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[1] Back thrusts and hinges are two types of transition between rigid sections of hanging walls observed in
fold-and-thrust belts. Back thrusts are typical of frictional and homogeneous solids and hinges of creeping
and layered materials. Our objective is to study the orientation of these transitions for the special case of a
lower flat-ramp transition in a fault-bend fold with the following general two-step methodology. In the first
step, the forces acting on the transition are determined using equilibrium of each rigid section. In the second
step, the optimal dip of the transition is obtained by minimizing the total dissipation of the structure. The
three sources of dissipation, of comparable magnitude, are at the transition, on the flat, and on the ramp. For
frictional material flows, the back thrusts are velocity discontinuities with optimal dips always less than half
the complementary ramp angle, leading to hanging wall thickening. The optimal dip agrees well with the
results of physical analogue and numerical experiments. For creeping and layered materials, it is shown that
a destabilizing deformation mechanism, selected to be flexural slip, is necessary for the strain to localize and
the existence of hinges to be justified. Activation of flexural slip reduces dissipation at the transition and
affects the optimal transition dip. The two-step methodology proposed here could be seen as a first attempt in
producing mechanically balanced cross sections accounting for material rheology. This approach should
complement the now classical kinematic models of folding. INDEX TERMS: 8005 Structural Geology: Folds and 
folding; 8020 Structural Geology: Mechanics; 8030 Structural Geology: Microstructures; 8102 Tectonophysics: Continental
contractional orogenic belts; KEYWORDS: fold, thrust, dissipation, mechanics, tectonics, rheology

1. Introduction

[2] Outer zones of mountain belts are often characterized
by a horizontal shortening of the shallow sedimentary
pile below which the basement remains undeformed. The
decollement planes or flat thrusts are shallower toward the
exterior of the belt because of a series of ramps that the upper
plate must climb (see Figure 1 for terminology). The transi-
tion from a flat thrust to an inclined ramp is thus ubiquitous in
those so-called thin-skinned fold-and-thrust belts. The first
objective of this paper is to find the tectonic forces acting on
these transitions using the special case of a single lower flat-
ramp transition as an example. The second objective is to
provide an evaluation of the orientation of the transition
based on a minimization of the total dissipation of the
structure.
[3] The transitions defined above, which are observed in

the field, in physical analogue modeling and numerical

simulations can be classified into three categories, depend-
ing on the activated deformation mechanisms and on the
friction on the ramp and on the flat. The first category is
composed of smooth transitions with a diffuse curvature.
Materials conducive to such transitions include viscous
fluids having no destabilizing agents to trigger strain local-
ization, as studied theoretically by Berger and Johnson
[1980, 1982] and by Wiltschko [1981], with application to
the Pine Mountain thrust block in the Appalachian moun-
tains. Cohesive and frictional materials such as unconsoli-
dated sand could also lead to smooth transitions if underlain
by a viscous material, to dampen the effects of the sharp
contact between the flat thrust and the ramp, and also to
reduce the ramp friction. These two effects are clearly seen
in analogue experiments [Merle and Abidi, 1995] and in the
field as, for example, in the western Montana thrust belt
[Serra, 1977]. In the presence of friction on the lower flat
and the ramp, cohesive and frictional materials accommo-
date the passage on the ramp by a series of regularly spaced
and dipping back thrusts which constitutes the second
category of transitions. Field examples include thrust faults
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in the Banff formation and in the Casper mountain, Alberta
[Serra, 1977]. Such sharp transitions have also been studied
with physical modeling in the laboratory [Morse, 1977;
Chester et al., 1991]. The back thrust dip depends on the
frictional properties of the thrust planes, as observed in
analogue [Merle and Abidi, 1995] and numerical [Erickson
et al., 2001] experiments. The third category of transitions
is observed in kink folds and is composed of hinges of finite
thickness which separate the various straight limbs. They
are present in thin-skinned fold-and-thrust belts, as in the
Rundle thrust of the Canadian Rocky Mountains, Alberta,
the Snake River Range, Wyoming [it Boyer, 1986], in the
Ougarta Range, Algeria [Collomb and Donzeau, 1974], and
were already suggested by Rich [1934] in his study of the
Cumberland thrust block of the Appalachian belt. The
existence of these transition zones, in the form of hinges
of finite thickness, is often related to the layered nature of
sedimentary rocks constituting the upper plates of the thrust
planes. Of particular interest here is the case of the so-called
fixed hinges, relative to the lower plate, and through which
the material of the upper plate is convected to follow the
inclined ramp. Such fixed hinges have been inferred from
field observations as in the Umbrian-Marches Apennines,
Italy [Geiser, 1988], the South East Lost Hills, California
[Medwedeff, 1989], and the Santa Barbara Channel, Cali-
fornia [Shaw and Suppe, 1994]. The presence of these fixed
hinges is also a common hypothesis of most kinematic
models proposed to study ramp related folds such as the
fault-bend fold and the fault-propagation fold models
[Suppe, 1983; Suppe and Medwedeff, 1984, 1990].
[4] Kinematic models can reproduce field observations

despite the absence of any assumptions on the material
rheology (apart from volume conservation) and of any basic
concepts of mechanics such as equilibrium and strain-
displacement compatibility. This paper could be seen as a
first attempt to palliate to this deficiency and to introduce
mechanics in kinematic models. As a preliminary step, it is
proposed to study the last two categories of transitions for
which the deformation is localized in the form of back
thrusts or hinges. The analysis of the equilibrium of every
rigid block provides the forces acting on the transitions and
at the origin of the various sources of dissipation. The
minimization of the total dissipation is then proposed to find

the optimal orientation of the transition. These two points
are considered for two rheologies corresponding to friction-
al and viscous materials.
[5] The accommodation by a sharp transition of the

change in orientation of a sheet first horizontal and then
having to climb an inclined ramp is not restricted to
structural geology and has been studied extensively in
engineering in the context of the orthogonal metal cutting
process [Merchant, 1944, 1945]. Despite the differences in
time and length scales, the analogy between the geological
back thrusts or hinges and the transition created in metal
cutting deserves some attention. The horizontal layer for
metal cutting is fixed and corresponds to the thin layer of
material removed from the machined piece by an advanc-
ing tool, which plays the role of the ramp. Merchant
[1945] proposes to estimate the orientation of the transi-
tion zones by minimizing the work done by the advancing
tool and which is dissipated by friction on the tool face
(the ramp) and in the transition zone. The same approach
will be followed here to estimate the orientation of the
back thrusts for frictional materials deforming on geologi-
cal times. The need to optimize the rate of cutting in high-
speed machining has lead engineers to reconsider recently
the work of Merchant. The sharp transition first seen as a
discontinuity is then analyzed as a thin shear zone through
which the strain rate and temperature sensitive material is
convected. At sufficiently high tool velocities, the material
thermal softening is activated and leads to strain locali-
zation and thus to a favorable reduction in the force
applied to the tool [Molinari and Dudzinski, 1992; Bodin,
1996]. A similar analysis is considered here to study the
internal structure of hinges. Flexural slip is proposed as
the appropriate destabilizing factor to explain the strain
localization.
[6] Flexural slip has been accounted for to reproduce kink

fold geometry with anisotropic viscous rheologies [Lan and
Hudleston, 1997; Johnson and Johnson, 2002a, 2002b].
There is however in these studies no explicit link to the
microstructure since the rheologies of the beds and the
interbed slip are not differentiated. Other accounts of
flexural slip in folding analysis include the stratified visco-
plastic structure of Erickson and Jamison [1995], proposed
to explore the stress distribution during folding. The rele-
vance of a destabilizing factor to trigger strain localization is
not explored in their numerical experiments. It will be
shown here that such a destabilizing factor is necessary to
explain the existence of sharp transitions. An example of
destabilizing factor is the nonassociated plasticity flow rule
considered by Erickson et al. [2001], which is responsible
for the strain localization in the form of back thrusts
observed in their numerical simulations, as it could be
inferred from the seminal work of Rudnicki and Rice
[1975]. The destabilizing effect is obtained here by describ-
ing flexural slip through a two-phase continuum model of
creeping flow. The first phase is the bulk and the second is
the interfaces. The second phase is weaker in the sense that
the viscosity of the whole is reduced once slip is activated.
This weakening is the destabilizing factor which leads to
strain localization.
[7] The contents of this paper are as follows. The

prototype for the lower flat-ramp transition is presented
in section 2 starting with the geometry and the equilibrium

Figure 1. Terminology used to describe the geometry of a
generic fault-bend fold. The lower flat-ramp transition is
called back thrust in frictional materials and hinge in
creeping materials.
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of the hanging wall above the ramp and the flat regions.
The prototype geometry is essentially 2-D but could be
generalized to 3-D to study lateral ramps, as it was already
done by Merchant [1944] in the context of oblique metal
cutting. The equilibrium of the rigid regions provides the
forces acting on the transition zone. Section 2 continues
with the introduction of the rheology for frictional materi-
als as well as for the two-phase creeping solids which will
permit localization in the hinges. Section 3 is concerned
with the dissipation of the structure for frictional materials,
the transition zone being a back thrust, i.e., a discontinuity
in the velocity field. The dissipation is shown to have
three sources of comparable magnitude which are the
frictions over the ramp, the back thrust, and the flat. It
is proposed that the transition dip minimizing the dissipa-
tion is the most favorable. This optimal orientation does
not bisect the ramp complementary angle, a condition
necessary to preserve the hanging wall thickness. This
optimal orientation is also independent of the flat length.
The relevance of this optimal orientation is justified by
comparing the predictions with observations made with
analogue [Bonini et al., 2000; Merle and Abidi, 1995] and
numerical [Erickson et al., 2001] experiments. Sections 4
to 7 deal with the steady flow of the two-phase creeping
material through the fixed hinge. The flow, up to the onset
of flexural slip, has an analytical solution presented in
section 4. The strain localization, necessary to explain the
existence of hinges, is analyzed in section 5, the numerical
algorithm being presented in Appendix A. Section 6
provides a discussion of potential tectonic markers based
on a detailed analysis of the stress field in the hinge.
Section 7 pertains to the analysis of the dissipation in the

hinge for the creeping two-phase material. The activation
of flexural slip leads to a reduction of dissipation by a
factor of up to four. This dissipation, as for the case of
back thrusts, exhibits a minimum in terms of the transition
dip which does not correspond to the bisection of the
complementary angle. The generalization of the two-step
procedure, determination of the forces acting on the
transition and minimization of the dissipation, to obtain
mechanically balanced cross sections, is discussed in
section 8.

2. Prototype for a Lower Flat-Ramp Transition

[8] The objective of this section is to present the bound-
ary value problem proposed to study the transition from a
lower flat to an inclined ramp in ramp related folds. The
geometry of the prototype and the hypotheses of the
modeling are first presented. Further assumptions
concerning the rheology of the frictional materials and of
the creeping two-phase solids, characteristic of the two
types of transitions studied, are then presented before a
dimensional analysis is provided.

2.1. Prototype Geometry and Equilibrium of the
Hanging Wall

[9] The prototype proposed to study the transition zones
in a fault-bend fold is shown in Figure 2a. It consists of the
layer (ECDF) of thickness ei and length l buried at the depth
d which is moving to the left to enter the transition zone
defined by the line (DC) with a dip q. The layer then moves
up the ramp dipping with the angle j. Note that the two
angles j and q are independent and thus the classical

Figure 2. (a) Model problem of a layer (CEFD) which slides rigidly toward the transition zone (CD)
where it sustains the simple shear deformation necessary to climb rigidly over the ramp (AD) before
reaching the top surface at (AB) where the material is eroded away. (b) Same model problem for the case
where the layer (CEFD) reaches the surface. (c) and (d) Free body diagrams of the hanging wall (ABCD)
for the cases in Figures 2a and 2b, respectively, used to compute the external forces NT and TT acting on
the transition zone (CD).
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assumption of kinematic models [Suppe, 1983] that the
hinge bisects the complementary angle of the ramp (i.e.,
2q + j = p) is not adopted here. The layer on the ramp has
for thickness eo and reaches the surface at (AB). It is
assumed that erosion is fast and erases immediately any
structural relief so that the top surface remains flat for any
velocity of the horizontal layer denoted vi. The flow through
the transition zone is thus stationary, and further assumed to
be isochoric. The geometry of the proposed prototype is
sufficiently general for analyzing the two types of transi-
tions, back thrusts and hinges. In the case of back thrusts,
we let the hanging wall reach the top surface (i.e., the burial
depth d = 0), as shown in Figure 2b.
[10] There are two consequences to the hypotheses of

stationary isochoric flow through the transition. First, entry
and exit velocities, the latter denoted vo, must have the same
component perpendicular to the hinge, denoted V, such that

vo sin qþ jð Þ ¼ vi sin q ¼ V : ð1Þ

Second, the material flux through the transition zone is
constant (viei = voeo) providing the following relation:

eo ¼ ei
sin qþ jð Þ

sin q
; ð2Þ

between the thickness of the layer before and after crossing
the line (DC) (Figure 2a). The thickness variation predicted
by equation (2) only occurs if the transition does not bisect
the ramp complementary angle.
[11] The free-body diagram of section (ABCD) presented

in Figure 2c summarizes the external forces in action for the
geometry of Figure 2a. Section (AB) is free of forces and it
is assumed that the resultant tangential force along (AD) is
equal in magnitude to the resultant normal force NR times
the friction coefficient along the ramp mR. This friction
coefficient is related to a friction angle aR with the usual
relation: tanaR = mR. The sediments above the line (BC) are
assumed to be poorly consolidated, and thus to be in a
hydrostatic stress state governed by the lithostatic pressure.
The total force FBC is thus normal to the section (BC) and
its magnitude is rgd2/(2 sin j) in terms of the volumic mass
r and the gravity acceleration g. The last external force is
the weight of the section which is denoted gMABCD in
Figure 2c. The two equilibrium equations for the forces
acting on the section (ABCD) are in terms of the unknowns
NR, the tangential force TT and the normal force NT over
(DC). These two equations are combined to eliminate the
unknown NR providing the following relation between the
two components TT and NT:

NT sin qþ jþ aRð Þ þ TT cos qþ jþ aRð Þ

¼ rg
2d þ ei

2
ei
sin qþ jð Þ

sin q
sin aR þ jð Þ

sinj
þ rg

1

2
d2

sinaR

sinj
; ð3Þ

while the first (i.e., equilibrium in direction i, Figure 2) is
presented to determine NR

NR

sin aR þ jð Þ
cosaR

� TT cos q� NT sin q ¼ rg
1

2
d2: ð4Þ

Note that in equation (3), the mass MABCD has been
replaced by the expression for the surface (ABCD) times the
volumetric mass r, selected to be the same as above the line
(BC). Note also that the moment of the forces which have
been described above has also to be zero. This third
equilibrium equation could be used to estimate the
distribution of external forces on the ramp but that
information is not required in what follows.
[12] The second equilibrium analysis concerns the geome-

try of Figure 2b for the special case of a thick hanging wall
reaching the top surface. The linear relation between NR, NT

and TT in equation (4) still applies (setting d = 0) but, for the
determination of the dissipation on the flat, one needs to find
the equilibrium of section (CEFD), for which a free-body
diagram is shown in Figure 2d. Equilibrium of that section
requires

FH � NF tanaF � NT sin q� TT cos q ¼ 0;

NF � NT cos qþ TT sin q� rgei l � 1
2
ei cot q

� �
¼ 0;

ð5Þ

in terms of FH and NF which are the horizontal force
responsible for the movement of the whole structure to the
left and the normal reaction of the flat thrust, respectively.

2.2. First Type of Transition: Back Thrust in
Frictional Materials

[13] Back thrusts are defined as velocity discontinuities
along which the material has attained its critical strength
limit. This limit is expressed by the Mohr-Coulomb
relation between the resolved shear stress and the normal
stress. Since this critical stress condition is enforced at
every point along the transition (CD), the following
relation between tangential force and normal force is thus
supposed to hold

TT cosaB � NT sinaB ¼ 0; ð6Þ

in which aB is the friction angle of the material (the friction
coefficient is mB = tanaB). Relation (6) is the only
assumption on the material response required to study the
orientations of back thrusts in section 3.

2.3. Second Type of Transition: Hinge in Creeping
Two-Phase Materials

[14] The line (CD) presented in Figure 2a is now pre-
sented as the region (CC0DD0) on a smaller length scale in
Figure 3, revealing the inner structure of the hinge. It is
assumed that the material sustains a deformation, which is
an overall simple shear, only through the hinge. The
thickness of the sheared region h is assumed to be small
compared to the bed thickness ei which, in turn, is small
compared to the burial depth d. The flow through the hinge
can then be assumed independent of the x1 coordinate,
defining the lateral position along the hinge, and thus
function of x2 only, which is the position through the hinge.
The coordinate system is introduced in Figure 3 with the
three basis vectors (e1, e2, e3), the first being along the
hinge. Vectors, as well as tensors, are identified by bold
characters. The independence of the flow on the position
along the hinge means also that the details of the flow close
to the two ends (CC0) and (DD0) are not analyzed.
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[15] The rock material has the microstructure shown at
the three points marked by a solid dot in Figure 3. It is
constituted of a bulk material as well as of interfaces
initially parallel to the bedding and convected by the
transformation to become parallel to the ramp after their
passage through the hinge. The ratio of the average distance
between two interfaces to the size of the representative
volume element is 1 � f so that the dimensionless number
f, referred to as the flexural slip density, is close to one for
finely spaced interfaces.
[16] The velocity field U in the hinge is stationary and,

since the flow is isochoric, can be written as

U x2ð Þ ¼ U1 x2ð Þe1 þ Ve2; ð7Þ

in terms of the single unknown function U1(x2) of the
position x2 of a particle at x. This particle was initially at
X = X1e1 + X2e2 (X2 = 0), the entry of the hinge, at a time set
arbitrarily to zero, i.e., X = x (t = 0). The velocity field
provides the equations for the trajectories of the particles
through the hinge which are

x1 X; tð Þ ¼ X1 þ
Z t

0

U1 x2 X; t0ð Þð Þdt0; x2 X; tð Þ ¼ Vt: ð8Þ

These trajectories are tangent to the streamlines because of
the stationary flow assumption. This fact is now used to
orient the microstructure defined by the tangent m and the
normal vectors n of the slip planes in a particle at x. This
particle at the entrance of the hinge was at X and its
microstructure was then oriented with the normal N = sinqe1
+ cosqe2 and tangent M = �cosqe1 + sinqe2. Because the
flow is stationary, the material vector M is convected by the
transformation to the vector m at x, parallel to the velocity

vector. Consequently, the vector m and the normal to the
slip surface n are given by

m x2ð Þ ¼ U1 x2ð Þe1 þ Ve2

V 2 þ U1 x2ð Þ2
� �1=2

;

n x2ð Þ ¼ Ve1 � U1 x2ð Þe2

V 2 þ U1 x2ð Þ2
� �1=2

:

ð9Þ

The Eulerian gradient of the velocity field is computed from
equation (7) and its symmetric part is the rate of
deformation tensor

D ¼ Dijei � ej ¼ _g
1

2
e1 � e2 þ e2 � e1ð Þ; _g x2ð Þ ¼ dU1 x2ð Þ

dx2
;

ð10Þ

in terms of the function _g(x2) which is introduced as a short-
hand notation for the derivative with respect to x2 of the
velocity component U1(x2). The tensorial product �
introduced in equation (10) acts between two vectors a and
b resulting in a second-order tensor defined by (a � b) �c =
a (b � c) for any vector c (see, for example, Chadwick [1999],
for further comments). The rate of deformation in equation
(10) is a simple shear mode of deformation. This simple
shear is accommodated by a material composed of two
phases. The first phase is the bulk which is incompressible
and deforms according to a power law rheology so that the
relation between the Cauchy stress and the rate of
deformation tensor DB sustained by that phase is

S ¼ �p1Iþ 2T0B

_;0B

_;B

_;0B

� �mB�1

DB ; _gB ¼ 2DB : DBð Þ1=2; ð11Þ

in which p, 1I, t0B, _g0B, mB and _gB are the pressure, the
second-order identity tensor, a reference stress, a reference
strain rate, the strain rate sensitivity exponent and the
equivalent strain rate based on DB, respectively. The
notation ‘‘:’’ introduced in equation (11) and employed
between two second-order tensors A and B should be
interpreted as the trace of the second-order tensor resulting
from the product A � B, i.e., A : B = tr(A.B) = AikBki. Note
that the incompressibility constraint requires that the trace
of the tensor DB (i.e., its first invariant) be zero whereas the
plane strain assumption is satisfied by imposing that DB33

be zero. These two remarks will have some important
consequences on the structure of the stress state which will
be discussed at the end of this section. The second phase
present at any point x is the interfaces which can
accommodate slip along the direction m, defined in
equation (9), so that the rate of deformation tensor due to
slip is

DS ¼ _gS
1

2
m� nþ n�mð Þ; ð12Þ

in terms of the equivalent strain rate for slip _gS(x2). The
tensorial structure of equation (12) is similar to the one
found in equation (10). It corresponds to a simple shear in
the basis (m, n) constituted by the slip plane and its normal.

Figure 3. Transition zone presented as a single line (CD)
in Figure 2a shown as a hinge (CC0DD0) through which the
material is convected. The resulting simple shear mode of
deformation in the hinge is assumed to be described only in
terms of the x2 coordinate and thus to be independent of the
x1 coordinate. The material at the microscale (circular
insets) is composed of a bulk phase and of interfaces which
are horizontal before the hinge and parallel to the ramp after
having sustained the overall simple shear.
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The equivalent strain rate _gS is function of the stress and the
following rheology for slip is adopted

_gS ¼ f _g0S
jtS j þ mSsS

t0S

� �nS

Sign tSð Þ; jtS j þ mSsS > 0: ð13Þ

The strain rate _gS is zero otherwise: slip is activated only if
a Mohr-Coulomb criterion (without cohesion) is met on the
slip (i.e., stratigraphic) planes. Upon activation, the
behavior of the slip planes is that of a non-Newtonian
fluid. The power law introduced in equation (13) is based
on _g0S , t0S, nS and Sign which are a reference strain rate for
slip, a reference stress, the stress exponent and the sign
function, respectively. Note that the strain rate for slip is
assumed to be proportional to the density of the second
phase f. The resolved shear and normal stress tS and sS
introduced in equation (13) are defined by

sS ¼ n� n : S; TS ¼ 1

2
m� nþ n�mð Þ : S; ð14Þ

in terms of the Cauchy stress (see, again, Chadwick [1999]
for a full definition).
[17] It is assumed that the overall simple shear mode of

deformation given in equation (10) results from the sum of
the rates of deformation sustained by the two phases

D ¼ DB þ DS : ð15Þ

It should be noted that if slip occurs then the strain rate due
to the interfaces DS, defined in equation (12), is not
proportional to the overall simple shear introduced in
equation (10). Consequently, the bulk phase strain rate DB

does not have the structure of a simple shear mode to satisfy
the summation in equation (15).
[18] The complexity of the two-phase material rheology

requires solution of a boundary value problem for mechani-
cal equilibrium to determine the flexural slip distribution
through the hinge. The stress state and the boundary
conditions for that problem are now discussed. To be
consistent with the 1-D assumption of the transformation,
the external forces found in equation (3) are distributed
uniformly over the length (CD) leading to the introduction
of two external force densities

sT ¼ NT

sin q
ei

; tT ¼ TT
sin q
ei

; ð16Þ

which are the boundary conditions for the stress state in the
hinge, as illustrated in Figure 3. The Cauchy stress in the
hinge satisfies equilibrium div(S) = 0, disregarding gravity
forces over the hinge vertical extension compared to the
tectonic load due to burial and friction on the ramp. The
solution of these equilibrium equations for a stress state,
which is only a function of the x2 coordinate, implies that
s12 and s22 be equal to tT and to �sT at every point through
the hinge. Further information on the stress can be obtained
by recognizing that according to equation (11) and since the
bulk phase is incompressible, the deviatoric stress state is
proportional to the rate of deformation tensor DB. The
material flow satisfies the plane strain condition requiring
furthermore that there is no deviatoric stress in the third

direction. These two conditions lead to the following
structure of the stress state in the hinge

S ¼ sT � 2p x2ð Þð Þe1 � e1 � sTe2 � e2 � p x2ð Þe3 � e3

þ tT e1 � e2 þ e2 � e1ð Þ; ð17Þ

in terms of the unknown function p(x2) introduced in
equation (11) and the scalar tT which is related to sT
through equations (16) and (3). It is shown in Appendix A
how these unknowns are determined numerically in the
presence of slip along the interfaces. The analytical solution
without flexural slip, discussed in section 4, serves to
predict the onset of flexural slip.
[19] The final part of this section is devoted to the dimen-

sional analysis and to a discussion of the rheological param-
eters selected for the two-phase viscous material. Table 1
gives parameter values used in the two simulations presented
in section 5 and summarizes this dimensional analysis.
Dimensionless values are obtained by dividing the dimen-
sional values by their reference value. The reference value for
length is arbitrarily set to a hinge thickness hR = 10 m. The
reference value for stresses is then sR = rghR = 0.22 MPa,
with the reference volumic weight of the sediments rg set to
22 kPa/m. Although still difficult to determine precisely
[e.g., Renard et al., 2000], bulk rock viscosities are
expected to range from 1017 to 1021 Pa s. Choosing a
reference viscosity hR = 1019 Pa s leads to a reference time
tR = hR/sR = 4.545 
 1013 s = 1.44 Ma, a reference velocity
VR = hR/tR = 2.2 
 10�13 m/s = 6.94 
 10�3 mm/yr, and a
reference strain rate _gR = 1/tR = 2.2 
 10�14 s�1.
[20] A discussion of the rheological parameters is now in

order to explain the possibility for the deformation to localize
at shallow depths and thus to justify the existence of hinges.
The studied structure is buried at a depth less than 5 km so
pressure and temperature are of the order of 100 MPa and
100�C. Having in mind a rock such as calcite, we could
expect fluid-assisted deformation mechanisms to be activat-
ed [Gratier, 1993]. The strain rate exponent mB appearing in
equation (11) must thus be of the order of 1 (Figure 4). The
reference viscosity hR then defines the ratio t0B/ _g0B. At such

Table 1. Parameter Definitions, Units, Values Considered in the

Simulations, and Reference Values

Parameter Unit Value Referencea

h hinge thickness m 10 hR
ei nappe thickness m 50 hR
d burial depth m 1000, 800 hR
rg volumic weight Pa/m 2.2 
 104 sR/hR
q hinge dip – 75� –
j ramp dip – 30� –
mR ramp friction – 0.2 –
vi shortening velocity mm/yr [0.35, 10] hR/tR

Bulk Phase
_g0B reference strain rate 1/s 2.2 
 10�14 1/tR
t0B reference stress Pa 1.1 
 105 sR
mB strain rate exponent – 1 –

Slip Phase
_g0S reference strain rate 1/s 2.2 
 10�14 1/tR
t0S reference stress Pa 2.2 
 103 sR
mS friction – 0.1 –
nS stress exponent – 1 –
f density of surfaces – 0.7 –

aReference values are hR = 10 m, sR = 0.22 MPa, tR = 0.45 
 1014 s =
1.44 Ma.
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shallow depths, temperature sensitivity cannot explain an
unstable creeping flow. Furthermore, deformation by twin-
ning, which could be destabilizing, is limited to small strains
and must therefore be activated prior to the entry of the
hinge. It is disregarded in this study. Flexural slip thus
appears to be the only potential candidate for explaining
localization and is introduced in our modeling for this
reason. A linear viscosity function is also adopted for the
creep of the second phase (the interfaces). Such a linear
viscosity function is certainly stable in shear and it is the
combination of the two phases which is destabilizing for
reasons now discussed. Note first, from Figure 4, that the
viscosity of the weak interfaces is selected to be only a
fraction a (a = t0S/t0B = 0.02 for the data of Table 1) of the
bulk phase viscosity. This remark is true for the linear and the
power law creep relations. The consequence is that the flow
is stiffer in the absence of flexural slip. The triggering of the
weak second phase is thus a destabilizing mechanism,
leading to strain localization, as it will be seen in section 5.

3. Dissipation With a Back Thrust in Frictional
Materials

[21] The objective of this section is to determine the
optimum orientation of the back thrust to minimize the total
dissipation in the structure. There are three sources of
dissipation, by friction on the ramp, on the back thrust,
and on the flat thrust. These three contributions are first
analyzed before conducting the minimization of the total
dissipation. Our calculations are conducted for the particular
case of d set to zero shown in Figure 2b.
[22] The first source of dissipation is over the ramp and

corresponds to the power of the tangential force mRNR times
the velocity vo of the ramp hanging wall. Using relation (1)
to relate entry and exit velocities, the dissipation is then
written as

DR ¼ tanaR

sin q
sin qþ jð ÞNRvi: ð18Þ

The second source of dissipation is along the back thrust
and is computed as the product of the tangential force TT
times the jump in tangential velocity vi cosq � vocos(q + j).
The dissipation DB is then expressed as

DB ¼ tanaB

sinj
sin qþ jð ÞNTvi; ð19Þ

once relation (1) and the Mohr-Coulomb relation in
equation (6) have been used. The third source of dissipation
is over the flat thrust and is defined as the product of the
horizontal reaction force by the horizontal velocity

DF ¼ tanaFNFvi: ð20Þ

[23] To progress further, one needs to determine the
forces NR, NT and NF involved in equations (18), (19),
and (20). These are easily found by proper combinations of
the global equilibrium equations (3), (4), and (5), with the
Mohr-Coulomb criterion equation (6). NT is found by
combining equation (3) with equation (6). NR is found in
terms of NT by use of equations (4) and (6), while NF results
from the combination of equation (5) with equation (6).
[24] The sum of the three expressions (18), (19), and (20),

is the total dissipation, which can be written as

D ¼ DR þ DF þ DB ¼ Fvi;

with

F ¼ k q;j;aR;aB;aF ; l=eið Þrg e
2
i

2
; k q;j;aR;aB;aF ; l=eið Þ

¼ sin qþ aBð Þ
sin qþ jþ aR þ aBð Þ

sinaR

sinj
þ sin jþ aRð Þ sinaB

sin q sin qþ jþ aR þ aBð Þ

þ tanaF 2
l

ei
� cot qþ sin qþ jð Þ sin jþ aRð Þ cos qþ aBð Þ

sin q sinj sin qþ jþ aR þ aBð Þ

� 	
;

ð21Þ

in which F and k are termed the tectonic force and the
tectonic factor, respectively. The tectonic force is conjugate
to the entry velocity vi in the sense of dissipation. The
tectonic factor k is the tectonic force normalized by the
characteristic weight of the structure which is rgei

2/2. This
factor is a function of the two angles q, j, of the aspect ratio
l/ei which define the geometry, and of the frictional
properties of the ramp, the back thrust, and the flat thrust
(aR, aB, aF). The three terms appearing in equation (21)
correspond to the contributions of the ramp, the back thrust,
and the flat, respectively.
[25] The minimum of k with respect to q is assumed to

provide the optimum orientation of the back thrust. This
minimum qm satisfies the implicit relation

sin2 qm ¼ sin 2qm þ jþ aR þ aBð Þ sinaB

sinaR

sinj

� sinj tanaF

sinaR sin jþ aRð Þ sin
2 qm þ jþ aR þ aBð Þ � tanaF

sinaR

� cos 2qm þ jþ aBð Þ sin qm½ � sin qm þ jþ aR þ aBð Þ

� sin qm þ jð Þ � cos qm þ aBð Þ sin 2qm þ jþ aR þ aBð Þ�;
ð22Þ

Figure 4. Definition of the rheology adopted for the bulk
and the slip planes which are the two phases constituting the
creeping. The normalized stress and strain rate represent the
equivalent shear stress and strain rate for the former and
the resolved shear stress and slip rate for the latter. For both
linear and nonlinear rheology, the slip planes are thought of
as the weak phase so that its activation results in a weakening
of the material responsible for strain localization (i.e., a < 1).
The normalization is based on the data found in Table 1.
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obtained by setting to zero the derivative of k in equation
(21) with respect to q. Note that the flat length l and the
hanging wall thickness ei do not appear in this equation. The
optimal back thrust dip with respect to dissipation is thus
function only of the frictional properties (aB, aR, aF) and of
the ramp dip (j).
[26] The three sources of dissipation are now analyzed

with the help of Figure 5. The thick solid line represents the
variation of the tectonic factor k with respect to the back
thrust dip q for aR = 20�, aF = 5�, aB = 30�, j = 30�, and
l/ei = 5. The three other curves (dash-dotted, solid, and
dashed) correspond respectively to the three sources, i.e., to
the contributions of the ramp, the back thrust, and the flat
thrust. They show that all three sources of dissipation are of
comparable magnitudes and thus that none can be disre-
garded in analyzing the total dissipation of the structure.
Furthermore, dissipation over the ramp (dash-dotted curve)
is an increasing function of the back thrust dip and thus the
ramp friction tends to make the back thrust horizontal.
Friction in the back thrust tends to preclude high and low
dips since it exhibits a minimum at intermediate dips (thin
solid curve). Friction over the flat thrust, to the contrary,
tends to promote either low or high back thrust dips,
although it is less sensitive than the two other sources of
dissipation (dashed curve). The global optimal back thrust
dip (qm = 36�) is the result of these three competing effects.
[27] The principle of minimum dissipation is not funda-

mental to mechanics and its application needs to be justi-
fied. It is for that reason that our predictions for back thrust
orientation are now compared to some published observa-
tions on analogue and numerical experiments. Table 2
presents six data sets chosen as to reproduce the observa-
tions of Erickson et al. [2001] (data sets 1 and 2), Bonini et
al. [2000] (data sets 3 and 4), and Merle and Abidi [1995]
(data sets 5 and 6). The optimal back thrust dip qm predicted

by equation (22) is provided, as well as the observed values
q*. The observations of Erickson et al. [2001, Figures 4 and
11a] are numerical experiments of back thrusts as shear
bands in an elastoplastic material obtained with the fric-
tional parameters listed in the data sets 1 and 2. They show
that the ramp friction has a strong influence on the back
thrust dip: changing the ramp friction angle from 0� to 20�
reduces the back thrust dip from 60� to 39�. The same
variation leads to a change in our prediction of qm from 60�
to 36�. The observations of Erickson et al. [2001] are thus
well predicted by our methodology.
[28] Bonini et al. [2000] conducted a series of sand box

experiments with aB = 30� (data sets 3 and 4 of Table 2).
Contrary to our assumption, there is no erosion of the relief
building up above the ramp, so we can only compare back
thrust dips at small reliefs. This corresponds to the experi-
ments with a ramp dip j = 15� in the work by Bonini et al.
[2000]. The main difference with our model problem of
Figure 2b is that the sand layer in the analogue experiment
is fixed relative to the flat thrust. It is the ramp that is
moving rigidly toward the sand layer. The comparison with
our model is not straightforward, explaining the selection of
two extreme cases with aF = 0� and aF = 30�. Furthermore,
the friction coefficient of the sand against the rigid plex-
iglass ramp is not given. Choosing aR = 20� yields a very
good fit between our prediction of qm (32.5�) and the
observed back thrust dip q* = 33�, in both cases aF = 0�
and aF = 30�. Choosing aR = 25� yields qm = 29� for the
two values of aF. These results confirm the important
influence of the ramp friction on qm, and the relative
insensitivity of qm to the flat friction.
[29] Data sets 5 and 6 of Table 2 are an attempt to

reproduce the sand box experiments of Merle and Abidi
[1995, experiments RE9 and RE18], where a sand layer
resting on plexiglass (RE9) or on silicone (RE18) is pushed
toward a plexiglass rigid ramp dipping at j = 30�, and is
eroded (RE9) or not (RE18). In RE9, back thrusts dip
between 37� and 45� and in RE18 their dip is approximately
30�. Two effects can be invoked to explain these variations
of dip: the friction on the flat (strong for plexiglass, weak
for silicone) and the erosion. The preceding examples have
shown that the friction on the flat alone cannot explain these
differences. Now, to account in a simple manner for the
build up of relief above the ramp, a higher friction coef-
ficient is assigned to the ramp if there is no erosion
compared to the case with erosion (our data set 5 for
experiment RE9 and data set 6 for RE18). This variation
in friction coefficient is sufficient to vary the predicted back

Figure 5. Tectonic factors (equation (21)) for the back
thrust, the ramp, and the flat thrust (solid, dash-dotted, and
dashed curves, respectively) as functions of the back thrust
dip q in degrees. The thick solid curve is the sum of the
others. Parameters are those of data set 2 of Table 2 (aR =
20�, aB = 30�, j = 30�), except for aF = 5� in order to show
the dependence of the dissipation on the flat with respect to
the back thrust dip. The flat thrust length was set to l = 5ei.

Table 2. Comparison of Predicted and Observed Back Thrust

Dips for Six Sets of Parametersa

1 2 3 4 5 6

aR 0 20 20 20 15 25
aF 0 0 0 30 15 0
aB 30 30 30 30 30 30
j 30 30 15 15 30 30
qm 60 36 32.5 32.5 40 33
q* 60(1) 39(1) 33(2) 33(2) 37 to 45(3) 30(3)

aThe optimal back thrust dip qm is the solution of equation (22) and the
observed back thrust dips q* are from 1, Erickson et al. [2001]; 2, Bonini et
al. [2000]; and 3, Merle and Abidi [1995]. These data appear as solid
diamonds, an open diamond, and dots, respectively, on Figures 6a and 6c.
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thrust dip from 33� to 40�, two values which are close to the
two observations done in the laboratory. In summary, the
respective roles of the ramp friction and dip have been well
captured: increasing the ramp friction decreases the back
thrust dip. The ramp dip has the same, but less pronounced
influence. Finally, all examples presented above, and the
unscaled physical experiments of Morse [1977] and Chester
et al. [1991] exhibit, in agreement with our predictions,
back thrust dips that do not bisect the ramp complementary
angle. They always lead to a thickening of the hanging wall
(ranging from 15% to 80% for the data of Table 2).
[30] The general behavior of the optimal back thrust dip

(equation (22)) is summarized in Figure 6, where qm is
plotted as a function of the ramp dip (Figure 6a), the back
thrust friction (Figure 6b), and the ramp friction (Figure 6c).
Figure 6 could also be used by the reader to search for the
optimum dip based on other data sets then the ones
proposed here and shown as solid diamonds [Erickson et
al., 2001], an open diamond [Bonini et al., 2000], and dots
[Merle and Abidi, 1995]. The influence on qm of the friction
on the flat is too weak to deserve further discussion: the
friction angle could be changed from 0� to 30� without a
noticable change on the curves. Three curves are presented
in each graph, the solid curves corresponding to aR = 20�,
aB = 30�, j = 30�, the dashed curves, to aR = 0.5�,aB = 20�,
j = 30�, and the dotted curves, to aR = 20�, aB = 30�, j =
15�, except for the parameter selected to draw the plot. The
ramp dip and the back thrust friction angle aB have
essentially the same influence on qm: there is a maximum
value, which is of the order of 70�, reached for the lowest
value of the ramp friction angle, Figures 6a and 6b. This
influence of aR is confirmed in Figure 6c, where qm is seen
to be a decreasing function of that argument. Note that all
curves of Figure 6 indicate back thrust dips that are always
much below the dip necessary to conserve the thickness of
the upper plate (i.e., q = (p � j)/2).
[31] To conclude, minimizing the total dissipation leads to

a prediction of the back thrust dip which is consistent with
the analogue and numerical experiments discussed above.
The present comparisons can certainly be improved since
the friction parameters are rarely provided in the publica-
tions on analogue experiments. Furthermore, these experi-
ments are always designed to study complex geometries
compared to the ones considered here. A dedicated series of
analogue experiments would thus be beneficial to complete
the validation of the present methodology.

4. Onset of Flexural Slip in the Hinge

[32] Sections 4–7 are devoted to transitions defined as
hinges of finite thickness with the two-phase viscous mate-
rial rheology described in section 2 (equations (7) to (17)).
This section is concerned with the onset of flexural slip.
[33] In the absence of slip along the stratigraphic planes,

DS = 0, and the material sustains a homogeneous simple
shear equation (10) corresponding to the velocity field

U x2ð Þ ¼ vi � cos qþ sinj
sin qþ jð Þ

x2

h

� �
e1 þ Ve2: ð23Þ

The resulting stress state is

S ¼ tT e1 � e2 þ e2 � e1ð Þ � sT1I; ð24Þ

obtained by identifying the general expression of the stress
state equation (16) with the bulk phase behavior (equation
(11)). The pressure is thus equal to p(x2) = sT (8 x2), and the
shear stress is

tT ¼ t0B
vi sinj

h _g0B sin qþ jð Þ

� �mB

; ð25Þ

the two quantities being uniform over the domain.

Figure 6. Predicted optimal back thrust dip qm as a
function of the ramp dip, the back thrust friction angle and
the ramp friction. The friction angle aF, which has no
noticable effect, is set to zero. The three curves are obtained
for aR = 20�, aB = 30�, j = 30� (solid curves); aR = 0.5�,
aB = 20�, j = 30� (dashed curves); aR = 20�, aB = 30�, j =
15� (dotted curves), except for the parameter selected to
vary. Diamonds and dots are published data (see Table 2).
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[34] Flexural slip is triggered first in the hinge where the
Mohr-Coulomb criterion (13) is met on the stratigraphic
plane. This point, noted x2

s, and the shortening velocity vi
s

required to trigger flexural slip are now determined, using the
graphical constructions of Figure 7. The principal stresses
according to equation (24) are (sT + tT, sT� tT, sT) and their
directions are (e2 � e1, e2 + e1, e3) with respect to the hinge
framework (e1, e2, e3) (Figure 3). Figure 7b shows that the
stratigraphic planes enter the hinge making an angle bi = q �
p/4 with respect to the maximum principal stress, and exit
with an angle bo = q + j � p/4. In the hinge, this angle is

b x2ð Þ ¼ 3p
4

� arctan
V

U1 x2ð Þ

� �
; ð26Þ

where U1(x2) is given by equation (23). The most favorable
orientation for slip is, from Figure 7a, b (x2

s) = bs = p/4 �
aS/2, where aS = arctanmS is the friction angle of the
stratigraphic planes. Thus solving this last equation for x2

s

provides the position

xs2 ¼ h cos q� sin q tan
as

2

� � sin qþ jð Þ
sinj

: ð27Þ

The critical velocity vi
s is now determined by considering

the stresses required for slip. From the construction of
Figure 7a, there is slip if tT = sT sinaS. Combining this
condition for slip with the global equilibrium condition (3),
and the expression for tT (equation (25)) yields

vsi ¼ h
_g0B

t1=mB

0B

sinðqþ jÞ
sinj

�
rg
2ei

sinaS

sinj
ðð2d þ eiÞ � ei sinðqþ jÞ

� sinðjþ aRÞ þ d2 sin q sinaRÞðsinðqþ jþ aRÞ

þ sinaS cosðqþ jþ aRÞÞ�1

	 1
mB

: ð28Þ

The position x2
s and critical velocity vi

s depend on the hinge
thickness h which is here arbitrarily set. However, the ratios
x2
s/h and vi

s/h are independent of h. In other words, the
relative location of the initiation of slip and the time spent
by an element of rock in the hinge at the onset of slip are
both independent of the hinge thickness. Finally, Figure 7a
shows that flexural slip may be triggered only if bi � bs �
bo. This is not very restrictive and will be true in most cases.
The predictions (27) and (28) will be used in section 5 to
validate the numerical solution.

5. Strain Localization Due to Flexural Slip in
the Hinge

[35] In this section we analyze the strain and stress
distributions in the hinge beyond the onset of flexural slip
for a fixed set of parameters. The role of these parameters is
then discussed. The solution in the presence of slip is not
analytical and requires a numerical approach. The finite
element method used to compute the velocity and stress
profiles through the hinge is presented in Appendix A.

5.1. Example of Strain Localization

[36] An example of strain localization by flexural slip is
now proposed for the set of parameters given in Table 1.

The burial depth is d = 1000 m, and the ramp dips at j =
30�, with a friction mR = 0.2. In agreement with the one-
dimensional assumption (d � ei � h), we consider the
passage through the hinge of thickness h = 10 m, and dip
q = 75�, of a material of thickness ei = 50 m. The bulk phase
has a linear (mB = 1) viscosity t0B/ _g0B = 0.5 
 1019 Pa s,
and density of slip surfaces f = 0.7. Slip has also a linear
(nS = 1) viscosity t0S/ _g0S = 1017 Pa s (Figure 4), and a
friction ms = 0.1. The shortening velocity vi ranges from
0.35 to 10 mm/yr.
[37] Figure 8 shows the velocity profiles U1(x2) through

the hinge for various shortening velocities vi. The first curve
of Figure 8, for vi = 1.58 mm/yr, follows the analytic
solution (23) given for the case without flexural slip, thus
confirming the accuracy of the numerical solution. Further-
more, the finite element solution predicts the onset of
flexural slip for vi

s = 1.6 mm/yr, at the position x2
s =

0.41h, in agreement with the analytic solutions (27) and
(28). Other velocity profiles are nonlinear, showing increas-
ing gradients with the shortening velocity in the zone of
flexural slip, and decreasing gradients away from this zone,

Figure 7. Onset of flexural slip determined graphically by
the Mohr-Coulomb criterion ts = msss in terms of the
resolved shear and normal stresses on the stratigraphic
planes. (a) Plot showing that these planes which could
accommodate slip enter and exit the hinge at points i and o
of the Mohr circle, respectively. The point s is where slip
first occurs if the shortening velocity vi is equal to vi

s. (b) An
equivalent representation in the physical space showing the
position x2

s where flexural slip is first triggered. Analytic
formulae for x2

s and vi
s are given by equations (27) and (28).
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as can be better observed on the profiles of total strain rate
_g, and slip rate _gS of Figures 9a and 9b. The equivalent
strain rate _g is larger by one order of magnitude at the point
of maximum flexural slip compared to the entrance and exit
of the hinge, for a shortening velocity vi = 10 mm/yr. This is
a clear expression of the localization of the deformation
concomitant with the triggering of the flexural slip, which
acts as a destabilizing mechanism. It should be noted that
localization occurs in the absence of any strain rate soften-
ing in either phase, both being linearly viscous. It is the
activation of the weak phase, composed of interfaces, which
reduces the strength of the material.
[38] The first component of the rate of deformation tensor

in the bulk phase (representing the extensional strain rate
along the hinge) and the pressure p are presented in Figures
9c and 9d, respectively, as functions of the position x2. The
shear stress ~tT is uniform and takes the values 97, 81, and 61
(or 21, 18, and 13 MPa, respectively), for the three curves of
Figure 9d (corresponding to vi = 10, 6.3, and 1.8 mm/yr,
respectively). The pressure at the entrance and exit of the
hinge (~x2 = 0 and 1) for low velocities vi corresponds to the
normal force density acting on the hinge sT = ~p(0)sR = 600

 0.22 = 132 MPa. It should be noted that this pressure is six
times the lithostatic pressure, because of the necessity to
equilibrate the friction exerted by the ramp on its hanging
wall. The pressure decreases from the hinge entrance to
reach a minimum, then increases to take a maximum value
before decreasing again toward the exit. This variation is
coupled to a positive extensional rate in DB11

in the first part
of the hinge and a negative, compressional, rate closer to the
hinge exit. These variations within the hinge of the pressure
and the bulk rate of deformation are necessary to accommo-
date the incompatibility of the slip on the interfaces with
respect to the overall simple shear mode of deformation, as it
was already suggested in section 2 (equation (15)). This

thickening/thinning sequence across the hinge of a kink fold
is a well known observation, particularly visible in chevron
folds, and should not be mistaken with the change in hanging
wall thickness (equation (2)) implied by the conservation of
the mass flux.

5.2. Parametric Study

[39] A full parametric study of the solutions with flexural
slip is beyond the scope of the present paper. We neverthe-
less examine briefly the respective roles of the various
parameters of the model and draw some intuitive conclu-
sions. In particular, interest is focused on the influence of
the burial depth.
[40] The Mohr representation of the stresses in the hinge

(Figure 7a) indicates clearly that the amount of flexural slip,
i.e., the size of the slipping zone and the magnitude of the
slip rate, increases with the shear force density tT and
decreases with the normal force density sT since the
principal stresses are functions of these force densities
applied at the boundaries. Understanding the role of the
parameters therefore amounts to understanding their effects
on the force densities at the hinge boundaries. Decreasing
the hinge thickness h, or increasing the shortening velocity
vi, or the ramp dip j, will increase the overall simple shear
strain rate, and thus the shear stress tT, promoting localiza-
tion. Localization will further be promoted by stiffening the
bulk phase (increasing t0B, decreasing mB or _g0B, in
equation (11)), or softening the bed parallel slip rheology
(decreasing t0S, nS or increasing _g0S in equation (13)). The
burial depth d, the upper plate thickness ei, and the ramp
friction mR will control the normal stress on the hinge, and
thus lessen localization when they are increased.
[41] The burial depth d deserves further attention.

Figure 10 shows two solutions for the same shortening
velocity vi = 1.8 mm/yr for a depth d = 1000 m (solid

Figure 8. Normalized lateral velocity profiles ~U1 (~x2) through the hinge for increasing shortening
velocities vi from 1.58 to 10 mm/yr. All other parameter values are constant and given in Table 1. The
linear profile for vi = 1.58 mm/yr coincides with the analytic solution (24) in the absence of flexural slip.
All other (nonlinear) profiles show the effect of flexural slip, the onset of which coincides with the
analytical predictions of equations (27) and (28), at the position ~x2 = 0.41, for a velocity vi = 1.6 mm/yr.
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curves) and d = 800 m (dashed curves), all other parameters
being identical. The strain rate at the shallower depth is
increased by a factor of two compared to its value at the
greater depth. Similarly, the slip strain rate is increased by a
factor of three. Moreover, it can be seen that the region
where slip occurs is doubled in size as the depth is changed
from 1000 to 800 m. This trend is confirmed by the
distribution of the first component of the rate of deforma-
tion tensor in the bulk (Figure 10c). The ease to slip at
shallow depth is understood from Figure 10d, where the
pressure in the hinge is seen to increase by a factor of 50%
as the depth increases by 25%. These results suggest, as it
was foreseen above, that localization based on flexural slip,
which is pressure sensitive, is more developed at shallower
depths. This depth dependence of the slip zone could be
used to motivate the need for a 2-D solution to the
transition, then seen as a fan. This fan has a triangular
shape with the tip at the foot of the ramp and opening
toward the surface. Its width at any depth is likely to be
well approximated in our 1-D analysis by the extent of the
zone where slip takes place. This suggestion to introduce a

fan at the back transition has recently been proposed, on
completely different grounds, in a new kinematic model
[Cristallini and Allmendinger, 2002; Buil, 2002].

6. Implications of the Stress State in the Hinge

[42] We now present some geological consequences of
the stress distributions with flexural slip by calculating the
dips of potential microfractures and stylolithic joints.
[43] The numerical solution for the pressure field (Figure

9d) with the stress structure equation (17) provides the
orientation of the maximum principal stress with respect to
the hinge axis (e1 in Figure 3) which is plotted in Figure 11
and used to construct the Mohr circles in Figure 12. Circles
1 to 4 represent the stress state at the four points located in
Figure 9d: on hinge entry, at the minimum and maximum
pressure, and on hinge exit, for the solid curve only (vi = 10
mm/yr). The most favorable position for the development of
conjugate sets of microfractures, or for stylolithic joints,
will always be at point 2 where the pressure is minimum
and the differential stress reaches a maximum. At this point,

Figure 9. Profiles through the hinge of (a) the normalized simple shear strain rate ~_g, (b) bed parallel slip
rate ~_gS , (c) bed thickening rate ~DB11, and (d) pressure ~p. Solid, dashed, and dash-dotted curves are for a
shortening velocity vi = 10, 6.3, and 1.8 mm/yr, respectively. All other parameter values are constant, and
given in Table 1. The normalized normal stress acting on the boundaries of the hinge is ~sT ¼ 600 for all
curves, while the normalized boundary shear stress is ~tT = 97, 81, and, 61 for the solid, dashed and dash-
dotted curves, respectively. The full stress states of points numbered 1 to 4 along the solid curve in Figure
9d are represented as Mohr circles in Figure 12.
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the dips of potential microfractures are, according to Figure
12,

df ¼
p
4
� aI

2
� q� bmð Þ; ð29Þ

while those of potential stylolithic joints, assumed perpen-
dicular to the maximum principal stress, are

ds ¼
p
2
� qþ bm; ð30Þ

where aI denotes the internal friction angle of the bulk
phase, and bm is the orientation of the maximum principal
stress at point 2 (approximately �79� on Figure 11). In the
present example (values in Table 1), and for vi = 10 mm/yr
and aI = 30�, one obtains microfracture dips at 26� forward,
and 34� backward, and stylolith dips at 84� forward. Note
that a stylolithic joint growing during the convection
through the hinge would exhibit a sigmoid shape due to
the rotation of the maximum principal stress with respect to
the bedding. Note also that to obtain dips outside of the
hinge, i.e., in the hanging wall, one must also account for
the convection of the microfractures from their position of
formation to the exit of the hinge. This rotation can be

Figure 10. Illustration of the effect of the burial depth d. Same as Figure 9, for a shortening velocity vi =
1.8 mm/yr. Solid curves are identical to the dash-dotted curves of Figure 9 for a burial depth d = 1000 m.
The dashed curves correspond to a burial depth d = 800 m.

Figure 11. Angle between the maximum principal stress
and the hinge axis (axis e1 in Figure 3) as a function of the
normalized position in the hinge ~x2, counted positively in
the anticlockwise sense. The entry velocity vi = 10 mm/yr
(solid curve), 6.3 mm/yr (dashed curve), and 1.8 mm/yr
(dash-dotted curve). All other parameter values are constant
and given in Table 1.
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deduced by integrating the orientation of the principal stress
equation (26) from the point 2 (with minimum pressure and
maximum differential stress) to the exit of the hinge using
the velocity distributions of Figure 8.
[44] Finally, the Mohr circle labeled 5 in Figure 12 is the

same as circle 2, but for a burial depth d = 800 m instead of
1000 m. It shows the possibility of developing absolute
extensional stresses within the hinge, even though the
pressure outside the hinge (~p(0) sR = 410. 
 0.22 MPa =
90 MPa, see Figure 10d) is 5 times greater than the
lithostatic pressure at this depth, again, because of the ramp
friction.

7. Dissipation in the Hinge

[45] The objective of this last section on the hinge with
two-phase viscous materials is to study the dissipation in the
transition. The model problem in Figure 2a serves the
purpose of concentrating on the hinge and simplifying
assumptions have been adopted for the rheology of the
overburden. The dissipation in the hinge, because of its
length, is then only a fraction of the dissipations on the ramp
and the flat. A more realistic model would require to
account, for example, for the dissipation along a series of
kinks connecting the base of the ramp to the surface. The
methodology would then be similar to the one described
above for frictional materials: the sum of all sources of
dissipation would be accounted for. It is proposed here for
sake of conciseness, and in view of the simple structure
proposed, to study only the dissipation in the hinge as a
preliminary step. It is defined as the product of the change
of lateral velocity before and after the hinge by the tangen-

tial force TT. Using the kinematic relation (1) and the force
density defined in equation (16), the dissipation reads

DH ¼ vieitT
sinj

sin q sin qþ jð Þ : ð31Þ

Following the decomposition proposed for the back thrust
case (equation (21)), equation (31) is written as

DH ¼ Fvi ; with F ¼ krg
e2i
2
;

k ¼ 2

rgei

sinj
sin q sin qþ jð Þ tT ;

ð32Þ

where F and k are again termed the tectonic force and the
tectonic factor, respectively, even though only the hinge is
taken into account for computing the dissipation. In the
absence of flexural slip, tT is given by equation (25), and
thus

k ¼ 2t0Bvi
rgeih _g0B

sin2 j
sin q sin2 qþ jð Þ

; ð33Þ

DH ¼ t0Bei
h _g0B

v2i
sin2 jð Þ

sin q sin2 qþ jð Þ
: ð34Þ

These analytic solutions are plotted as dotted curves on
Figure 13 for a hinge dip q = 70� (Figures 13a and 13b) and
a shortening velocity vi = 3 mm/yr (Figures 13c and 13d).
The tectonic factor is a linear function of the entry velocity
vi and dissipation is a quadratic function of the same
argument. If flexural slip occurs, equations (33) and (34) do
not apply and the stress tT is found by numerical means, as
explained in Appendix A. The solutions for the tectonic
factor and the dissipation are presented in Figures 13a and
13b as solid, dashed, and dash-dotted curves for a hinge dip
of 60�, 70�, and 80�, respectively. The variation in hinge dip
has little influence on the tectonic factor prior to the onset of
slip (at vi = 1.6 mm/yr, or ~vi = 230). Beyond the onset, the
tectonic factor is approximately linear again with the
velocity, with a lower slope. It should be noted, even if it
is not proven here, that the lower slope is sensitive to the
density of slip surfaces f and the contrast in viscosity
between the bulk and the slip phases, two key parameters to
enhance localization. In this example the dissipation is
reduced by a factor of 4 for a velocity vi = 10 mm/yr (~vi =
1441) between the cases with and without slip.
[46] Figures 13c and 13d show the tectonic factor for a

range of velocities vi as a function of the hinge dip. As in the
back thrust case, both the tectonic factor and the dissipation
in the hinge exhibit a minimum with respect to the hinge
dip q. For a realistic range of shortening velocities (3 to
9 mm/yr), the optimum hinge dip is between 63� and 73�,
and therefore never equal to the dip of 75� assumed in all
kinematic models. We would thus predict here a thickening
of the ramp hanging wall between 12% and 2%, respec-
tively. However, it should be kept in mind that this dis-
cussion is based on the hinge only. If the effect of the ramp
is the same as in the back thrust case (Figure 5), then it

Figure 12. Mohr circles 1 to 4 illustrating the stress state
in the hinge at the four positions indicated in Figure 10d for
a shortening velocity vi = 10 mm/yr. Axes are drawn with
dimensionless values. The flexural slip envelop is every-
where overcome, thus indicating that bed-parallel slip
occurs throughout the hinge. Point 2, where the pressure
is minimum and the differential stress is maximum, is the
location where one can expect conjugate sets of micro-
fractures to form. The two points common to all four circles
correspond to the stresses sT and tT acting on the
boundaries of the hinge. Circle 5 is same as circle 2, but
for a burial depth d = 800 m instead of 1000 m.

14



would reduce considerably the optimal hinge dip found
above, and further enhance the thickening.

8. Conclusion

[47] A general methodology has been proposed to study
the transitions in the form of back thrusts and hinges within
fault-related folds, using the special case of the lower flat-
ramp transition as an example. The methodology consists of
solving for the overall equilibrium of every rigid section to
constrain the forces acting on the transitions. This informa-
tion is then used to determine the various sources of dissipa-
tion. The dissipation at the transition depends on the rheology
adopted for the convected material. Two cases have been
considered: a frictional material leading to velocity disconti-
nuities (back thrusts), once a Mohr-Coulomb criterion is
satisfied, and a two-phase viscous material necessary to
explain the strain localization in the hinges. The three sources
of dissipation which are of similar magnitude are across the
transition and by friction over the ramp and the flat. It is
proposed that the dip of the transition rendering the total

dissipation minimum is the most likely to occur. This
proposition is substantiated by comparing the predictions
with the results of numerical and laboratory experiments.
[48] For the case of back thrusts, it is shown that the

optimal dip is function of the ramp dip, and of the friction
coefficients on the flat, the ramp and the back thrust. The
optimal dip is independent of the flat thrust length even
though the total dissipation is function of that length.
Principle of minimum dissipation is not fundamental to
mechanics even though it is known to provide upper bounds
to failure load, which would be here the tectonic force
responsible for thrusting. To justify the application of
minimum dissipation principle, the optimal dip predicted
has been compared and found to be in good agreement with
the dip observed in sand-box [Bonini et al., 2000;Merle and
Abidi, 1995] and numerical [Erickson et al., 2001] experi-
ments. This comparison confirms that the optimal dip
increases with decreasing ramp friction and ramp dip but
is rather insensitive to the flat friction. The optimal dip is
always less than the value required to conserve the thickness
of the hanging wall.

Figure 13. Analysis of the dissipation in the hinge. (a) and (b) Tectonic factor and dissipation (equation
(32)) as functions of the dimensionless shortening velocity ~vi. The solid, dashed, and dash-dotted curves
are for q = 60�, 70�, and 80�, respectively. (c) and (d) Tectonic factor and dissipation versus the hinge dip
q for vi = 3, 6, and 9 mm/yr (solid, dashed, dash-dotted curves, respectively). The dotted curves are the
analytic solutions (33) and (34) in the absence of flexural slip, for a hinge dip q = 70� in Figures 13a and
13b and for a shortening velocity vi = 3 mm/yr in Figures 13c and 13d.
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[49] It is shown that fixed hinges, fundamental to kink
folds, can be explained by the presence of a destabilizing
factor in the rheology; the example of bedding parallel
slip being proposed here. For that purpose, a two-phase
rheological model has been constructed where the first
phase is the bulk and creeps according to a linear or a
power law viscosity function. The bed interfaces consti-
tutes the second phase which has also a linear or a power
law slip function, activated if a Mohr-Coulomb criterion
is satisfied. Both phases sustain the same stress and the
sum of their rate of deformation tensors define the strain
rate of the whole. The second phase is weaker than the
first in the sense that its activation leads to a reduction of
the overall viscosity. It is the activation of slip which
leads to an increase by an order of magnitude in the
strain rate within the simple shear flow through the hinge.
This slip is along stratigraphic planes and is thus not
compatible with the overall simple shear. The bulk phase
has to develop, after entry in the hinge, a positive
extensional strain rate along the hinge and then a negative
strain rate prior to the exit from the hinge to accommo-
date slip. This evolution of the creeping flow during its
convection through the hinge is coupled to the pressure
field within the hinge as follows: the pressure drops after
entrance and sustains a minimum prior to a sharp increase
toward a maximum and before decreasing again before
exit from the hinge. This pressure gradient should result
in the transport of fluids toward the region in positive
extension rate which deserve further attention. It is also
shown that the width of the zone where slip occurs
within the hinge is sensitive to the depth because of
the pressure-sensitive activation criterion adopted. The
width is larger at shallower depth for the same velocity
of the thrusting sheet suggesting a transition in the shape
of a fan. Also, the activation of slip reduces the dissipa-
tion within the hinge. This dissipation has also a mini-
mum with respect to the transition orientation, as for the
case of back thrusts. That optimal dip would not bisect
the lower flat-ramp angle, leading to a change in the
hanging wall thickness which is disregarded in kinematic
models.
[50] The general methodology outlined above for a

single transition could be extended to structures with
multiple transitions. It is conjectured that there exists a
minimum in total dissipation which defines the optimal
orientation of the various transitions. This line of research
differs from earlier work [e.g., Elliott, 1976; Masek and
Duncan, 1998] where the energy dissipation and the work
done is also computed at the thrust sheet or mountain belt
scale but relying on strongly simplifying assumptions about
the geometry of the transitions and the activated deforma-
tion mechanisms. Also, as discussed above, the class of
transitions to be considered should be extended to include
fans, often invoked in the trishear model [Erslev, 1991] and
more recently as back fans at the lower flat-ramp transition,
as proposed independently by Cristallini and Allmendinger
[2002] and Buil [2002]. Thus pressure sensitive flexural
slip could provide a mechanical basis for the unification of
the usually opposed kink band and trishear kinematic
models. It is hoped that these future developments could
be the basis of the construction of mechanically balanced
cross sections, with the appropriate accounts of rock

rheology, and would complement the now classical kine-
matic models of folding.

Appendix A: Solution Procedure for Localized
Flow Analysis

[51] The objective of this Appendix is to present the weak
formulation of the problem and the solution procedure to
determine the stress state and the slip rate within the hinge
for the two-phase creeping materials described in section 2.
[52] The overall deformation is simple shear and the weak

formulation to determine the velocity component U1(x2) is

Z h

0

t x2ð Þ @
bU1 x2ð Þ
@x2

dx2 ¼ 0; ðA1Þ

in which t and Û1 are the unknown shear stress and the
virtual velocity, respectively. An approximate solution
to equation (A1) is constructed with the finite element
method. The stress t (x2) is then seen as a nonlinear function
of sT, p(x2), _g (x2) and w (x2). This function is known
implicitly at any point as the solution of the following set of
equations:

_g� 1� w2

1þ w2
_gS � t

_g0B
t0B

se
t0B

� �1�mB
mB

¼ 0;

_gS
w

1þ w2
þ sT � pð Þ _g0B

2t0B

se
t0B

� �1�mB
mB

¼ 0

s2e ¼ t2 þ sT � pð Þ2;

ðA2Þ

where w(x2) is standing for the velocity along e1 normalized
by the velocity along e2 (i.e., w(x2) = U1(x2)/V). The first of
these two equations expresses the decomposition of the
overall simple shear rate in a slip and a bulk strain rate
(equation (15)). The second equation in (A2) states that the
overall component D11 is zero and thus that the bulk phase
has to accommodate creep in the first direction to
compensate for the incompatible slip with respect to the
overall shear. In these two equations, the equivalent strain
rate _gB has been replaced by the equivalent stress se, defined
as the second invariant of the deviatoric stress, with the
power law relation se = t0B( _gB= _g0B)

mB, which is generalized
to three dimensional creep flow in equation (11).
[53] The solution to the set of equation (A2), comple-

mented by the relation between sT and t in equations (3)
and (16), is solved in a three-step procedure. First, it is
assumed that slip does not occur and the first equation (A2)
provides the pressure p = sT. The equivalent stress se is
then determined from the second equation and, with the
help of equation (3), the shear stress is determined. The
second step consists of checking if the slip criterion defined
in equation (13) is satisfied. If yes, the third step is the
search by the Newton-Raphson method of the solution to
equation (A2) starting from the solution with no slip rate as
a first guess. The linearization of equation (A2), required
for that solution search, is not presented here for sake of
brevity. This linearization is also at the basis of the
derivation of the tangent operator @t/@ _g which is required
to solve the nonlinear equilibrium equation (A1). The final
solution in terms of stress t is uniform over the hinge once
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equilibrium is satisfied and is the stress tT defined in
equation (16).
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