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Laboratoire de Meanique des Solides, CNR8dfe Polytechnique, 91128 Palaiseau Cedex, France

A modalcomputationof a completeclarinetis presentedy the associatiorof finite-elemenmodelsof the reedandof part of
the pipewith alumped-elementodelof therestof thepipe.In thefirst part,we comparenodalcomputation®f thereedand
the air insidethe mouthpieceandbarrelwith measurementserformedby holographicinterferometry.In the secondpart, the
completeclarinetis modeledby adjoininga seriesof lumpedelementdor the remainingpart of the pipe. The parametersf
the lumped-resonatomodel are determinedfrom acousticimpedancemeasurements€Computedeigenmodesf the whole
systemshow that modal patternsof the reeddiffer significantly whetherit is aloneor coupledto air. Somemodesexhibit
mostly reedmotion anda small contributionof the acousticpressurenside the pipe. Resonancérequenciesmeasuredn a
clarinetwith the mouthpieceaeplacedoy the cylinder of equalvolumediffer significantlyfrom the computedeigenfrequencies
of the clarinettaking the actualshapeof the mouthpiecento accountand from thoseincluding the (linear) dynamicsof the
reed. This suggestsrevisiting the customaryquality index basedon the alignmentof the peaksof the input acoustical
impedancesurve.

I. INTRODUCTION the mouthpiece of a wind instrument by its equivalent vol-
ume. This study goes beyond this approximation and pre-

~ The clarinet is usually considered as the association of @ents the three-dimensional distribution of the pressure in the
linear resonator, the pipe, and a nonlinear excitor, the reedypper part of the instrument.

subject to the air flow from the mouth. Alternatively, one can Studies of the pipe of the clarinet have traditionally been

consider the air column and the reed as a linear system SUEXpressed in the frequency domain and were based on mea-
ject to nonlinear boundary conditions. This is the approaclyyrements or computations of input acoustic impedance.
retained in this article where the reed is considered as a linggwever, numerical simulations of this instrument operate in
ear mechanical system coupled to the pipe and where th@e time domain and are usually based on the reflection func-
interaction with the player is not treated. Nonlinear phenom+jon of the pipe. Recent experimental studies have adopted
enon such as the interaction between the reed and the j@{e time domain approach with direct measurements of this
across the reed-slit, the contact forces between the reed apgkiection function. Abundant literature extensively covers
the lay, and the interaction between the reed and the playerigese subjects: for general presentations, see Refs. 1—4.
lip will be included in a subsequent piece of work as nonlin- Studies of the reeds are far less extensive and the me-
ear boundary conditions to the normal modes that are desnanical behavior of cane is still subject to discussion. The
scribed here. Humidity of the reed and the player’s lip a|305implest reed model, a spring, is implicitly used by reed-
have a damping role which is not considered in this modal,akers when they rate them by their so-called “strength,”
analysis of a pipe coupled to(dry) reed. which corresponds to the mechanical compliance. Experi-
Acoustical studies of the clarinet have so far representedental studies have proposed values for the compliance of
the reed->® Associated with various models of the pipe and
Ipart of this work was presented in “Application of modal analysis and €Xcitation, this model has been used in numerical simulations
synthesis of reed and pipe to numerical simulations of a clarinet,” invitedwhich were successful in describing basic features of the

paper at the 140th meeting of the ASA, Newport Beach, CA, Decembe ; inat_li ~9 PR _
2000[J. Acoust. Soc. Am108, 2590(A)], in “Bude modale d'une clari- 'dynamlcs of clarinet-like SyStan' Music-oriented algo

nette,” Proceedings of the Colloque National en Calcul de Structures,mhmS have also been proposed in which the values of the
Giens, France, May 2001, and in “Modal analysis of a complete clarinet,” parameters describing the excitor and the resonator are ad-
Proceedings of the International Conference on Acoustics, Rome, Italjjysted in order to obtain realistic sounds instead of accurately
b)ﬁfptemper 2001, . _ _ describing their mechanical behavi8t! However, this
ectronic mail: boutillon@Ims.polytechnique.fr; present address: Labora- . . . L . . .
toire de Mecanique des Solidescde Polytechnique, 91128 Palaiseau Model is obviously insufficient to describe quality-based cri-

Cedex, France. teria: otherwise all reeds in a given commercial H@ith
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‘ FIG. 1. The clarinet: its parts and their

respective modelénot to scale).
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similar strength)vould suit a given player, but this is not the finite-element model$FEM) for the reed and the beginning

case. of the pipe and a lumped elements model for the main part of
The next modeling step is the single-degree-of-freedonthe pipe are used.
oscillator. Although some simulation algorithtA$iave been The work presented here begins with the modal analysis

very successful in producing realistic sourt@t$? this is not  of the isolated reed. In each subsequent section, another el-
sufficient in itself to assert the physical validity of a model. ement of the model is added, finally resulting in a complete
One degree of freedom is not sufficient to account for criterianstrument. In addition, the modes of the reed associated
such as reed quality. Stewart and Strbhand Sommerfeld  with the mouthpiece and barrel are compared with the results
and Strond® used a refined model of the reed as a nonuni-of experimental modal analysis.
form beam. In the latter study, the pipe was only slightly
simplified compared to a real clarinet and the player’s ain|. THE REED
column (including the lungs)was also taken into account. A Construction of the numerical model
There is no fundamental difference between this simulation™
and those based on a simple oscillator model for the reed Establishing a finite element model requires the determi-
since the interaction with the rest of the system is averagedation of the geometry of the reed, the choice of a constitu-
along the beam. The beam model is needed if one wants tive law, the determination of the mechanical parameters, as
take into account the curved shape of the mouthpiece owell as the appropriate boundary conditions.
which the reed beats during large amplitude motions. A series of three reeds have been measured. The thick-
Gazengél’ derived a simple oscillator model from a beam ness of each reed was measured with a coordinate measuring
equation. In his time-domain simulation, the mass of the osmachine(Mitutoyo EURO-M 574 and Johansson Saphir 7
cillator is recalculated at each time step as a function of thevere used). Approximately 200 points, arbitrarily chosen on
position of the reed, introducing by this means the nonlineathe reed surface, have been measuféd. 2(a)]. The geo-
behavior of the reed contact. metrical data for the model are interpolated from the mea-
Modeling the reed as a continuous system is the currergured values. Interpolation between measured points was
state of research. Several examples of modal analysis afone by using a fourth-order polynomial, resulting in and
clarinet reeds with holographic interferometry have been pregiving the thickness map shown in Fig(b2. The reed is
sented in conferences over the recent yé&r& but never assumed to be symmetrical with regard to its longitudinal
published. One example of finite-element modeling based oaxis.
measurements of the mechanical properties of cane has been The shape of the reed was measured using a high preci-
reportect! Another (unpublishedpioneering study has been sion optical projectofMacro Dynascope 5D, by Vision En-
done by Pinard and Laine when they were students at thgineering with Metronics Quadra-Check 4000 interpolating
Ecole Polytechnique(France). The experimental modal software)with the results shown in Fig. 2(c). The precision
analysis and the finite-element modeling of isolated reedsf the geometrical measurements of the reed can be esti-
that are presented in the following are a development of thisnated to~2 um.
unpublished work. To our knowledge, no model of the reed  Reeds are made out of cane which is considered here as
as a continuous system in association with the air column haa purely elastic, transversely isotropic, homogeneous mate-
been proposed. rial. Viscosity and plasticity, related to energetic losses, have
The model proposed here is aimed at overcoming sevbeen neglected at this step of the analysis. The homogeneity
eral limitations of previous approaches. Besides giving awypothesis will be analyzed a posteriori in Sec. V. In the
means to review the approximations of the classical modekurrent state of knowledge, we have found no other plausible
this new approach is also a first step toward numerical simudescription that could be expressed quantitatively.

lations of the instrument based on modal projecidn A discussion of losses in cane has been given lately by
rather than on propagation schemes represented by reflectibfarandaset al?* and Obataya and Norimofd.The former
functions. found out that dry cane is viscoelastic and turns viscoplastic

The different parts of a clarinet—reed, mouthpiece, barwhen wet. This implies that static tests on wet cane are not
rel, upper and lower parts of the pipe, bell—are shown inappropriate to measure Young’s moduli. Obataya proposed
Fig. 1 together with their respective models. Fluid and solidvalues of the quality facto® of the order of magnitude of



TABLE |. Material properties for dry cane used in reeds, as given by Pinard

and Laine.
Tl i Density pe=450 kgt
z 4 : LT Longitudinal Young modulus E,=10 000 MPa
&g bbbt ol o Transverse Young modulus E;=400 MPa
R E & i bt Shear modulus G_1=1300 MPa
E FoREE b R gy e Poisson ratio v 1=0.22
- ] 5 0 15 20 2 0 35 40
(a‘ﬁ‘"” also obtained by Pinard and Laine. Their work has been pio-

neering in several respects. In particular, they were the first
to match eigenfrequencies and modal patterns of reeds ob-
tained by holographic interferometry with those obtained
with a finite-element model.

As boundary condition, we consider the reed rigidly
clamped on the section corresponding to the ligature and
having a stress-free boundary elsewhere.

B. Computed eigenmodes

This model has been implemented on a standard PC
(450 MHz, 250 Mbyte RAM, Linux using linear Love—
Kirchoff plate elements in theAsT3Mm finite-element code.
The first modes of a reed are presented in Fig. 3. A classifi-
cation of the modes is needed for referencing and an attempt
is made here. Since modal patterns with closed modal
lines have not been encountered, it is intuitively appealing to

—_ 64.10 : label the modes according to the number of intersections

between the nodal lines and the edges of the reed. For
the symmetric reed considered here, a mode is lalai@dn.
“L” stands for longitudinal and the first inder is the
number of intersections of nodal lines with the edge
parallel to the main axis. Such nodal lines include the one
imposed by the boundary condition at the ligature. “T”
stands for transverse and the indexs the number of inter-
95 sections of the nodal lines with the tip edge of the reed.
Modes appear in an order which can be expected
(c) (L1TO,L1T1,L2TO,L1T2,L2T1), given the larger flex-
ibility in the direction transverse to the reed and the thick-
ness distribution.

The generalized mass of a mode is:

m=u'Mu, (1)

55.30 &

11.50
13.15

3350 ! 34.10

FIG. 2. Geometry of the reed, with dimensions in mi@} points actually
measured(b) interpolated thicknesg¢) estimated contour.

100 varying W'th. frequency, r_el_atlve humidity, and internal whereu represents the reed displacement for the mode and
state of cane. Since only individual modes of the reed ar

. : is the mass matrix of the reed. For a unit value of the
considered here losses can be ignored. They would need 1Q_". : .
. i i : maximum displacement in each mode, the modal masses are
be taken into account in modeling the actual dynamics of th

: ., 0.35, 0.47, 0.063, and 0.094 mg for thaTO, L1T1,
Instrument.

Under these assumptions, five parameters are needed ITOZTO’ L1T2, andL2T1 modes, respectively. Along with

. . . A modal patterns, these values establish a comparison between
describe the material: densipy, longitudinal and transverse

; . I modes. These mass values can also be compared to the order
Young's moduliE, andE+, transverse to longitudinal shear

modulus G,;, and longitudinal-transverse Poisson ratioOf magnitude of the real mass of the moving reed. At the tip

v+ The values adopted here are given in Table I. The valpf the reed, the thickness is about 1/10 mm and the width 13

. — _3 B

ues forpg, E, , andv 1 were obtained by Pinard and Laine mm. For a density=450 kg-m ' thg mass of a moving

. ) ortion of the reed of length(in mm) is (0.59XI) mg.
and result from static measurements on a piece of dry can
given by a reed maker. Obataya and Norimoto give roughI31“ MODAL COMPUTATION OF THE REED
the same value for the main Young’s modukisof dry cane :
in the frequency that is relevant hei2-6 kHz). Their mea- ASSOCIATED WITH MOUTHPIECE AND BARREL
surements show that this value decreases linearly with the This section analyzes how the dynamics of the reed is
relative humidity level(RH), E, decreasing by around 30% influenced by air loading and provides a comparison between
for a variation of 100% in RH. The other parameters wereresults given by the model and experiments presented in Sec.
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FIG. 3. First five computed modes of an isolated reed. Modes are labeled

FIG. 4. Reed and volume of air inside the mouthpiece mounted on an open
barrel.

The acoustic pressure at points of the open air surfaces
is considered to be zero. The normal derivative of the acous-
tic pressure on the walls of the mouthpiece and the barrel,
corresponding to air flow, is also set to zero. The boundary
condition coupling the reed and the mouthpiece involves the
stress in the solid and the velocity of the fluid and will be
given explicitly in the following.

The eigenvalue problem for a coupled solid—fluid sys-
tem is expressed in the continuous formulation by the
following:2®

divCVu— w?pu=0, )
di 1V + w2 ! 0 3)
iv— w?>—-—p=0,

Pt P Cszp

where p represents the acoustic pressure in the fluid. The
densities of solid and fluid args and p;, respectively. The
speed of sound is, the angular frequency of the motionds
and C denotes the elasticity matrix of the solid.

The boundary conditions coupling the fluid and the solid
parts are

o-n=—pn, (4)
ap
%prwzu-n, (5)

wheren represents the unit vector normal to the solid surface
and o= CVu the stress tensor.

In order to formulate these equations as a standard ei-
genvalue problem, a new variable= — (1/w?)p must be
introduced’® The equations and boundary conditions become

according to the number of modal lines perpendicular to the main(amis divCVu— w?pu=0, (6)
and parallel to it(Tm).
II. The system considered now is composed of the reed, the . i _ 1
) . ) div—V7— ——p=0, (7

mouthpiece, and the barrel and is represented using a Ps Cps
coupled fluid—solid model. ,
A. Numerical model @ m+p=0, ®)

The full model of reed, mouthpiece, and open barrel is  o-n=—pn, 9)

shown in Fig. 4. The internal shape of the mouthpi¢ae

Selmer H3) has been carefully measured by means of the Jdn

coordinate measuring machine used for the reed. The barrel
is considered as a cylindrical bore with a diameter of 15 mm.
The air volume inside the mouthpiece and the barrel is mod-

%:_pr'n. (10)

To the preceding equations, we can associate the follow-

eled with linear tetrahaedric and prismatic finite elements ofng Lagrangian denoting the variational formulation of the
compressible elastic fluid. problem:



1190 Hz

i)

RLITO RLITO

FIG. 5. Projection of four eigenmodes on the résee

the text for labels Top pictures: computed normalized
eigenmodes of the association of a reed with mouth-
piece and barrel. In this representation, a cyclic gray
scale produces fringes of equal differences in normal
displacement, allowing a comparison with the modal
patterns observed experimentally. Bottom pictures:
modal patterns measured by holographic interferometry
on one good reed mounted on the mouthpiece attached
to the barrel. The resonance is not very sharp owing to
damping, hence the rounded eigenfrequencies. The pho-
tographed section of the reed does not have the same
height between the various experiments and the simu-

RL2T2 '_ ] N RLIT1 lations.

1100 Hz 1600 Hz

2680 Hz 3700 Hz

2500 Hz 3400 Hz

1 1 1 dicative of torsion, others being closer to flexion; and one
L=3 JQ VuCVudv + 5 fﬂ WDZ dv family of modes around 5800—6000 Hz, with more complex
° ! patterns.
) ) ’ In measurements presented here, the reed was attached
) fﬂspsu dv—3 0, pf_cZ(VW) dv to the mouthpiece exactly as on the real instrument. Since the

ligature was producing strong light reflexions, it was
_f izpa'rdv—J' S ds), (11  replaced with adhesive tape placed slightly further from the
Q; PiC J tip. A sinusoidally driven loudspeaker was placed close

] ) to the reed to excite its vibration. For determining the reso-
where()s and () represent the solid and fluid volumes, re- nance frequencies a very thin PVDF piezoelectric film

spectively, andi() represents the boundary between thesg .,y inylidenefluoride), thickness 0.05 mm, mass 0.06 g,

volumes. of which only a part was actually movingyas glued onto

Fmally, the' problem is expressed in its discrete form bythe lower thicker part of the reed, yielding the average de-
the following eigenvalue problem:

formation near the ligature. Resonance frequencies were de-

K. 0 0 Mg 0 —N J 0 termiqed using the maximum of the piezoelectrig ;ignal. The
0 K. ol_u2l o 0 K _lo experiments were performed under natural humidity. A satu-

f w f P ' rated atmosphere would have been preferable but was not
0 0 O -NT K{ M ml L0 possible with the interferometry equipment.

The eigenmodes were visualized by means of laser
transmission interferometry. Complete details of the imple-
mentation of this classical method are described in Ref. 27.
The images in Fig. 5 represent variations of equal normal-
displacement of the reed. The resolution of the system is half
the wavelength of the laser, approximately @ud.

The reed was measured either alone, associated with an
open mouthpiece, or with the mouthpiece mounted on an
B. Experimental modal analysis open barrel. The first four measured modes shown in Fig. 5

An experimental modal analysis on reeds by means oforrespond to the barrel configuratitsee Fig. 4). They are
holographic interferometry was performed in order to checkcompared with the corresponding computed modal patterns
the validity of the numerical model of the reed coupled to air.(S€€ the next section for computation of the eigenmodes)
Recent works have been reported in shorttop. Results of the holographic measurements show that the
communication$®=2° For various reeds mounted on a maximum displacement of the reed is negligible compared to
mouthpiece under dry conditions Pinard and Laine observethe distance between the mouthpiece and the reed at that
one mode corresponding to a longitudinal flexion at aroundevel of excitation. Thus one can be confident that contact
2200 Hz; one family of modes around 3500-3700 Hz, withbetween the reed and the lay, which could possibly make the
patterns varying from reed to reed, some of them being insystem nonlinear, does not occur.

whereKg (respectively,K;) and Mg (respectivelyM;) are
rigidity and mass matrices of the solidespectively, fluid)
part of the system anl is the operator corresponding to the
coupling boundary conditiofiL0) related to the normal vec-
tor n. Details of the derivation can be found in Ref. 26.



TABLE II. Sensitivity analysis: changes in eigenfrequencies when mechanical characteristics of the reed and
acoustical properties of the air vary. Changes are given in % for a 10% variation of each parameter.

A=10% E_ Er Gt VT Ps c Pt
mean values 10 MPa 400 MPa 1300 MPa 0.22 450kgm® 340ms® 123 kgni?
1190 Hz 0 0 0 0 0 9.8 0
2010 Hz 2.4 0 0 0 -2.2 0.7 -0.4
2680 Hz 0.1 0 0 0 -0.2 9.6 0
3700 Hz 15 0 3.1 0 4.6 0 0
4010 Hz 0.2 0 0 0 -0.2 9.3 0
4740 Hz 4.9 0 0 0 -4.8 2.7 -0.1
5280 Hz 0.6 0 0 0 -0.9 8.1 -0.1
6300 Hz 1.7 0.9 4.9 0 —-6.4 3.2 0
C. Results evant. Eigenfrequencies 1190, 2680, and 4010 Hz vary lin-

: ly with the speed of sound. This is also almost the case for
A comparison between computed and measured mod&&’ : ;
P b the mode at 5280 Hz. Without looking at the modal pattern

is displayed in Fig. 5 for the situation described by Fig. 4. In" = | . .
this comparison with holographic measurements, the “Iiga-Of air pressure or reed displacement, one can infer that they
’ air modes,” with energy mostly localized in

. : dto
ture” of the reed had to be placed slightly beyond its normalcOrresponadt )
position. This led to a slightly more flexible reed than in thef[he (short) pipe. _Conversely,_ the mode _a_t .3700 Hz is not

fluenced by air characteristics; sensitivity to the shear

normal situation. When the reed is coupled to air, one should! s ) .
odulusG, 7 indicates that the reed is subject to torsieae

stress that eigenmodes concern the whole system, not just t d mode of Fia) and i | led 1o the bi
reed. Strictly speaking, expressions such as “reed modest':(.a s%co$ m? €o d'g') n trlf p_oorly c;)hupe ° ftehplpe q
are inappropriate and refer instead to modes for which en(— i9. 6). To a lesser degree, this is also the case of the mode

1/2
ergy is mostlylocalized in the reed. Each mode has beerft 6300 Hz. The mode at 4740 revealsk (p;) ™ depen-

labeled using the notation proposed earlier. T prefix P'e”CV. of the e|.genfrequ'enc'y. It is mostly a ‘reed mode”
indicates that we regard the result just asgirgiectionof the involving primarily a longitudinal deformation. The mode at

four first eigenmodes on the reed subspace. In order to sin‘?—010 Hz is apparently a mode in which air and reed are

plify the discussion, we have not attempted to label the aif(trongly coupled. It is interesting to notice that the transverse

configuration. One can notice that th@T2 pattern did not oung’s modulus does_ not seem 0 mflu_ence any frequency.
appear in the isolated reed case. One can also notice that tﬁge meqsurement of its precise value Is therefore less par-
L1TO pattern of the reed appears in the two first modes Opcularly important.
the coupled system.

The computed modes appear in the same order as ttfe Evolution of the eigenfrequencies
measured ones with eigenfrequencies deviating by 10%-—  another way of examining how the reed is coupled to
20% from measured resonance frequencies. The modal pahe acoustic field is to follow the evolution of the eigenfre-
terns are globally the same despite the fact that no real reegliencies when the reed is loaded by the air volume of
is symmetric whereas the numerical model has been chosgfouthpiece and barrel. A decrease of the eigenfrequencies
symmetric. As expected, the modes are mainly localized &nd a dominance of the longitudinal flexion occurs in the
the tip of the reed where it becomes very thin, showing thesjgenmodesFig. 7).
importance of a precise measurement of the geometry. Al- ~ The frequencies of the first two modes of theed,

though some of the mechaljical parameters come themselv%uthpiece, barrelystem are mainly imposed by the reso-
from a fit between observation and computation of modes ohance of the air cavity. In both modes, the reed undergoes

an isolated reed, the mixed fluid—solid model can be considmajnly longitudinal flexion. The frequency of the torsion
ered as valid within the range of approximations retainetdnode L1T1 (3257 Hz for the isolated reedjoes not vary
here.

Real reeds have natural asymmetries due to their geom-
etry or to nonuniform mechanical properties. One notices +1.
that the asymmetry seems stronger for the lowest mode than
for any other one.

D. Sensitivity analysis 0.

The sensitivity analysis of the eigenfrequencies to varia-
tions in mechanical parameters describing the reed and in
acoustical properties of the air is presented in Table Il. The 1.
air volume is that of Fig. 4. Parameters are varied by 5% -
above and below their average valies., 10% overalland
the corresponding overall variations of eigenfrequencies argi, 6. computed eigenmode at 4119 Hz in a mixed solid-air situation:
reported. The value of the Poisson ratio appears to be irrekcoustic pressure inside the mouthpiece and barrel.



100001 REED REED REED of a rigid plate of negligible mass, as shown in Fig. 9. The
+ MOUTHPIECE + MOUTHPIECE .

+BARREL plate and the lumped-element oscillators are supposed to
aoo} move only in the longitudinal axis of the instrument. The
lumped elements are placed at {v@tual) junction between
the barrel and the lower part of the clarinet.

It is now explained how the numerical values of the

8000+

7000} — (.wieeim

8000

frequency (Hz)

B S lumped elements are calculated on the basis of measure-

aoo0- ments provided by Gibiat on several notes of a NoblethB

sk clarinet. Results of these measurements are supposed to rep-
—— s e resent theinput acoustical impedance of the instrument. In

2000

order to measure this input impedance, a reference plane was
defined by Gibiatet al. by replacing the mouthpiece with a
o portion of cylindrical tube of equal volume. This is the usual
FIG. 7. Evolution of the eigenfrequenciéft scale, in hertg when the “equivalent volume” approximation which we discuss later
system evolves from the isolated refeft) to {reed-+mouthpieck (middle) ~ on. Prior to matching the impedance of the lumped elements
and {reed-+mouthpiece-barre} (right). Black lines represent “primary to the measured input acoustical impedance of the pipe, the
reed” modes, dotted lines “primary air” modes, and dash-dot lines, |atter must therefore be transported from the input plane to-
mixed” modes. . . .

ward the open end of the pipe. The “transportation distance”

o ) ) ) is equal to the length of a cylinder having the volume of the
significantly, meaning that this mode is weakly coupled tomouthpiece and the barr@2

the air cavity. The same phenomenon can be noticed for the A oscillator is associated with each measured imped-
modeL 1T2 at 5840 Hz for the isolated reed. One can con-gpce peak. At the angular frequeneythe mechanical im-
clude from Fig. 7 and from the observation of the ratherpedance of each elementary oscillator in Fig. 1 is

uniform pressure in the pipe at these moghest shown here)
that this mode also is weakly coupled to the pipe.

10001

® -1

Mo K+iwr

Zn(w)=i (12)

IV. MODAL COMPUTATION OF THE WHOLE CLARINET

. ) wherem, r, k are respectively the mass, damping, and stiff-
In order to simulate the modal behavior of the complete, P y ping

larinet h iated a finite-el ¢ modet b6 ness of the lumped elements.
clarinet, we have assoclaled a finite-element mo In this “comb-like” association, the impedances of the

cm of pipe with _Ium_ped eIem_enFs representing the rest of th%scillators add. The dual association where the admittances
pipe and matching its acoustic input impedance. This can b dd is “chain-like.” Each elementary oscillator of Fig. 1 is a

done since at the outlet of the barrel, the acoustic field CONZ ass chained with a comb of a damper and a spring, leading

sists essentially of plane waves. An example of acoustic pregg Eq.(12).
sure in the mouthpiece is represented in Fig. 8. The mode is
that of a complete clarinet and corresponds to the Iowes[the
mode at 311 Hz of the medium Cfthgering combined with
the opening of the register kejgee the following for the
complete list of modes in this configuratiorThe length of
mouthpiece represented here is 32 mm and corresponds to J= a|M0d(Zcomp)—M0d(Zmea§|
the tapered part. One can see that the acoustic waves can

The parameterm,;, r;, k; of each oscillatofa tooth of
large comb)are identified by minimizing a cost func-
tional 7 measuring the distance between computed and mea-
sured moduli and phase of the impedance:

already be considered as plane waves within a very good + BIArI(Zomp — Arg(Zmead |- (13)
approximtation.
The lumped-element oscillatofshown in generic form The initial values of the parameters for each oscillator

in Fig. 1) are coupled to the finite-element barrel by meansare obtained by identifying each single resonance peak and
the final values are obtained by running a Nelder—Mead sim-

plex search algorithm. A comparison between the measured
and the identified modulus and phase of the acoustic imped-
ance of the lowest F fingerin@Eb heard)of the clarinet is
presented in Fig. 10. The impedance represented is not the
input acoustical impedance but the impedance of the lower
part taken at thévirtual) junction between the barrel and the
lower part of the clarinet. Therefore, the peak frequencies are
not the eigenfrequencies of the instrument. The acoustical
impedance represented here is the ratio of the acoustical
pressure to the air velocity, normalized pg. The average
modulus on a logarithmic scale would be 1 for an ideal long

FIG. 8. Acoustic pressure inside the tip part of the mouthpiece for a 311 HzcylmdrICaI PIPE. Accordlng to Gibiat, it is less here due to

mode of the complete clarinet. The acoustic pressure decreases monotm'ﬁlterr!al losses, radiation, and presumably the complexity of
cally from the tip to the largest section by 14%. the pipe.
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FIG. 9. Modal representation of a complete clarinet: amplitude of the motion of the lumped-element os¢iéifipesr pressure in the upper part of the pipe
(middle), and deformation of the regdght). Eigenmode 2 for note treeble Ffingering of C# medium plus opening of register keynd eigenmode 8 for
note low Eb (low F fingering).

Two eigenmodes of the complete instrument for differ-ment but the sound will be locked approximately on the sec-
ent fingerings are shown in Fig. 9. One eigenmode has nond mode. The lowest mode is very roughly at half the pitch
amplitudeper se. For each eigenmode in Fig. 9 {fhedative)  of the note and is therefore normalized by the integer 2.
amplitude of the motion of the oscillators is represented by  The sets of solid lines in Fig. 11 represent the computed
the length of a straight line extending from the plate. Oneeigenfrequencies listed above of the complete instrument.
notices that the pressure distribution is not uniform in theThe sets of dashed lines are resonances of the pipe as ex-
mouthpiece. Examining other similar figures reveals that theracted from the measurements of the input impedance of the
motion of the reed can differ significantly from mode to pipe. This set represents the traditional view of the instru-
mode of a given note, even if it followslal T1 pattern. This
means that, although the first modes of the isolated reed oc-

cur at significantly higher frequencies than those considered o

here, a single degree of freedom for the reed is not appropri- 1o b

ate since it would not account for these differences. When 3 o

the reed undergoes mostly longitudinal flexion, it is to be E

expected that the beam model used by several adft6r® 0

would give comparable results. 1071 o o e - .
For the low F fingering'sounding one tone lower), the

first eigenfrequencies are 166, 464, 743, 1147, 1436, 1620, 2

1950, 2058, and 2201 Hz. They are 373, 1035, 1541, 1687,
1893, 1930, and 2309 Hz for the medium G fingering and
311, 735, 1213, 1467, 1578, 1865, and 2211 Hz for the high
G#, played with medium C#ingering and opening of the
register key. These frequencies are represented in Fig. 11 in 2
order to evaluate their harmonicity. Eigenfrequencies are °
normalized by their ratio to the theoretical musical frequency

for the note under consideratigrespectively, 156, 349, and FIG. 10. Acoustical impedancégatio of the acoustical pressure to the air
740 Hz), rounded to the nearest integer. For example, a 90@locity, normalized byc) for the low F note of the clarinet. Solid lines:

; _acoustical impedance of the pipe as measured at the closed end of the pipe
Hz elgenfrequency for note A@40 HZ) would be normal and transported at th@virtual) junction between the barrel and the lower

izeq by 2, nearest intege_zr I:‘O 900/440_- For this high no_te’ thsart of the clarinet. Dashed lines: impedance of the set of lumped oscillators
register key does not eliminate the first mode of the instrubest matching the impedance of the pipe at the junction.

phase (rad)

L L n :
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100 ' ' ' ' " ; ' ' ' B. Coupling of torsion modes to the air

The association of reed, mouthpiece, and a short open
portion of the pipe is shown in Fig. 6. The modal acoustic
pressure at an eigenfrequency of 4119 Hz is displayed in Fig.
6. In this mode, the reed undergoes torsion in a pattern very
similar to theL1T1 mode of the isolated red@ig. 3). The
characteristic distance of this modal deformation is signifi-
cantly smaller than half the wavelength in air at that fre-
200 1 quency f@~10cm); the resulting acoustical short-circuit
prevents any efficient coupling of the reed to the air in the
mouthpiece. This explains the fairly uniform acoustic pres-
sure for this mode, except very near to the reed. However,

Mo v e s« 5 s 7 8 s there are several reasons why these modes may be important
mode number in the actual playlng
FIG. 11. Normalized eigenfrequencié@sgarithmic scalg of the complete First of all, th.e flow entering the alr.ChannE| bereen the
clarinet, pipe with reedsolid symbols), of the pipe with a fixed re¢dash reed and the Iay 1S govemed by a nonlinear equation. There-

dot), and normalized resonance frequencies measured on the pipe where @€, antisymmetric reed modes may have an influence on
mouthpiece replaced by its equivalent volufdashed). See the text for the the global flow entering the pipe.

definition of the normalization. Fingerin i i ; ;

G# (medium C#with register key)c%rresgpsor?g?ng)\;\; Fr;ortneesdb:g:-’r:,1 IS;l,aggdhlgh Ithas been shown that the antlsym.met.nc reed m.OdeS are
G# 5. very weakly coupled to the acoustifar)field in the clarinet.
This is not to say that these modes play no role in the dy-
namics. Asymmetries or, better said, unevenness in the geo-
etric or constitutive properties of reeds induce asymmetries
longitudinal reed modes and consequently an asymmetry

the local acoustical field. Due to its small relative modal

5001

frequency (Hz)

ment where the volume of the mouthpiece has been replac
by a cylindrical pipe having the same volume and closed aI)f
one end. The sets of dotted lines represent computed eigem—

freqduenc;es of the a'(rj cofluhmn with Ia ”?'d lbour:jdary onfthlfmass, the torsion mode can be easily excited at a frequency
:S;ditif)l;;?trfé dlgl?rt]ea onoe ;s(;ucn?(renspr?;?eyacsﬁisit glziirc: tbe(aifferent from its resonant frequency and therefore may play
tween the reed sur%étce and the lay of the moguthpirt)ace V\?ith a 5|gp|f|cant role in the actual dynamics of the r-eed. The
zero pressure condition gouphng factor woult_j then be the local acousgc field. This
: may be an explanation for the player’'s experience that for

different mouthpieces, the preferred reeds are also different.
V. DISCUSSION AND PERSPECTIVES This modal analysis is performed on a symmetric reed.
This is not the case in reality as shown for example by the
first mode in Fig. 5. The so-called torsion modes are likely to
be associated in the fluid domain to a flow different from

The traditional model of the mouthpiece is that of azero and therefore couple to the plane waves inside the pipe.
cylinder of equivalent volume. Within this approximation
there is no point in measuring the input acoustic impedanc
above a certain limit. This limit can be evaluated by the
length scale at which the mouthpiece geometry differs froma  Experimental modal analysis shows that some reeds
cylinder. Taking as an order of magnitude for these geometrihave strong asymmetries. Makers can be expected to be suc-
cal differences a length of 1 cm is consistent with a 2.5 kHzcessful in controlling the symmetry of the geometry; there-
frequency limit beyond which input acoustical impedancedore, the cause of modal asymmetries lies most probably in
would begin to differ noticeably. In the approach followed in the lack of homogeneity of the cane used for the reed due to
this paper, the equivalent volume approximation is abanits natural character. Pinard, Laine, and VAtlexamined 24
doned and the acoustical input impedance of the pipe wouldeeds, ranked by two professional players. They observed
keep full utility and validity up to the frequency of the first that the two reeds ranked as good and very good were sym-
transverse mode of the pif&3.3 kHz for the clarinet). metric whereas the poor reed had asymmetrical high modes.

The cylinder of equivalent volume approximation for the Based on limited sampling of reeds and players, no definite
mouthpiece is assumed to be correct for low frequencies. Itonclusion can be drawn. Intuition would suggest that asym-
appears in Fig. 11 that this approximation is not acceptablenetry is not a desirable feature for a reed. However, we think
enough to be used in conjunction with an alignment of peakshat it might not be so.
criteria. One can see in Fig. 11 that variations in eigenfre-  Visualizing the lip motion in brass playing shows that
guencies due to the model change are significant with regarnibs do not move symmetrically and that this factor varies
to the alignment of resonancesyen at low frequencies. In from player to player. Since brass mouthpieces are symmet-
other words, the deviations from alignment in the traditionalric, one can conclude that the mechanical properties of lips
view (equivalent volume approximatipmare of the same or- (possibly coupled to dentition and the mouth cayiye not
der of magnitude as the frequency shifts due to the presencgymmetric for all brass players. One can hypothesize that the
of the reed and the prismatic shape of the mouthpiece.  same is true among clarinet and saxophone players. Another

A. Alignment of resonances and low-frequency
approximation

%. Symmetry
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