prescribe the distribution of phases q and solve the linear problem ( 27). The resulting equilibrium conÿgurations are automatically local minimizers of the energy (26), because the sti ness matrix B is positive deÿnite. To obtain the global minima of the energy, we need additionally to minimize with respect to the phase geometry q.

The solution of the linear system ( 27) can be written as

w = B -1 F + B -1 q = w 0 + w 1 : (29) 
The ÿrst term in (29) corresponds to the uniform conÿguration with all springs in the ÿrst phase. Without explicitly computing B -1 one can see that

w 0 k = F 1 + : (30) 
It is convenient to express w 1 not in terms of the variables q, but in terms of their discrete derivatives p deÿned by

p i = q i+1 -q i a : (31) 
Notice that these relations can always be explicitly inverted, yielding

q k = q 1 + a N i=1 p i Â(k -i -1): (32) 
The physical meaning of the variables p i is clear from the representation (33)

p i =        1 if w i ¡ w c
To simplify the subsequent formulae we also set p N = 0.

In the interior nodes (2 6 k 6 N -1) w 1 k must satisfy the di erence equation

1 + 1 2 w 1 k + 1 4 (w 1 k+1 + w 1 k-1 ) = q 1 + a i p i Â(k -i -1): (34) 
We seek the general solution of (34) in the form

w 1 k = w h k + w in k ; (35) 
where w h k satisÿes the homogeneous equation and w in k is a particular solution. The general solution of the homogeneous problem can be represented [START_REF] Mickens | Di erence Equations: Theory and Applications[END_REF] as a linear combination of k 1 and k 2 , where 1; 2 are the roots of the characteristic polynomial (15). By writing 1; 2 = e ± , where = 2 arccosh | |;

(36) we obtain

w h k = C 1 e k + C 2 e -k : (37) 
The constants C 1 and C 2 are to be found from the boundary conditions (6).

To obtain a particular solution of (34) with q 1 = 0 and p j = 0 for j = i, we observe that in this case the right hand side of (34) is zero for k 6 i and constant for k ¿ i +1. Therefore we can write

w pi k =    w p- k = A 1 e k + A 2 e -k for k 6 i w p+ k = A 3 e k + A 4 e -k + a p i 1 + for k ¿ i; (38) 
and then "glue" the two sides together by requiring that

w p- i = w p+ i ; w p- i+1 = w p+ i+1 : (39) 
Since we are looking for a particular solution, we may always let A 1 = A 2 = 0, and thus consider w p- k = 0. Solving (39) for A 3 and A 4 , we obtain

w pi k = Â(k -i -1=2) 1 - cosh[(k -i -1=2) ] cosh( =2) ; where = a + 1 (40) 
is the macroscopic transformation strain. Finally, by superposition, we obtain the particular solution in the form

w in k = q 1 1 + + N i=1 p i Â(k -i -1=2) 1 - cosh[(k -i -1=2) ] cosh( =2) : (41) 
The general solution of ( 34) is now given by ( 35), ( 37) and (41). Applying the boundary conditions (6), we obtain

w 1 k = q 1 1 + + N i=1 p i sinh[(N -i) ] cosh[(k -1=2) ] cosh( =2) sinh(N ) + Â(k -i -1=2) 1 - cosh[(k -i -1=2) ] cosh( =2) : (42) 
Before combining ( 30) and ( 42), we notice that the relation between the force F and the total displacement d can be written in the form:

F = 1 + d - l N ; ( 43 
)
where l is the number of springs in phase II related to q 1 and p via

l = Nq 1 a + N i=1 (N -i)p i : (44) 
Finally, substituting (43), ( 44) into ( 29), ( 30) and ( 42), we obtain the representation for a generic metastable conÿguration

w k = d + N i=1 p i sinh[(N -i) ] cosh[(k -1=2) ] cosh( =2) sinh(N ) + i N -1 + Â(k -i -1=2) 1 - cosh[(k -i -1=2) ] cosh( =2) : (45) 
To compute the energy we introduce a new variable w with components wk = w k -d representing the p-dependent part of the strain ÿeld w. Then ( 26) can be rewritten as

= 1 + 2 d 2 -a(d -w c ) l N + ˜ ; (46) 
where

˜ = 1 N 1 2 B w -q • w (47)
is the contribution due to phase changes. Observing that in equilibrium ˜ = -1 2N q • w and using (32) to eliminate q, we obtain

= 1 + 1 2 d 2 -(d -w c ) l N + 2 2N Jp • p ; (48) 
where the kernel J is given by

J ki = sinh[(N -i) ] sinh[ k] sinh(N ) sinh + k i N -1 + Â(k -i -1) k -i - sinh[(k -i) ] sinh : (49) 
For a given distribution of phases the loading parameter d cannot take arbitrary values since the strains must satisfy the constraint

p i (w i -w c ) ¡ 0; p i (w i+1 -w c ) ¿ 0 for i : p i = 0: (50) 
Conditions (50) generate bounds on d(i 1 ; i 2 ; : : : ; i n ), where i 1 ; i 2 ; : : : ; i n are locations of the phase boundaries, parameterizing a particular metastable branch. For example, if n = 1 we obtain the limits d

-(i) ¡ d(i) ¡ d + (i), where d ± (i) = w c + sinh[(N -i) ] cosh[(i ± 1=2) ] cosh 2 sinh(N ) + i N -1 : (51) 
Formulae ( 43), ( 48) and (51) describing single-interface solutions are illustrated in Fig. 4. An equilibrium branch parametrized by i begins at d = d -(i), where w i = w c , and terminates at d = d + (i), where w i+1 = w c . In the interval d -(i) ¡ d ¡ d + (i) the force is linear, while the energy is quadratic. Due to the symmetry of the problem, the ith branch is indistinguishable from the (N -i)th branch. Equilibria with two interfaces are illustrated in Fig. 5 for a chain with N = 6. Notice that unlike the case without NNN interactions (e.g. Puglisi and Truskinovsky, 2002b), here not only the volume fractions but also the actual locations of the interfaces distinguish the branches. For example, the blow-up in Fig. 5b shows that the energy of the branch p=(0 -1 0 1 0 0) is higher than the energy of a branch p=(-1 0 1 0 0 0) although both branches have the same fraction of phase II.

d b (-1 1 0 0 0 0) (0 -1 1 0 0 0) (0 0 -1 1 0 0) (0 0 0 -1 1 0) (-1 0 1 0 0 0) (0 -1 0 1 0 0) (0 0 -1 0 1 0) (1 0 0 0 -1 0) (-1 0 0 1 0 0) (0 -1 0 0 1 0) (1 0 0 -1 0 0) (0 1 0 0 -1 0) p = (-1 0 0 0 1 0) (1 0 -1 0 0 0) (0 1 0 -1 0 0) (0 0 1 0 -1 0) (1 -1 0 0 0 0) (0 1 -1 0 0 0) (0 0 1 -1 0 0) (0 0 0 1 -1 0) (0 -1 0 1 0 0) (-1 0 1 0 0 0) Ψ Ψ (a) (b)
To ÿnd the global minimum of the energy we can ÿrst minimize among metastable solutions with a given number of interfaces n. The resulting lower envelopes ˆ (n; d) are shown in Fig. 6 for N =6 and n 6 4. One can see that the single-interface solutions have the lowest energy, which is expected since our choice of nonlocal interactions leads to the penalization of interfaces. Similar observation has been made by [START_REF] Rogers | Discretization and hysteresis[END_REF] for a discrete model with long-range forces.

Peierls-Nabarro landscape

To understand the degree of relative stability of various metastable states we need to evaluate the energy barriers. Since conÿgurations with at most one interface are expected to have the lowest energy, it is instructive to start the analysis with the corresponding section of the energy landscape. By focusing on the conÿgurations with a single phase boundary we obtain an analog of the Peierls-Nabarro landscape known in the theory of dislocations; it is also consistent with experimental observations for martensitic materials (e.g. [START_REF] Krishnan | Stress induced martensitic transformations[END_REF].

Consider a generic metastable conÿguration with a single phase boundary at k = i. To evaluate the barrier between this and the neighboring local minimum we need to choose a path connecting the conÿguration w k (i) to the conÿguration w k (i + 1) with one extra spring in phase II. Since the (i + 1)th spring must change phase, it is natural to choose the strain w i+1 as a parameter and minimize the total energy with respect to all w k with k 6 i and k ¿ i + 2. We obtain the system of equations

1 + 1 2 w k + 1 4 (w k+1 + w k-1 ) = F + a for k 6 i F for k ¿ i + 2; ( 52 
)
which must be supplemented by the boundary conditions ( 2) and ( 6). The conÿgurations satisfying ( 52), ( 2) and ( 6) have the lowest energy among all states with a given w i+1 . This follows from the positive deÿniteness of the matrix B (i+1) obtained from (7) by deleting the (i + 1)th row and the (i + 1)th column. It is convenient to write the explicit representation for these conÿgurations by using instead of w i+1 another parameter :

w k ( ) =      d - N -1 + C 1 (sinh( k) -sinh( (k -1))) ; k6 [ ] + 1 d - N + C 2 (e k -e (k-1) -e (2N -k) + e (2N -k+1) ) ; k ¿ [ ] + 1; (53) 
where [ ] denotes the integer part of . It can be directly checked that (53) solves ( 52) for k 6 [ ] and k ¿ [ ] + 2, with [ ] = i and the total force F given by

F = 1 + d -N : (54) 
By matching the strains at k = i + 1 = [ ] + 1 and imposing (2), we compute the values of the constants

C 1 = 2{e (2N -[ ]) [ -[ ] -e ( [ ] -1)] -e ([ ]+1) [ -[ ] -1 -e ( -[ ])]} (e 2 -1)(e 2N -1)
and

C 2 = 2{( -[ ]) sinh[([ ] + 1) ] -( -[ ] -1) sinh[[ ] ]
} (e 2 -1)(e 2N -1) :

In particular, we obtain an explicit relation between the parameters w i+1 and :

w [ ]+1 ( ) = d - N -1 + C 1 (sinh[([ ] + 1) ] -sinh[[ ] ]): (55) 
One can see that parameter w i+1 oscillates as the function of i with period 1, while increases monotonically. Since the integer values of correspond exactly to metastable conÿgurations, the function ( ) obtained by substituting (53) in ( 46) is exactly the Peierls-Nabarro (PN) potential of our system. In order to move from one valley of this potential at = i to the neighboring one at = i + 1 the system must overcome the Peierls barrier. It is located at = i deÿned by

w i+1 ( i ) = w c : (56) 
The height of the Peierls barrier i→i+1 = ( i ) -(i) can be explicitly computed from ( 46) and (47).

The typical structure of the PN landscape is illustrated in Fig. 7 for a chain with N = 10. One can see that at d = 0:5 the metastable conÿgurations correspond to the integer values = 2 (or 3), = 1 (or 4), = 0, = 5 and = 6. The corresponding strain proÿles are shown in Fig. 8 for the metastable states = 0, = 1 and = 2 and for the saddle point conÿgurations with = 0 and = 1 . 

Propagation threshold and nucleation peak

It is realistic to assume that the system driven by external loading d remains in a local minimum conÿguration until the minimal energy barrier around this state reaches a critical threshold H determined by the level of uctuations (imperfections). In particular, the maximal delay strategy, associated with the gradient-ow dynamics, requires that the system stays on a given metastable branch until it becomes absolutely unstable (H = 0) and then evolves towards the nearest local minimum along the path of steepest descent. Various resulting force-strain paths for the NN system are discussed in Puglisi and Truskinovsky (2002a, b). For the NNN system the two characteristic paths with and without a threshold are shown in Fig. 9. One can see that as the elongation increases the system initially stays in the trivial conÿguration but eventually reaches the state where the smallest energy barrier becomes equal to H . Then nucleation takes place and the system escapes from the local minimum through the ÿrst saddle point with a subcritical height. After the nucleation event the phase boundary propagates along the chain in a stick-slip fashion, with the system getting temporarily trapped in each of the single interface metastable equilibria (parametrized by i). The resulting graphs of the force F(d) exhibit characteristic serrations. A visible nucleation peak originates from the fact that the nucleation event involves two springs transforming at once while the propagation involves only one spring changing phase at a time.

To understand why the ÿrst two springs change phase simultaneously, which never happens in the NN system (Puglisi and Truskinovsky, 2002a, b), we need to compare the height of the energy barrier for the transition 0 → 1 with the height of the barriers for several subsequent transitions. The height of the barriers is shown in Fig. 10 for the chain with N = 10 and = -2. Notice that the barrier for the transition 1 → 2 is lower than the barrier for the transition 0 → 1, moreover, the barrier 1 → 2 vanishes at d + (1) and beyond this point the branch i = 1 does not exist any more (transition 0 → 1 deteriorates into 0 → 2). A similar calculation for N = 20 and = -2 shows that the barrier for the transition 0 → 1 is higher than two subsequent barriers for the transitions 1 → 2 and 2 → 3; as the last two barriers vanish at su ciently large d, the transition 0 → 1 ÿrst deteriorates into 0 → 2 and then into 0 → 3. One can see that in this case nucleation event involves simultaneous transformation of three springs.

Our computations show that "massive" nucleation and the associated nucleation peak phenomenon occur only when NNN interactions are su ciently strong (large | -1 |). Physically, it is the consequence of the nonlocal character of the model. The nonlocality does not have to be of the NNN type: a di erent nonlocal model with long-range interactions also exhibits the nucleation peak [START_REF] Rogers | Discretization and hysteresis[END_REF].

To understand what is going on, we observe that before the nucleation all springs are stretched uniformly, whereas after the nucleation, due to the presence of the internal boundary layers, the springs that are closer to the phase boundary have higher strain and hence are closer to the critical threshold than the springs far away. This facilitates the subsequent switching events and results in the smaller force required for the propagation of a phase boundary comparing to nucleation. In the system without nonlocality ( = -∞), all springs outside the interface are stretched uniformly, and therefore the propagation of the interface does not take place until the critical strain is reached in all springs simultaneously. In this case the nucleation peak is absent: phase propagation e ectively reduces to successive nucleation events in the shorter and shorter chains which requires the same critical force.

To obtain the upper bound for the size of the nucleation peak it is enough to consider the maximum delay strategy. In our model barrierless nucleation takes place when the force reaches the spinodal limit F max = (1 + -1 )w c . On the other hand, the advance of the interface from k = i to k = i + 1 takes place at F(i; N ) = F M + F P (i; N ), where

F M = 1 + w c - a 2 (57) 
is the Maxwell force and F P (i; N ) is the Peierls force given by

F P (i; N ) = F(d + (i); i) -F M = a cosh[( 1 2 + i) ] sinh[ (N -i)] cosh 2 sinh(N ) - 1 2 : (58) 
One can show that the function F P (i; N ) depends on i weakly away from the narrow boundary layers near i = 1 and i = N -1. In the limit of inÿnite N the Peierls force (58) approaches the constant value [START_REF] Truskinovsky | Peierls-Nabarro landscape for martensitic phase transitions[END_REF] lim

N →∞ F P (i; N ) = F P = a 2 1 + : (59) 
As the NNN interactions get weaker ( → -∞), the Peierls force tends to the spinodal limit F max -F M and the nucleation peak disappears. The conÿguration of the resulting hysteresis loop in the continuum limit is shown in Fig. 11. Although the serrations disappeared, the nucleation peak remains ÿnite with the force dropping by the amount

= 1 + w c -F P = 1 2 a 1 - 1 + : ( 60 
)
This quantity is positive as long as -∞ ¡ ¡ -1 and is always less than a=2-the di erence between the spinodal and Maxwell forces. The half-height of the narrow part of the hysteresis loop is given in the continuum limit by (59).

To estimate the number of springs involved in the nucleation event, we recall that the nucleation always takes place at d = w c . Therefore we must ÿnd the metastable branch with the smallest nonzero i which is deÿned at this value of d. Setting d ± from (51) equal to w c , we obtain the equation for the number of participating springs i sinh

[(N -i) ] cosh[(i ± 1=2) ] cosh 2 sinh(N ) = 1 - i N : (61) 
For su ciently large N and generic the solution of this equation can be approximated by

i nuc = N 1 + e : (62) 
In particular, (62) implies that in the continuum limit the number of springs involved in the nucleation event is inÿnite. The dimensionless size of the transformed portion of the chain (martensite band) remains ÿnite:

l 0 = 1 1 + e : (63) 
When nonlocal interactions are absent ( = -∞), the nucleus contains only one spring and l 0 = 0.

To illustrate the e ect of the outside boundary layers on the nucleation phenomenon we replace the special boundary conditions (6), which suppress boundary layers, by the "zero-moment" conditions (4) with B = 0. In this case the zero-interface solution is no longer trivial because the strain decreases exponentially near the boundaries (see Fig. 12b).

Suppose that the chain is originally in phase I. When the critical value d = d + (0) is reached, the strains in the middle of the chain pass the threshold w = w c and the one-phase solution becomes unstable (point A in Fig. 12). This leads to the formation of either two symmetric interfaces in the center (point C in Fig. 12) or of a single interface near one of the boundaries (point B in Fig. 12). Our computations show that the single-interface conÿguration B has a lower energy than the two-interface conÿguration C. However, during transition from A to C only two springs (7th and 9th) transform into phase II, while transition from A to B requires transformation of at least three springs which are also initially farther below the threshold. As a result, transition from A to B may encounter a higher barrier than transition from A to C, and then the nucleation will take place in the interior of the chain. While this possibility 0.6 0.7 0.8 0.9 can be investigated rigorously, for the subject of this paper it is enough to mention that the nucleation peak survives in both cases (see Fig. 12a).

Veriÿcation of the model

The explicit formulae from the previous section can be used to obtain bounds on the value of the nonlocality measure . The expression for from ( 10) and ( 60) has the form

= E 4 1 -1 - 2 E -2 ; ( 64 
)
where E = K + 4 is the macroscopic elastic modulus of the homogeneous chain and is the macroscopic transformation strain. The magnitude of the stress drop at the peak and the transformation strain are available from the experimental data of [START_REF] Shaw | Thermomechanical aspects of NiTi[END_REF] on NiTi wires. For instance, in the experiment conducted at 70 • and the loading rate 4 × 10 -5 s -1 , the measurements gave = 0:039 GPa, and = 3:97%. The Young's moduli of the two participating phases are di erent, E = 56:7 and 27:5 GPa. By using two separate values we estimate to be between -1:1 and -1 GPa, which implies that is in the range -14:7 ¡ ¡ -7:3. Similar comparison of experiment and theory for CuAlNi yields = -33:4 [START_REF] Truskinovsky | Peierls-Nabarro landscape for martensitic phase transitions[END_REF].

To obtain an independent estimate of we can assume that the interactions between particles are governed by the Lennard-Jones potential. In this case we have 1 (r= -1) = 2 2 (r=2 -1) = U (r), where 1 (w) and 2 (w) are the energies of the NN and NNN springs, respectively, and U (r) has the form

U (r) = K 72 r 12 -2 r 6 : (65) 
The coe cients in (65) are chosen to ensure that the elastic modulus at equilibrium r = equals K. Linearizing around the unstretched homogeneous state with the spacings r = and r = 2 , we obtain [START_REF] Charlotte | Linear elastic chain with a hyper-pre-stress[END_REF] = U ( ) 4U ( 2) :

This yields = -56:5. Taking E = 56:7 GPa as the value of the Young's modulus we obtain = -0:255 GPa which despite the rather rigid form of the potential ( 65) is within a reasonable range from the values obtained above. Finally, we can use the above estimates of to predict the initial size of the martensite band L 0 . By taking -14:7 ¡ ¡ -7:3 we obtain 0:001 ¡ L 0 =L ¡ 0:005, where L is the size of the specimen. While we could not ÿnd direct experimental measurements for L 0 in the literature, this parameter is usually estimated to be of the order of the specimen's diameter D (e.g. [START_REF] Sun | An inclusion theory for the propagation of martensite band in NiTi shape memory alloy wires under tension[END_REF]. This would be in agreement with our estimate since for thin NiTi wires used in experiment D=L∼0:0025 [START_REF] Leo | Transient heat transfer e ects on the pseudoelastic behavior of shape-memory wires[END_REF].

Strain-gradient approximation

Now we can compare the exact results obtained in the discrete model with the predictions of the quasi-continuum strain gradient approximation which neglects discreteness but retains the original internal length scale. To obtain the approximate model we temporarily reintroduce dimensional variables and perform the Taylor expansion in the small parameter = L=N . By preserving the ÿrst nonlocal term in the energy functional we obtain

= L 0 (w) + 1 2 A 2 (w ) 2 d x; (66) 
where we omitted nonessential null Lagrangian contributions and introduced

A = - 1 12 (K + 16 ): (67) 
The functional (66) must be minimized subject to the constraint

L 0 w(x) dx = d (68) 
and the clamping boundary conditions

w (0) = w (L) = 0 (69)
which represent the continuum analog of (6). The Euler-Lagrange equations can be written in the form (w)-A 2 w =F (analog of (3)), where (w)=Ew-KaÂ(w-w c ).

Recall that E = K + 4 is the macroscopic modulus.

The trivial solution of the Euler-Lagrange equations w(x) = d=L is stable whenever the second variation of energy where n ¿ 1 is an integer. The solution exists for

E + n L 2 A = 0: (72) 
If A = 0, the stability condition obviously reduces to E ¿ 0. When A ¿ 0, we obtain E + ( n =L) 2 A ¿ E + ( =L) 2 A and the trivial state is stable if and only if

E + L 2 A ¿ 0: (73) 
The instability takes place through the growth of a long-wave mode v = cos( x=L).

When A ¡ 0, the trivial solution is always unstable because one can always ÿnd large enough n at which E +( n =L) 2 A ¡ 0; the corresponding instability is of the short-wave type.

To compare the stability limits in the strain gradient model with the ones obtained in the discrete model, we shall ÿrst rewrite them in terms of dimensionless , and replace L= by N . In the case when A ¿ 0, we obtain

-4 ¡ ¡ - 1 -2 =3N 2 1 -2 =12N 2 ( ¡ 0): (74) 
Recall that in the discrete case the corresponding interval is -∞ ¡ ¡ -cos 2 =2N ( ¡ 0). It is easy to see that for large N both models predict the same upper boundary = -1 (E = 0), which means that the strain-gradient model captures the onset of macroscopic instability in the discrete model rather well.

As we showed above, when A ¡ 0 the stability range does not exist due to the short-wave instability. However, in view of the underlying discrete structure, a shortwave instability is unphysical if its wave length is less than the length scale of the lattice . If we assume that the mode number cannot exceed n = N , we obtain the following stability condition:

E + 2 A ¿ 0; (75)
which in terms of can be written as a combination of two intervals,

¡ -4 ( ¡ 0) (76) 
and While the former stability range obviously complements (74), the latter has its own analog in the discrete model, -sin 2 =2N ¡ ¡ ∞ ( ¿ 0). Observe that the lower limit in the strain-gradient model is signiÿcantly higher than in the discrete model suggesting that even with the restriction on the minimum wave length, the strain-gradient approximation grossly exaggerates the instability domain on the side of the short-wave instability. The general trend, however, is predicted correctly: as in the discrete model, the short-wave instability in the gradient model develops before the strain enters the macroscopic spinodal region (see also [START_REF] Bardenhagen | Derivation of higher order gradient continuum theories in 2,3-D non-linear elasticity from periodic lattice models[END_REF]. Fig. 13 summarizes the stability analysis in both the K -and -N -1 planes. It should be compared with the analogous stability diagrams for the discrete model (Fig. 2). Now consider the nontrivial solutions of the variational problem (66), (68). As shown in [START_REF] Carr | Structured phase transitions on a ÿnite interval[END_REF], the strain-gradient model allows for local minima with at most one interface. For the piecewise linear model all these metastable conÿgurations can be obtained analytically [START_REF] Truskinovsky | Ericksen's bar revisited: Energy wiggles[END_REF]. A representative picture is shown in Fig. 14, with the parameters chosen to match those for the discrete model with N = 20. We observe that while the strain-gradient approximation captures the structure of the absolute minimizers of the discrete problem, it fails to reproduce the rich structure of the metastable equilibria which in the quasi-continuum model all collapse into a single branch. This is the reason why the strain-gradient approximation does not generate a realistic hysteresis. Also, while all multiple-interface equilibria of the discrete model are metastable, conÿgurations with more than one interface are absolutely unstable in the quasi-continuum approximation. This di erence is due to the fact that in the discrete model one cannot vary the volume fraction of phases continuously, and thus certain perturbations that make multiple-interface solutions unstable in the continuum case are impossible in the discrete model. Finally, we remark that the estimate -14:7 ¡ ¡ -7:3 obtained in the previous section from the experimental data implies that A ¡ 0, contrary to the typical assumption in the strain-gradient models that the coe cient A is positive. 

- 1 -2 =3 1 -2 =12 ¡ ¡ ∞ ( ¿ 0): (77 

Conclusions

Our study clariÿes why the behavior of the local and nonlocal systems with bi-stable elements is di erent. In the case of nonlocal interactions the elements around the phase-boundary are "pre-conditioned" due to the presence of the boundary layers. This results in smaller energy barriers for the propagation of the phase boundary compared to the local model and gives rise to the ÿnite mismatch between the spinodal stress and the Peierls stress. Another di erence is that in the nonlocal models the nucleation event typically involves transformation of more than one element. This produces nucleation peak which has been long known from experiment. We showed that the nucleation peak persists in the continuum limit where it manifests itself through an instantaneous formation of a ÿnite band scaled with the length of the sample. Although the nucleation peak is captured by the strain-gradient approximation, the resulting shape of the hysteresis loop is unrealistic. This suggests that the nonlocal coupling in the actual physical system is weaker than what is required for the gradient model to be applicable.
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 1 Fig. 1. A ÿnite chain of particles with nearest-neighbor (NN) and next-to-nearest-neighbor (NNN) interactions.

FigFig. 3 .

 3 Fig. 2. (a) Domain of stability for the trivial solution in K -plane: solid lines-discrete model, N = 3; dashed lines-continuum limit, N → ∞. (b) The dependence of the stability limits on the size of the system. In both ÿgures stability domain is in gray.

  and w i+1 ¿ w c (I to II phase switch) 0 if sign(w i -w c ) = sign(w i+1 -w c ) (no phase switch) -1 if w i ¿ w c and w i+1 ¡ w c (II to I phase switch):

Fig. 4 .

 4 Fig.4. The overall energy-strain and force-strain relations along the trivial (i = 0, N ) and the single-interface (1 ¡ i ¡ N ) metastable solutions. Here N = 10, = -2, wc = a = 1.

Fig. 5 .

 5 Fig. 5. (a) Energy-strain relation for the homogeneous solution (thin lines) and the two-interface solutions with various locations of the interfaces (thick lines). (b) The blow-up of (a) around conÿgurations with p = (0 -1 0 1 0 0) and p = (-1 0 1 0 0 0). Parameters: = -2, wc = a = 1, N = 6.

Fig. 6 .

 6 Fig.6. Energy-strain relation for the energy minimizers in the families of solutions with up to four interfaces.Here N = 6, = -2, wc = a = 1.

Fig. 8 .

 8 Fig. 7. (a) Energies of the single-and zero-interface branches of equilibria available at d = 0:5. (b) Peierls-Nabarro energy landscape along the path w k ( ) connecting metastable equilibria at d = 0:5. Parameters: N = 10, = -2, wc = a = 1.

Fig. 9 .Fig. 10 .

 910 Fig. 9. Branch-switching sequence for the path of maximal delay, H = 0, and for the path with a ÿnite critical energy barrier H = 0:003. Parameters: = -2, N = 10, wc = a = 1.

Fig. 11 .

 11 Fig. 11. The maximum hysteresis loop in the continuum limit for the nonlocal (NNN) model with -∞ ¡ ¡ -1.

Fig. 12 .

 12 Fig. 12. Nucleation behavior of the system with external boundary layers: (a) single-interface (solid lines) and two-interface (dashed lines) metastable states; (b) the corresponding strain proÿles. The numbers in brackets indicate locations of phase the boundaries for conÿgurations with phase I on the left end. Parameters: N =15, = -2, wc = a = 1.

  problem determining the stability boundaries reduces to solving linear equation Ev -2 Av = 0. The general nontrivial solution of this equation compatible with (71) takes the form v(x) = cos nx L ;

  Fig. 13. (a) Domain of stability for the trivial solution in K -plane in the strain-gradient model with L= = N = 3 and in the continuum limit (N → ∞, dashed lines). (b) The dependence of the stability boundaries on the size of the system. In both ÿgures stability domain is in gray.

Fig. 14 .

 14 Fig. 14. The rescaled energy-strain and force-strain relations for the absolute energy minimizers (thick line) and the metastable single-interface solutions (thin lines) for (a) the discrete chain with N = 20 and (b) the strain-gradient approximation with = 1 20 . Other parameters: = -2, wc = a = 1. Unstable single-interface solutions are shown by dashed lines.

Acknowledgements

This work was supported by the NSF grants DMS-0102841 (L.T.) and DMS-0137634 (A.V.).