
HAL Id: hal-00111390
https://hal.science/hal-00111390v1

Submitted on 26 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Numerical and experimental modal analysis of the reed
and pipe of a clarinet

Matteo Facchinetti, Xavier Boutillon, Andrei Constantinescu

To cite this version:
Matteo Facchinetti, Xavier Boutillon, Andrei Constantinescu. Numerical and experimental modal
analysis of the reed and pipe of a clarinet. Journal of the Acoustical Society of America, 2003, 113
(5), pp.2874-2883. �10.1121/1.1560212�. �hal-00111390�

https://hal.science/hal-00111390v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Numerical and experimental modal analysis of the reed
and pipe of a clarineta)

Matteo L. Facchinetti
Laboratoire de Me´canique des Solides and Laboratoire d’Hydrodynamique, CNRS-E´ cole Polytechnique,
91128 Palaiseau Cedex, France

Xavier Boutillonb)

Laboratoire d’Acoustique Musicale, CNRS-Universite´ Paris 6-Ministère de la Culture, 11 rue de Lourmel,
75015 Paris, France

Andrei Constantinescu
Laboratoire de Me´canique des Solides, CNRS-E´ cole Polytechnique, 91128 Palaiseau Cedex, France

A modal computation of a complete clarinet is presented by the association of finite-element models of the reed and of part of 
the pipe with a lumped-element model of the rest of the pipe. In the first part, we compare modal computations of the reed and 
the air inside the mouthpiece and barrel with measurements performed by holographic interferometry. In the second part, the 
complete clarinet is modeled by adjoining a series of lumped elements for the remaining part of the pipe. The parameters of 
the lumped-resonator model are determined from acoustic impedance measurements. Computed eigenmodes of the whole 
system show that modal patterns of the reed differ significantly whether it is alone or coupled to air. Some modes exhibit 
mostly reed motion and a small contribution of the acoustic pressure inside the pipe. Resonance frequencies measured on a 
clarinet with the mouthpiece replaced by the cylinder of equal volume differ significantly from the computed eigenfrequencies 
of the clarinet taking the actual shape of the mouthpiece into account and from those including the ~linear! dynamics of the 
reed. This suggests revisiting the customary quality index based on the alignment of the peaks of the input acoustical 
impedance curve. 

I. INTRODUCTION

The clarinet is usually considered as the association of a
linear resonator, the pipe, and a nonlinear excitor, the reed,
subject to the air flow from the mouth. Alternatively, one can
consider the air column and the reed as a linear system sub-
ject to nonlinear boundary conditions. This is the approach
retained in this article where the reed is considered as a lin-
ear mechanical system coupled to the pipe and where the
interaction with the player is not treated. Nonlinear phenom-
enon such as the interaction between the reed and the jet
across the reed-slit, the contact forces between the reed and
the lay, and the interaction between the reed and the player’s
lip will be included in a subsequent piece of work as nonlin-
ear boundary conditions to the normal modes that are de-
scribed here. Humidity of the reed and the player’s lip also
have a damping role which is not considered in this modal
analysis of a pipe coupled to a~dry! reed.

Acoustical studies of the clarinet have so far represented

the mouthpiece of a wind instrument by its equivalent vol-
ume. This study goes beyond this approximation and pre-
sents the three-dimensional distribution of the pressure in the
upper part of the instrument.

Studies of the pipe of the clarinet have traditionally been
expressed in the frequency domain and were based on mea-
surements or computations of input acoustic impedance.
However, numerical simulations of this instrument operate in
the time domain and are usually based on the reflection func-
tion of the pipe. Recent experimental studies have adopted
the time domain approach with direct measurements of this
reflection function. Abundant literature extensively covers
these subjects: for general presentations, see Refs. 1–4.

Studies of the reeds are far less extensive and the me-
chanical behavior of cane is still subject to discussion. The
simplest reed model, a spring, is implicitly used by reed-
makers when they rate them by their so-called ‘‘strength,’’
which corresponds to the mechanical compliance. Experi-
mental studies have proposed values for the compliance of
the reed.1,5,6Associated with various models of the pipe and
excitation, this model has been used in numerical simulations
which were successful in describing basic features of the
dynamics of clarinet-like system.7–9 Music-oriented algo-
rithms have also been proposed in which the values of the
parameters describing the excitor and the resonator are ad-
justed in order to obtain realistic sounds instead of accurately
describing their mechanical behavior.10,11 However, this
model is obviously insufficient to describe quality-based cri-
teria: otherwise all reeds in a given commercial box~with

a!Part of this work was presented in ‘‘Application of modal analysis and
synthesis of reed and pipe to numerical simulations of a clarinet,’’ invited
paper at the 140th meeting of the ASA, Newport Beach, CA, December
2000 @J. Acoust. Soc. Am.108, 2590~A!#, in ‘‘Étude modale d’une clari-
nette,’’ Proceedings of the Colloque National en Calcul de Structures,
Giens, France, May 2001, and in ‘‘Modal analysis of a complete clarinet,’’
Proceedings of the International Conference on Acoustics, Rome, Italy,
September 2001.

b!Electronic mail: boutillon@lms.polytechnique.fr; present address: Labora-
toire de Mecanique des Solides, E´ cole Polytechnique, 91128 Palaiseau
Cedex, France.
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similar strength!would suit a given player, but this is not the
case.

The next modeling step is the single-degree-of-freedom
oscillator. Although some simulation algorithms12 have been
very successful in producing realistic sounds,13,14 this is not
sufficient in itself to assert the physical validity of a model.
One degree of freedom is not sufficient to account for criteria
such as reed quality. Stewart and Strong15 and Sommerfeld
and Strong16 used a refined model of the reed as a nonuni-
form beam. In the latter study, the pipe was only slightly
simplified compared to a real clarinet and the player’s air
column ~including the lungs!was also taken into account.
There is no fundamental difference between this simulation
and those based on a simple oscillator model for the reed
since the interaction with the rest of the system is averaged
along the beam. The beam model is needed if one wants to
take into account the curved shape of the mouthpiece on
which the reed beats during large amplitude motions.
Gazengel17 derived a simple oscillator model from a beam
equation. In his time-domain simulation, the mass of the os-
cillator is recalculated at each time step as a function of the
position of the reed, introducing by this means the nonlinear
behavior of the reed contact.

Modeling the reed as a continuous system is the current
state of research. Several examples of modal analysis of
clarinet reeds with holographic interferometry have been pre-
sented in conferences over the recent years,18–20 but never
published. One example of finite-element modeling based on
measurements of the mechanical properties of cane has been
reported.21 Another~unpublished!pioneering study has been
done by Pinard and Laine when they were students at the
École Polytechnique~France!. The experimental modal
analysis and the finite-element modeling of isolated reeds
that are presented in the following are a development of this
unpublished work. To our knowledge, no model of the reed
as a continuous system in association with the air column has
been proposed.

The model proposed here is aimed at overcoming sev-
eral limitations of previous approaches. Besides giving a
means to review the approximations of the classical model,
this new approach is also a first step toward numerical simu-
lations of the instrument based on modal projection22,23

rather than on propagation schemes represented by reflection
functions.

The different parts of a clarinet—reed, mouthpiece, bar-
rel, upper and lower parts of the pipe, bell—are shown in
Fig. 1 together with their respective models. Fluid and solid

finite-element models~FEM! for the reed and the beginning
of the pipe and a lumped elements model for the main part of
the pipe are used.

The work presented here begins with the modal analysis
of the isolated reed. In each subsequent section, another el-
ement of the model is added, finally resulting in a complete
instrument. In addition, the modes of the reed associated
with the mouthpiece and barrel are compared with the results
of experimental modal analysis.

II. THE REED

A. Construction of the numerical model

Establishing a finite element model requires the determi-
nation of the geometry of the reed, the choice of a constitu-
tive law, the determination of the mechanical parameters, as
well as the appropriate boundary conditions.

A series of three reeds have been measured. The thick-
ness of each reed was measured with a coordinate measuring
machine~Mitutoyo EURO-M 574 and Johansson Saphir 7
were used!. Approximately 200 points, arbitrarily chosen on
the reed surface, have been measured@Fig. 2~a!#. The geo-
metrical data for the model are interpolated from the mea-
sured values. Interpolation between measured points was
done by using a fourth-order polynomial, resulting in and
giving the thickness map shown in Fig. 2~b!. The reed is
assumed to be symmetrical with regard to its longitudinal
axis.

The shape of the reed was measured using a high preci-
sion optical projector~Macro Dynascope 5D, by Vision En-
gineering with Metronics Quadra-Check 4000 interpolating
software!with the results shown in Fig. 2~c!. The precision
of the geometrical measurements of the reed can be esti-
mated to'2 mm.

Reeds are made out of cane which is considered here as
a purely elastic, transversely isotropic, homogeneous mate-
rial. Viscosity and plasticity, related to energetic losses, have
been neglected at this step of the analysis. The homogeneity
hypothesis will be analyzed a posteriori in Sec. V. In the
current state of knowledge, we have found no other plausible
description that could be expressed quantitatively.

A discussion of losses in cane has been given lately by
Marandaset al.24 and Obataya and Norimoto.25 The former
found out that dry cane is viscoelastic and turns viscoplastic
when wet. This implies that static tests on wet cane are not
appropriate to measure Young’s moduli. Obataya proposed
values of the quality factorQ of the order of magnitude of

FIG. 1. The clarinet: its parts and their
respective models~not to scale!.
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100 varying with frequency, relative humidity, and internal
state of cane. Since only individual modes of the reed are
considered here losses can be ignored. They would need to
be taken into account in modeling the actual dynamics of the
instrument.

Under these assumptions, five parameters are needed to
describe the material: densityrs , longitudinal and transverse
Young’s moduliEL andET , transverse to longitudinal shear
modulus GLT , and longitudinal-transverse Poisson ratio
nLT . The values adopted here are given in Table I. The val-
ues forrs , EL , andnLT were obtained by Pinard and Laine
and result from static measurements on a piece of dry cane
given by a reed maker. Obataya and Norimoto give roughly
the same value for the main Young’s modulusEL of dry cane
in the frequency that is relevant here~2–6 kHz!. Their mea-
surements show that this value decreases linearly with the
relative humidity level~RH!, EL decreasing by around 30%
for a variation of 100% in RH. The other parameters were

also obtained by Pinard and Laine. Their work has been pio-
neering in several respects. In particular, they were the first
to match eigenfrequencies and modal patterns of reeds ob-
tained by holographic interferometry with those obtained
with a finite-element model.

As boundary condition, we consider the reed rigidly
clamped on the section corresponding to the ligature and
having a stress-free boundary elsewhere.

B. Computed eigenmodes

This model has been implemented on a standard PC
~450 MHz, 250 Mbyte RAM, Linux! using linear Love–
Kirchoff plate elements in theCAST3M finite-element code.
The first modes of a reed are presented in Fig. 3. A classifi-
cation of the modes is needed for referencing and an attempt
is made here. Since modal patterns with closed modal
lines have not been encountered, it is intuitively appealing to
label the modes according to the number of intersections
between the nodal lines and the edges of the reed. For
the symmetric reed considered here, a mode is labeledLnTm.
‘‘ L’’ stands for longitudinal and the first indexn is the
number of intersections of nodal lines with the edge~s!
parallel to the main axis. Such nodal lines include the one
imposed by the boundary condition at the ligature. ‘‘T’’
stands for transverse and the indexm is the number of inter-
sections of the nodal lines with the tip edge of the reed.
Modes appear in an order which can be expected
(L1T0, L1T1, L2T0, L1T2, L2T1), given the larger flex-
ibility in the direction transverse to the reed and the thick-
ness distribution.

The generalized mass of a mode is:

m5uTM su, ~1!

whereu represents the reed displacement for the mode and
M is the mass matrix of the reed. For a unit value of the
maximum displacement in each mode, the modal masses are
7, 0.35, 0.47, 0.063, and 0.094 mg for theL1T0, L1T1,
L2T0, L1T2, and L2T1 modes, respectively. Along with
modal patterns, these values establish a comparison between
modes. These mass values can also be compared to the order
of magnitude of the real mass of the moving reed. At the tip
of the reed, the thickness is about 1/10 mm and the width 13
mm. For a densityrs5450 kg m23, the mass of a moving
portion of the reed of lengthl ~in mm! is (0.593l ) mg.

III. MODAL COMPUTATION OF THE REED
ASSOCIATED WITH MOUTHPIECE AND BARREL

This section analyzes how the dynamics of the reed is
influenced by air loading and provides a comparison between
results given by the model and experiments presented in Sec.

FIG. 2. Geometry of the reed, with dimensions in mm:~a! points actually
measured,~b! interpolated thickness,~c! estimated contour.

TABLE I. Material properties for dry cane used in reeds, as given by Pinard
and Laine.

Density rs5450 kg/m3

Longitudinal Young modulus EL510 000 MPa
Transverse Young modulus ET5400 MPa
Shear modulus GLT51300 MPa
Poisson ratio nLT50.22
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II. The system considered now is composed of the reed, the
mouthpiece, and the barrel and is represented using a
coupled fluid–solid model.

A. Numerical model

The full model of reed, mouthpiece, and open barrel is
shown in Fig. 4. The internal shape of the mouthpiece~a
Selmer HS* ) has been carefully measured by means of the
coordinate measuring machine used for the reed. The barrel
is considered as a cylindrical bore with a diameter of 15 mm.
The air volume inside the mouthpiece and the barrel is mod-
eled with linear tetrahaedric and prismatic finite elements of
compressible elastic fluid.

The acoustic pressure at points of the open air surfaces
is considered to be zero. The normal derivative of the acous-
tic pressure on the walls of the mouthpiece and the barrel,
corresponding to air flow, is also set to zero. The boundary
condition coupling the reed and the mouthpiece involves the
stress in the solid and the velocity of the fluid and will be
given explicitly in the following.

The eigenvalue problem for a coupled solid–fluid sys-
tem is expressed in the continuous formulation by the
following:26

div C¹u2v2rsu50, ~2!

div
1

r f
“p1v2

1

c2r f
p50, ~3!

where p represents the acoustic pressure in the fluid. The
densities of solid and fluid arers andr f , respectively. The
speed of sound isc, the angular frequency of the motion isv,
andC denotes the elasticity matrix of the solid.

The boundary conditions coupling the fluid and the solid
parts are

s"n52pn, ~4!

]p

]n
5r fv

2u"n, ~5!

wheren represents the unit vector normal to the solid surface
ands5C¹u the stress tensor.

In order to formulate these equations as a standard ei-
genvalue problem, a new variablep52(1/v2)p must be
introduced.26 The equations and boundary conditions become

div C¹u2v2rsu50, ~6!

div
1

r f
“p2

1

c2r f
p50, ~7!

v2p1p50, ~8!

s"n52pn, ~9!

]p

]n
52r fu"n. ~10!

To the preceding equations, we can associate the follow-
ing LagrangianL denoting the variational formulation of the
problem:

FIG. 3. First five computed modes of an isolated reed. Modes are labeled
according to the number of modal lines perpendicular to the main axis~Ln!
and parallel to it~Tm!.

FIG. 4. Reed and volume of air inside the mouthpiece mounted on an open
barrel.
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L5
1

2 EVs

¹uC¹u dv1
1

2 EV f

1

r fc
2 p2 dv

2v2S 1

2 EVs

rsu
2 dv2

1

2 EV f

1

r fc
2 ~“p!2dv

2E
V f

1

r fc
2 pp dv2E

]V
ps"n dsD , ~11!

whereVs andV f represent the solid and fluid volumes, re-
spectively, and]V represents the boundary between these
volumes.

Finally, the problem is expressed in its discrete form by
the following eigenvalue problem:

S F K s 0 0

0 K f 0

0 0 0
G2v2F M s 0 2N

0 0 K f

2NT K f
T 2M f

G D F u
p
p
G5F 0

0
0
G ,

whereK s ~respectively,K f) and M s ~respectively,M f) are
rigidity and mass matrices of the solid~respectively, fluid!
part of the system andN is the operator corresponding to the
coupling boundary condition~10! related to the normal vec-
tor n. Details of the derivation can be found in Ref. 26.

B. Experimental modal analysis

An experimental modal analysis on reeds by means of
holographic interferometry was performed in order to check
the validity of the numerical model of the reed coupled to air.
Recent works have been reported in short
communications.18–20 For various reeds mounted on a
mouthpiece under dry conditions Pinard and Laine observed
one mode corresponding to a longitudinal flexion at around
2200 Hz; one family of modes around 3500–3700 Hz, with
patterns varying from reed to reed, some of them being in-

dicative of torsion, others being closer to flexion; and one
family of modes around 5800–6000 Hz, with more complex
patterns.

In measurements presented here, the reed was attached
to the mouthpiece exactly as on the real instrument. Since the
ligature was producing strong light reflexions, it was
replaced with adhesive tape placed slightly further from the
tip. A sinusoidally driven loudspeaker was placed close
to the reed to excite its vibration. For determining the reso-
nance frequencies a very thin PVDF piezoelectric film
@poly~vinylidenefluoride!, thickness 0.05 mm, mass 0.06 g,
of which only a part was actually moving#was glued onto
the lower thicker part of the reed, yielding the average de-
formation near the ligature. Resonance frequencies were de-
termined using the maximum of the piezoelectric signal. The
experiments were performed under natural humidity. A satu-
rated atmosphere would have been preferable but was not
possible with the interferometry equipment.

The eigenmodes were visualized by means of laser
transmission interferometry. Complete details of the imple-
mentation of this classical method are described in Ref. 27.
The images in Fig. 5 represent variations of equal normal-
displacement of the reed. The resolution of the system is half
the wavelength of the laser, approximately 0.3mm.

The reed was measured either alone, associated with an
open mouthpiece, or with the mouthpiece mounted on an
open barrel. The first four measured modes shown in Fig. 5
correspond to the barrel configuration~see Fig. 4!. They are
compared with the corresponding computed modal patterns
~see the next section for computation of the eigenmodes!on
top. Results of the holographic measurements show that the
maximum displacement of the reed is negligible compared to
the distance between the mouthpiece and the reed at that
level of excitation. Thus one can be confident that contact
between the reed and the lay, which could possibly make the
system nonlinear, does not occur.

FIG. 5. Projection of four eigenmodes on the reed~see
the text for labels!. Top pictures: computed normalized
eigenmodes of the association of a reed with mouth-
piece and barrel. In this representation, a cyclic gray
scale produces fringes of equal differences in normal
displacement, allowing a comparison with the modal
patterns observed experimentally. Bottom pictures:
modal patterns measured by holographic interferometry
on one good reed mounted on the mouthpiece attached
to the barrel. The resonance is not very sharp owing to
damping, hence the rounded eigenfrequencies. The pho-
tographed section of the reed does not have the same
height between the various experiments and the simu-
lations.
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C. Results

A comparison between computed and measured modes
is displayed in Fig. 5 for the situation described by Fig. 4. In
this comparison with holographic measurements, the ‘‘liga-
ture’’ of the reed had to be placed slightly beyond its normal
position. This led to a slightly more flexible reed than in the
normal situation. When the reed is coupled to air, one should
stress that eigenmodes concern the whole system, not just the
reed. Strictly speaking, expressions such as ‘‘reed modes’’
are inappropriate and refer instead to modes for which en-
ergy is mostly localized in the reed. Each mode has been
labeled using the notation proposed earlier. The ‘‘R’’ prefix
indicates that we regard the result just as theprojectionof the
four first eigenmodes on the reed subspace. In order to sim-
plify the discussion, we have not attempted to label the air
configuration. One can notice that theL2T2 pattern did not
appear in the isolated reed case. One can also notice that the
L1T0 pattern of the reed appears in the two first modes of
the coupled system.

The computed modes appear in the same order as the
measured ones with eigenfrequencies deviating by 10%–
20% from measured resonance frequencies. The modal pat-
terns are globally the same despite the fact that no real reed
is symmetric whereas the numerical model has been chosen
symmetric. As expected, the modes are mainly localized at
the tip of the reed where it becomes very thin, showing the
importance of a precise measurement of the geometry. Al-
though some of the mechanical parameters come themselves
from a fit between observation and computation of modes of
an isolated reed, the mixed fluid–solid model can be consid-
ered as valid within the range of approximations retained
here.

Real reeds have natural asymmetries due to their geom-
etry or to nonuniform mechanical properties. One notices
that the asymmetry seems stronger for the lowest mode than
for any other one.

D. Sensitivity analysis

The sensitivity analysis of the eigenfrequencies to varia-
tions in mechanical parameters describing the reed and in
acoustical properties of the air is presented in Table II. The
air volume is that of Fig. 4. Parameters are varied by 5%
above and below their average values~i.e., 10% overall!and
the corresponding overall variations of eigenfrequencies are
reported. The value of the Poisson ratio appears to be irrel-

evant. Eigenfrequencies 1190, 2680, and 4010 Hz vary lin-
early with the speed of sound. This is also almost the case for
the mode at 5280 Hz. Without looking at the modal pattern
of air pressure or reed displacement, one can infer that they
correspond to ‘‘ ‘air modes,’’ with energy mostly localized in
the ~short! pipe. Conversely, the mode at 3700 Hz is not
influenced by air characteristics; sensitivity to the shear
modulusGLT indicates that the reed is subject to torsion~see
the second mode of Fig. 3! and is poorly coupled to the pipe
~Fig. 6!. To a lesser degree, this is also the case of the mode
at 6300 Hz. The mode at 4740 reveals a (EL /rs)

1/2 depen-
dency of the eigenfrequency. It is mostly a ‘‘reed mode’’
involving primarily a longitudinal deformation. The mode at
2010 Hz is apparently a mode in which air and reed are
strongly coupled. It is interesting to notice that the transverse
Young’s modulus does not seem to influence any frequency.
The measurement of its precise value is therefore less par-
ticularly important.

E. Evolution of the eigenfrequencies

Another way of examining how the reed is coupled to
the acoustic field is to follow the evolution of the eigenfre-
quencies when the reed is loaded by the air volume of
mouthpiece and barrel. A decrease of the eigenfrequencies
and a dominance of the longitudinal flexion occurs in the
eigenmodes~Fig. 7!.

The frequencies of the first two modes of the$reed,
mouthpiece, barrel%system are mainly imposed by the reso-
nance of the air cavity. In both modes, the reed undergoes
mainly longitudinal flexion. The frequency of the torsion
modeL1T1 ~3257 Hz for the isolated reed!does not vary

FIG. 6. Computed eigenmode at 4119 Hz in a mixed solid-air situation:
acoustic pressure inside the mouthpiece and barrel.

TABLE II. Sensitivity analysis: changes in eigenfrequencies when mechanical characteristics of the reed and
acoustical properties of the air vary. Changes are given in % for a 10% variation of each parameter.

D510%
mean values

EL

104 MPa
ET

400 MPa
GLT

1300 MPa
nLT

0.22
rs

450 kg m23
c

340 m s21
r f

1.23 kg m23

1190 Hz 0 0 0 0 0 9.8 0
2010 Hz 2.4 0 0 0 22.2 0.7 20.4
2680 Hz 0.1 0 0 0 20.2 9.6 0
3700 Hz 1.5 0 3.1 0 24.6 0 0
4010 Hz 0.2 0 0 0 20.2 9.3 0
4740 Hz 4.9 0 0 0 24.8 2.7 20.1
5280 Hz 0.6 0 0 0 20.9 8.1 20.1
6300 Hz 1.7 0.9 4.9 0 26.4 3.2 0
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significantly, meaning that this mode is weakly coupled to
the air cavity. The same phenomenon can be noticed for the
modeL1T2 at 5840 Hz for the isolated reed. One can con-
clude from Fig. 7 and from the observation of the rather
uniform pressure in the pipe at these modes~not shown here!
that this mode also is weakly coupled to the pipe.

IV. MODAL COMPUTATION OF THE WHOLE CLARINET

In order to simulate the modal behavior of the complete
clarinet, we have associated a finite-element model of'10
cm of pipe with lumped elements representing the rest of the
pipe and matching its acoustic input impedance. This can be
done since at the outlet of the barrel, the acoustic field con-
sists essentially of plane waves. An example of acoustic pres-
sure in the mouthpiece is represented in Fig. 8. The mode is
that of a complete clarinet and corresponds to the lowest
mode at 311 Hz of the medium C]fingering combined with
the opening of the register key~see the following for the
complete list of modes in this configuration!. The length of
mouthpiece represented here is 32 mm and corresponds to
the tapered part. One can see that the acoustic waves can
already be considered as plane waves within a very good
approximtation.

The lumped-element oscillators~shown in generic form
in Fig. 1! are coupled to the finite-element barrel by means

of a rigid plate of negligible mass, as shown in Fig. 9. The
plate and the lumped-element oscillators are supposed to
move only in the longitudinal axis of the instrument. The
lumped elements are placed at the~virtual! junction between
the barrel and the lower part of the clarinet.

It is now explained how the numerical values of the
lumped elements are calculated on the basis of measure-
ments provided by Gibiat28 on several notes of a Noblet B[
clarinet. Results of these measurements are supposed to rep-
resent theinput acoustical impedance of the instrument. In
order to measure this input impedance, a reference plane was
defined by Gibiatet al. by replacing the mouthpiece with a
portion of cylindrical tube of equal volume. This is the usual
‘‘equivalent volume’’ approximation which we discuss later
on. Prior to matching the impedance of the lumped elements
to the measured input acoustical impedance of the pipe, the
latter must therefore be transported from the input plane to-
ward the open end of the pipe. The ‘‘transportation distance’’
is equal to the length of a cylinder having the volume of the
mouthpiece and the barrel.22,29

An oscillator is associated with each measured imped-
ance peak. At the angular frequencyv the mechanical im-
pedance of each elementary oscillator in Fig. 1 is

Zm~v!5 i S 1

mv
2

v

k1 ivr D
21

, ~12!

wherem, r, k are respectively the mass, damping, and stiff-
ness of the lumped elements.

In this ‘‘comb-like’’ association, the impedances of the
oscillators add. The dual association where the admittances
add is ‘‘chain-like.’’ Each elementary oscillator of Fig. 1 is a
mass chained with a comb of a damper and a spring, leading
to Eq. ~12!.

The parametersmi , r i , ki of each oscillator~a tooth of
the large comb!are identified by minimizing a cost func-
tional J measuring the distance between computed and mea-
sured moduli and phase of the impedance:

J5auMod~Zcomp!2Mod~Zmeas!u

1buArg~Zcomp!2Arg~Zmeas!u. ~13!

The initial values of the parameters for each oscillator
are obtained by identifying each single resonance peak and
the final values are obtained by running a Nelder–Mead sim-
plex search algorithm. A comparison between the measured
and the identified modulus and phase of the acoustic imped-
ance of the lowest F fingering~E[ heard!of the clarinet is
presented in Fig. 10. The impedance represented is not the
input acoustical impedance but the impedance of the lower
part taken at the~virtual! junction between the barrel and the
lower part of the clarinet. Therefore, the peak frequencies are
not the eigenfrequencies of the instrument. The acoustical
impedance represented here is the ratio of the acoustical
pressure to the air velocity, normalized byrc. The average
modulus on a logarithmic scale would be 1 for an ideal long
cylindrical pipe. According to Gibiat, it is less here due to
internal losses, radiation, and presumably the complexity of
the pipe.

FIG. 7. Evolution of the eigenfrequencies~left scale, in hertz! when the
system evolves from the isolated reed~left! to $reed1mouthpiece% ~middle!
and $reed1mouthpiece1barrel% ~right!. Black lines represent ‘‘primary
reed’’ modes, dotted lines ‘‘primary air’’ modes, and dash-dot lines,
‘‘mixed’’ modes.

FIG. 8. Acoustic pressure inside the tip part of the mouthpiece for a 311 Hz
mode of the complete clarinet. The acoustic pressure decreases monotoni-
cally from the tip to the largest section by 14%.

7



Two eigenmodes of the complete instrument for differ-
ent fingerings are shown in Fig. 9. One eigenmode has no
amplitudeper se. For each eigenmode in Fig. 9 the~relative!
amplitude of the motion of the oscillators is represented by
the length of a straight line extending from the plate. One
notices that the pressure distribution is not uniform in the
mouthpiece. Examining other similar figures reveals that the
motion of the reed can differ significantly from mode to
mode of a given note, even if it follows aL1T1 pattern. This
means that, although the first modes of the isolated reed oc-
cur at significantly higher frequencies than those considered
here, a single degree of freedom for the reed is not appropri-
ate since it would not account for these differences. When
the reed undergoes mostly longitudinal flexion, it is to be
expected that the beam model used by several authors15,16,30

would give comparable results.
For the low F fingering~sounding one tone lower!, the

first eigenfrequencies are 166, 464, 743, 1147, 1436, 1620,
1950, 2058, and 2201 Hz. They are 373, 1035, 1541, 1687,
1893, 1930, and 2309 Hz for the medium G fingering and
311, 735, 1213, 1467, 1578, 1865, and 2211 Hz for the high
G], played with medium C]fingering and opening of the
register key. These frequencies are represented in Fig. 11 in
order to evaluate their harmonicity. Eigenfrequencies are
normalized by their ratio to the theoretical musical frequency
for the note under consideration~respectively, 156, 349, and
740 Hz!, rounded to the nearest integer. For example, a 900
Hz eigenfrequency for note A4~440 Hz!would be normal-
ized by 2, nearest integer to 900/440. For this high note, the
register key does not eliminate the first mode of the instru-

ment but the sound will be locked approximately on the sec-
ond mode. The lowest mode is very roughly at half the pitch
of the note and is therefore normalized by the integer 2.

The sets of solid lines in Fig. 11 represent the computed
eigenfrequencies listed above of the complete instrument.
The sets of dashed lines are resonances of the pipe as ex-
tracted from the measurements of the input impedance of the
pipe. This set represents the traditional view of the instru-

FIG. 9. Modal representation of a complete clarinet: amplitude of the motion of the lumped-element oscillators~left!, air pressure in the upper part of the pipe
~middle!, and deformation of the reed~right!. Eigenmode 2 for note treeble F#~fingering of C# medium plus opening of register key! and eigenmode 8 for
note low E[~low F fingering!.

FIG. 10. Acoustical impedances~ratio of the acoustical pressure to the air
velocity, normalized byrc) for the low F note of the clarinet. Solid lines:
acoustical impedance of the pipe as measured at the closed end of the pipe
and transported at the~virtual! junction between the barrel and the lower
part of the clarinet. Dashed lines: impedance of the set of lumped oscillators
best matching the impedance of the pipe at the junction.
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ment where the volume of the mouthpiece has been replaced
by a cylindrical pipe having the same volume and closed at
one end. The sets of dotted lines represent computed eigen-
frequencies of the air column with a rigid boundary on the
reed surface. Instead of the completely closed pipe of the
traditional modeling, one assumes here a slight opening be-
tween the reed surface and the lay of the mouthpiece with a
zero pressure condition.

V. DISCUSSION AND PERSPECTIVES

A. Alignment of resonances and low-frequency
approximation

The traditional model of the mouthpiece is that of a
cylinder of equivalent volume. Within this approximation
there is no point in measuring the input acoustic impedance
above a certain limit. This limit can be evaluated by the
length scale at which the mouthpiece geometry differs from a
cylinder. Taking as an order of magnitude for these geometri-
cal differences a length of 1 cm is consistent with a 2.5 kHz
frequency limit beyond which input acoustical impedances
would begin to differ noticeably. In the approach followed in
this paper, the equivalent volume approximation is aban-
doned and the acoustical input impedance of the pipe would
keep full utility and validity up to the frequency of the first
transverse mode of the pipe~13.3 kHz for the clarinet!.

The cylinder of equivalent volume approximation for the
mouthpiece is assumed to be correct for low frequencies. It
appears in Fig. 11 that this approximation is not acceptable
enough to be used in conjunction with an alignment of peaks
criteria. One can see in Fig. 11 that variations in eigenfre-
quencies due to the model change are significant with regard
to the alignment of resonances,even at low frequencies. In
other words, the deviations from alignment in the traditional
view ~equivalent volume approximation! are of the same or-
der of magnitude as the frequency shifts due to the presence
of the reed and the prismatic shape of the mouthpiece.

B. Coupling of torsion modes to the air

The association of reed, mouthpiece, and a short open
portion of the pipe is shown in Fig. 6. The modal acoustic
pressure at an eigenfrequency of 4119 Hz is displayed in Fig.
6. In this mode, the reed undergoes torsion in a pattern very
similar to theL1T1 mode of the isolated reed~Fig. 3!. The
characteristic distance of this modal deformation is signifi-
cantly smaller than half the wavelength in air at that fre-
quency (l'10 cm); the resulting acoustical short-circuit
prevents any efficient coupling of the reed to the air in the
mouthpiece. This explains the fairly uniform acoustic pres-
sure for this mode, except very near to the reed. However,
there are several reasons why these modes may be important
in the actual playing.

First of all, the flow entering the air channel between the
reed and the lay is governed by a nonlinear equation. There-
fore, antisymmetric reed modes may have an influence on
the global flow entering the pipe.

It has been shown that the antisymmetric reed modes are
very weakly coupled to the acoustic~far!field in the clarinet.
This is not to say that these modes play no role in the dy-
namics. Asymmetries or, better said, unevenness in the geo-
metric or constitutive properties of reeds induce asymmetries
of longitudinal reed modes and consequently an asymmetry
in the local acoustical field. Due to its small relative modal
mass, the torsion mode can be easily excited at a frequency
different from its resonant frequency and therefore may play
a significant role in the actual dynamics of the reed. The
coupling factor would then be the local acoustic field. This
may be an explanation for the player’s experience that for
different mouthpieces, the preferred reeds are also different.

This modal analysis is performed on a symmetric reed.
This is not the case in reality as shown for example by the
first mode in Fig. 5. The so-called torsion modes are likely to
be associated in the fluid domain to a flow different from
zero and therefore couple to the plane waves inside the pipe.

C. Symmetry

Experimental modal analysis shows that some reeds
have strong asymmetries. Makers can be expected to be suc-
cessful in controlling the symmetry of the geometry; there-
fore, the cause of modal asymmetries lies most probably in
the lack of homogeneity of the cane used for the reed due to
its natural character. Pinard, Laine, and Vach31 examined 24
reeds, ranked by two professional players. They observed
that the two reeds ranked as good and very good were sym-
metric whereas the poor reed had asymmetrical high modes.
Based on limited sampling of reeds and players, no definite
conclusion can be drawn. Intuition would suggest that asym-
metry is not a desirable feature for a reed. However, we think
that it might not be so.

Visualizing the lip motion in brass playing shows that
lips do not move symmetrically and that this factor varies
from player to player. Since brass mouthpieces are symmet-
ric, one can conclude that the mechanical properties of lips
~possibly coupled to dentition and the mouth cavity! are not
symmetric for all brass players. One can hypothesize that the
same is true among clarinet and saxophone players. Another

FIG. 11. Normalized eigenfrequencies~logarithmic scale! of the complete
clarinet, pipe with reed~solid symbols!, of the pipe with a fixed reed~dash
dot!, and normalized resonance frequencies measured on the pipe where the
mouthpiece replaced by its equivalent volume~dashed!. See the text for the
definition of the normalization. Fingerings are low F, medium G, and high
G] ~medium C]with register key!corresponding to notes E[ 3, F 4, and
G] 5.
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observation is that different players do not always prefer the
same reeds in a given box, even for common musical tasks,
style, etc., and the same clarinet and mouthpiece. A good
match between a player and a reed could mean that a given
asymmetry in a reed would fit well the natural asymmetry of
a given player and not so well with another one. It has even
been observed that a few players use reeds which fit almost
none of their colleagues. It would be interesting to test these
players and their preferred reeds with regard to the symmetry
hypothesis.

VI. CONCLUSION

The modal analyses of reeds and of a few notes of the
whole clarinet were performed. Results have shown the fol-
lowing points.

~1! A numerical model of cane based on the hypothesis
of transverse isotropy is suited to describe modal patterns of
reeds. Some of the numerical hypotheses~homogeneity,
symmetry, damping!can be released but this would necessi-
tate additional measurements.

~2! When coupled to air, the reed is subject to deforma-
tion patterns which are not always those of its own normal
modes. Therefore, the normal modes of isolated reeds cannot
be taken as a source for the acoustic field in the mouthpiece.
Specifically, coupling must be taken into account.

~3! Torsion modes of reeds generate a strong but very
localized acoustic field in the mouthpiece. It remains to be
examined how this would interact with asymmetries in lower
modes through the excitation process.

~4! Acoustic waves are already plane within a very good
approximation in the cylindrical part of the mouthpiece.
Since finite-element modeling of air is interesting insofar as
the waves are not plane, the air volume in the barrel and a
large proportion of that in the mouthpiece can be included in
the lumped-element model, reducing significantly the com-
putational burden.

~5! The shape of the mouthpiece and the dynamics of the
reed influence the alignment of resonances in the same pro-
portion as the misalignment derived from the customary ob-
servation of the input acoustical impedance. Therefore, the
approximation of the equivalent volume is too coarse to be
used when looking at harmonicity of resonances.

This study shows the need for input impedance measure-
ments at higher frequencies than usually performed. It calls
for simplified formulations of the acoustic field in the mouth-
piece. The procedure outlined here could be used to test
these formulations. Finally, the method paves the way for
numerical simulations of the dynamics of the clarinet based
on modal projection and taking into account the whole com-
plexity of the reed.
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