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Folding of sedimentary layers is often accommodated by the opening or sliding of inherited and new 
discontinuities which are assumed here to be diffuse so that a continuum description applies at the fold 
scale. The rock rheology is then described with an elastoplasticity model for which the permanent 
deformation is of simple shear (sliding) or dilation (opening) with respect to specific orientations of the 
new or inherited diffuse discontinuities. To illustrate the relation between folding and activation of diffuse 
discontinuities, a three-dimensional layer under compression in the two horizontal directions and 
sustaining the overburden lithostatic pressure is studied. Cylindrical buckling occurs either before (elastic) 
or after the diffuse discontinuities have been activated. If buckling is elastic, inherited vertical 
discontinuities, striking obliquely to the fold geometrical axes, are activated in a sliding mode in the outer 
arc, leading to a rotation of the principal stress directions. Opening is then detected across new vertical 
planes striking obliquely to the fold axis. The activation of inherited or new vertical discontinuities can be 
suppressed if sliding takes place along weak bedding interfaces. Alternatively, early and homogeneous 
layer-parallel shortening, marked by a reverse fault mode, drastically reduces the critical buckling load 
compared to the Euler load and modifies the final geometry of buckling which is then more of a circular 
dome shape. The switching in buckling mode results in the fold limbs in a change from the early reverse 
fault to a strike-slip fault sliding and to opening across diffuse planes oriented consistently with the final 
circular structure.

1. Introduction

[2] The objective of this paper is to analyze the coupling

basins and more generally for rocks in the lithosphere, a
linear or power law creep law is most appropriate and the
rheological parameters can be estimated from laboratory
measurements (see Carter and Tsenn [1987] for a review of
experimental results and examples of deformation maps).
Folding is then predicted on length scales ranging from
centimeter scale [Sherwin and Chapple, 1968] to that of the
lithosphere thickness [Martinod and Davy, 1992; Cloething
et al., 1999], following a method which is due essentially to
the seminal work of Biot [1965]. For folding at the litho-
spheric scale, it has been recognized that the pervasive
fracturing of the upper crust should modify the bending
stiffness of the structure studied [McAdoo and Sandwell,
1985]. This idea was explored by Wallace and Melosh
[1994], who accounted for a population of frictionless

between the activation of inherited or new discontinuities
and the development of a three-dimensional fold. This
investigation is part of a research program aimed to the
prediction of fracture densities and orientations in folded
sedimentary layers.
[3] Predicting structural instabilities such as folding

requires the selection of appropriate rheological models
for the deforming rocks, and thus the identification of the
relevant deformation mechanisms. For salt in sedimentary
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faults. An alternative approach consists of smearing these
faults over a representative volume element, such that a
continuum approximation and an elastoplasticity model
become applicable. The information usually lost during
the averaging is the preferential orientation of the disconti-
nuities predating the tectonic event studied. The objective of
this paper is to palliate to this deficiency and to study
folding in the presence of inherited weak orientations, with
the application of the plasticity model presented by Leroy
and Sassi [2000]. This model provides a simple description
of the contribution of fractures to the macroscale irreversible
deformation.
[4] The development of a rheological model to describe

the response of a representative volume element containing
planar defects such as cracks has received a lot of attention
in the geophysical community, as well as in various
branches of engineering. Walsh [1965] considered circular
cracks in dilute concentration while Budiansky and
O’Connell [1976] started from elliptical cracks and
accounted for interaction with a self-consistent scheme.
Friction along the crack faces was described by Kachanov
[1982a], and in the three above studies, effective elastic
properties were derived. Accounting for crack growth if
the loading is partly in mode II renders any modeling
difficult because of branching [Kachanov, 1982b]. If a
homothetic mode of growth remains however relevant,
then a model for frictional cracks with increase in both
density and defect size has been proposed [Gambarotta
and Lagomarsino, 1993].
[5] The rheological models discussed above are already

complex despite the selection of simple microscale mecha-
nisms and the assumption of linear elasticity. Field obser-
vations reveal a variety of deformation mechanisms on a
length scale where the material is heterogeneous. This
remark explains why simpler rheological models should
be first considered for nonlinear folding analyses at the
kilometer scale. The main feature, which should be retained
by these simplified models, is that the material response is
anisotropic, due to the presence of inherited weak orienta-
tions. A short review of this class of models is given by
Leroy and Sassi [2000]. The averaging method often
employed is reminiscent to the one proposed by Batdorf
and Budiansky [1949] for computing the effective proper-
ties of an assembly of monocrystals, each contributing by
slip to the irreversible macroscale deformation. If the
resulting rheological law is an elastoplasticity model, it
can usually be cast into the general framework proposed
by Koiter [1953] for multiple yield surfaces.
[6] Enriching a constitutive law with the description of

the microscale dissipative mechanisms usually leads to a
reduction of the predicted critical stress magnitude for the
onset of instability either in a shear band mode [Rudnicki
and Rice, 1975] or in a structural mode such as necking
[Stören and Rice, 1975]. This sensitivity is often assessed
with a simplified plasticity theory referred to as a deforma-
tion theory, which mimics the presence of sliding micro-
cracks for the case of frictional materials. The reader is
referred to Leroy and Triantafyllidis [2000] for further
discussion. For example, it has been shown that the critical
load at the onset of buckling for a prototype of a cross
section through the Campos basin (Brazilian continental
margin) could be reduced by a factor of 5, to a magnitude

consistent with the sedimentary compressive loading, if a
deformation theory was applied [Triantafyllidis and Leroy,
1997]. The nonlinear development of the instability requires
however a complex elastoplasticity model based on a
description of the microscale dissipative mechanisms. The
rheological model of Leroy and Sassi [2000] is constructed
from such a description and, once amended to account for
finite rotations [Guiton, 2001], should thus permit to capture
the development of buckling in the presence of inherited
weak orientations.
[7] The paper contents are as follows. Section 2 is

concerned with the constitutive relations adopted for the
pervasively fractured rock. The elastoplasticity model is
motivated by comparing the incremental stress-strain
response with the macro-stress-strain relation based on
linear elastic fracture mechanics, for a representative
volume element containing frictional, penny-shaped
cracks. The details of the numerical algorithm for the
elastoplasticity constitutive relations are found in Appen-
dix B. Sections 3–6 present the numerical results for the
buckling of a layer buried at 1 km and sustaining unequal
compressions in the two horizontal directions. The weak
formulation of the mechanical equilibrium at the basis of
the finite element approximation is found in Appendix A.
Sections 3 and 4 are concerned with the elastic solution
and the role of inherited pervasive discontinuities which
are either vertical or horizontal, and activated in sliding
only. In section 5, new orientations, which are partly
controlled by the sliding of the previously discussed
inherited discontinuities, are found to be activated in an
opening mode during folding. In section 6, the rock is
assumed to be poorly consolidated so that sliding occurs
prior to buckling in a conjugate reverse fault mode. This
early activation reduces drastically the buckling load and
leads ultimately to a change from an essentially cylindrical
to a circular shape fold. This evolution leads to the
deactivation of the prefolding fracture pattern and to the
sliding along and opening across new orientations in
the fold limbs which are documented.

2. Constitutive Relations

[8] The first objective of this section is to summarize
the plasticity model of Leroy and Sassi [2000], and the
second is to compare the corresponding stress rate–strain
rate relations with those obtained for an elastic solid
containing penny-shaped frictional cracks. This compar-
ison provides an interpretation for the plasticity model
parameters in terms of crack density, crack size and
frictional properties.
[9] The comparison starts from the description of a rock

mass, defining the representative volume element (RVE) of
interest, which is pervasively transgressed by inherited
planar defects (Figure 1a). These inherited discontinuities
could be for example, vertical joints or horizontal surfaces
marking the separation of two rock sequences. They are
weak in the sense that their toughness is less than the
fracture toughness of the surrounding rock. During defor-
mation of the rock mass, every discontinuity, defined by
its normal n with the two Euler angles q1 and q2 (Figure
1b), responds to the mechanical loading independently.
This response is either of a perfect stick (no activation) or
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of a discontinuity (jump) in displacement, in a direction
parallel or perpendicular to the plane defining the activa-
tion in sliding or opening, respectively.
[10] The construction of a rheological model for the rock

mass described above requires further assumption on the
microstructure. For example, one could envision that the
jumps in displacement occur over isolated patches assum-
ing, for simplicity sake, that all patches on a given plane
have a penny shape and the same radius Rc (Figure 1c). The
total number of patches over all surfaces having the same
normal n and transgressing the RVE is P(n), such that the
crack density �(n) is P(n)Rc

3(n)/V, in which V is the volume
of the RVE. Note that bold letters are reserved for vectorial
or tensorial quantities in this paper. The mechanical
response of every crack is independent of neighboring
patches, requiring this density to be small compared to
one or their distribution to be random [Kachanov, 1992].
In that instance, the exact solution of a penny-shaped crack
in an infinite medium can be considered to relate jumps in

displacement at the patch scale to the remote macrostress
(Figure 1d). These various assumptions permit to make the
distinction between macroscale and microscale in this
paper.
[11] Consider an isolated penny-shaped crack of normal n

in an isotropic elastic medium (characterized by the mod-
ulus of elasticity E and Poisson’s ratio n), where the stress
state S prevails at infinity. The displacement jump across
the two faces of the crack averaged over its surface is
denoted b and is given by

b n;Sð Þ ¼ T � B n;Sð Þ T ¼ S � n; ð1Þ

in which T and B are the stress vector and the crack
compliance second-order tensor. The center dot in equation
(1) and in what follows, between, for example, any two
second-order tensors A and B, designates the product:
A � B = AijBjkei � ek in an orthonormal basis {ei} and with
� identifying the tensorial product (A = Aijei � ej).

Figure 1. The micromechanisms motivating the constitutive model. (a) The representative volume
element (RVE) is pervasively transgressed by inherited planar discontinuities. (b) A set of parallel
fractures with normal n is defined by the two Euler angles q1 and q2. (c) Penny-shaped patches on a given
plane with same radius Rc are considered as cracks accommodating sliding and opening. (d) The
components of the stress vector T applied on a patch of normal n. (e) The truncated Mohr-Coulomb
criterion used to detect the sliding and opening along a given planar surface; m, cS0 and cO0 are the friction
coefficient, the cohesion, and the tensile strength, respectively.
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Summation is implied by repeated indices. The tensor B is
defined by

B n;Sð Þ ¼ bORcn� nþ bSRc D� n� nþ mn�mð Þ;

bO ¼
16 1� n2ð Þ

3pE
bS ¼

2bO

2� nð Þ
; ð2Þ

in which D, m and m are the second-order identity tensor (ei
� ei), the unit vector in the direction of the tangential
component of the stress vector (see Figure 1d), and the
friction coefficient between the crack faces, respectively.
Relations (1) and (2) are given by Kachanov [1992] except
for the modification of the compliance tensor to account for
the frictional properties of the crack. This modification
consists of replacing the resolved shear stress t (t = T � m)
by the equivalent stress t + msn (sn = n � T is the normal
stress), as discussed by Bui [1978] and Kachanov [1982a].
The expression for bO and bS in equation (2) are classical in
fracture mechanics and could be derived directly from
Eshelby’s [1957] results as by Budiansky and O’Connell
[1976]. The average strain E over the RVE is then found to
be

���������� ¼ Ce
: Sþ

Xp� nð Þ

Rc

1

2
b n;Sð Þ � nþ n� b n;Sð Þð Þ; ð3Þ

in which Ce is the elastic compliance of the rock mass, a
fourth-order isotropic tensor based on Hooke’s law (its
inverse, the elastic stiffness, is defined in Appendix B).
The sum in equation (3) is over all orientations
transgressing the RVE. Introducing the expression for the
average displacement (equation (2)) in equation (3)
provides an expression for the macrostrain explicitly in
terms of the macrostress

���������� ¼ Ce
: Sþ

X

p� nð Þ
�

bOsnn� nþ bS tþ msnð Þ

�
1

2
n�mþm� nð Þ

�

: ð4Þ

This relation (4), presented without discussing the stress
conditions for crack opening (sn > 0) and sliding (t + msn
� 0 and sn 	 0) nor the stress path dependence, defines
the effective elastic properties of the REV.
[12] These effective elastic properties have been studied

extensively in the past and the reader is referred to Kacha-
nov [1992] for a critical review. For example, accounting for
the potential crack branching permits to estimate the
medium dilatancy induced by sliding [Kachanov, 1982b;
Horii and Nemat-Nasser, 1986; Jeyakumaran and Rudnicki,
1995]. Of more interest here is the evolution of the patch
density, of the size of the patches and of the sliding along the
crack faces. For that purpose, one could assume homothetic
growth, preserving the simplicity of the micromechanism
description. The implied in-plane growth under mode II
loading would then require that the in-plane fracture tough-
ness is less than in the bulk. The evolution of the micro-
structure is of course anisotropic and requires to check
simultaneously crack growth and sliding criteria with a rate
formulation [Gambarotta and Lagomarsino, 1993]. This
approach is certainly complete but too complex to motivate

its immediate use in the three-dimensional structural analy-
sis considered here.
[13] It is for that reason that an elastoplasticity model is

preferred. The permanent macrodeformation is constructed
from the contribution of independent orientations of fracture
planes [Leroy and Sassi, 2000]. The elastic properties of the
RVE are the same as the ones of the matrix and the
deformation resulting from the cracks activation is repro-
duced by the irreversible or permanent deformation. Two
yield criteria are proposed to check the activation of a given
orientation:

fS S; n; gð Þ 
 tþ msn � cS0 þ cS1gð Þ 	 0

fO S;n; dð Þ 
 sn � cO0 þ cO1dð Þ 	 0; ð5Þ

corresponding to the sliding and the opening mode,
respectively. In equation (5), the scalars cS0, cO0, cS1, cO1,
g, and d are the cohesion, the tensile strength, the hardening
moduli in sliding and opening, and two internal variables
which marks the accumulated macrodeformation in sliding
and in opening, respectively. The cohesion and the tensile
strength are defined in Figure 1e and could be estimated in
laboratory tests. The other four parameters could be given a
physical interpretation in terms of the crack density of the
elastic solid defined above. Note before doing so that the
consistency conditions of the yield criteria in equation (5)
( _fS = 0, _fO = 0) provide two relations between the evolution
in stress and in the internal variables: _t + m _sn = cS1 _g and
_sn = cO1 _d, which characterize the linear hardening law
introduced above. Note also that the positive hardening for
the opening mode necessitates to imagine that opening is
coeval to an infill of the fractures, for example, due to a
mineralization, a fact often observed in the field [Jamison,
1997]. The rate form of the stress-strain relation for the
elastoplasticity model reads

_���������� ¼ Ce
: _Sþ

X

_dn� nþ _g
1

2
n�mþm� nð Þ

� �

; ð6Þ

in which the two basic modes of deformation are uncoupled.
We are now in a position to provide a simple interpretation
for the linear hardening moduli cS1 and cO1. For that
purpose, take the time derivative of the stress-strain relation
in equation (4), assuming the stress evolution leaves the
vector m unchanged. Furthermore, consider the crack
density constant in time and compare the rate form of
equation (4) with equation (6) to conclude that

cS1pbS� nð Þ � 1 cO1pbO� nð Þ � 1: ð7Þ

[14] The hardening moduli are inversely proportional to
the crack density times the scalar bS or bO, defined in
equation (2). These moduli are positive and, if assumed
constant, imply that the crack population is not changing
with the accumulated deformation. Relation (7) is never-
theless proposed to motivate why low hardening moduli are
considered for weak inherited directions (large fracture
densities) and large moduli for new directions (low density
of preexisting flaws). This difference between inherited
weak orientations and new orientations is of course valid
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if the same kinematics of the irreversible deformation
presented in equation (6) is adopted for both, as suggested
by Leroy and Sassi [2000]. This is exactly the assumption
which is made in the folding simulations presented next:
different rheological parameters are considered to differ-
entiate between inherited and new orientations. It should be
stated finally that relation (7) will not be used to quantify
the hardening moduli in section 3 based on the fracture
densities found in the field [e.g., Renshaw, 1997]. Such
predictions would render the material too stiff and the stress
changes during folding unrealistic. A complete discussion
of the deformation mechanisms related to the natural
fractures is beyond the scope of the present paper and is
deferred to future work.

3. Preliminary: The Elastic Solution

[15] The two simulations reported in this section concern
the elastic solution for a perfect and an imperfect structure.
The material is linearly isotropic elastic with Young’s
modulus E and Poisson’s ratio n set to 5 GPa and 0.2,
respectively. Sections 4-6 explore the development of
fracture patterns. The boundary value problem is the same
for all simulations and is first described next.
[16] The initial geometry consists of a plate having a

square top surface 2L � 2L (L = 2 km) and a thickness h of
200 m (Figure 2a). The plate midsurface is at a depth of
1 km. We assume a volumetric mass of 2200 kg/m3 every-
where. The vertical principle stress sv is calculated from the
lithostatic gradient. It equilibrates the action of the over-
burden and of the substratum on the plate, which are
assumed to be fluid-like, resulting in lithostatic pressures
along the inward normal of the top and bottom surfaces,
respectively. The horizontal principal stresses are set to
0.9sv .
[17] Loading in time results from two compressions, the

first obtained by controlling a horizontal uniform x displace-
ment denoted d on the lateral surface at x = 2 km, while
constraining the opposite surface at x = �2 km from any
motion in the x direction. The orientation of the coordinate
system is provided in Figure 2 with the x axis directed to the
north and with origin at the geometrical center of the plate.
The second compression results from a similar displacement
control in the y direction over the lateral surfaces at y = ±2
km, with a magnitude set to 0.7d. Two points, with coor-
dinates ±2, 0, 0 (km), have their vertical displacement set to
zero, to avoid arbitrary vertical translation. To trigger buck-
ling, a perturbation in the initial geometry is introduced by
adding to the z coordinate the quantity A[1 + cos(px/L)][1 +
cos(py/L)] with an amplitude A set to 10 cm. The plate is
discretized with 243 or 300 Lagrange elements having each
27 nodes. There are three elements through the thickness of
the plate to capture the stress gradients with depth prevailing
during buckling.
[18] Figure 3 presents the evolution of the load P which is

work conjugate to the displacement d prescribed over two of
the lateral boundaries. This P–d curve labeled 1 is the
elastic solution for a perfect structure. Curve 2 is obtained in
the presence of the initial imperfection described above. The
magnitude of the imperfection is small enough compared to
the plate thickness to ensure that the Euler load PE is well
approximated by the point at which these two curves are

seen to separate. Note that the load keeps on increasing with
the displacement signaling that the elastic buckling is stable.
The shape of the emerging fold is plotted in Figure 2 at three
load levels denoted P1, P2, and P3 in Figure 3. Isocontours of
the vertical displacement (km) are plotted over the fold
current configuration. Load P1 is approximately 73% of
the Euler load and the gradient in vertical displacement is
minor (15 m over 2 km). Load P2 is slightly larger than PE

(106%), and the emerging fold has a rather cylindrical shape
with axis parallel to the y direction. It is only in the latest
stage of the fold development (load P3 is 120% PE) that the
fully 3-D nature of the kinematics is clearly seen. Note by
comparing the fold at P2 and P3 that the point of largest
altitude is not always at the center of the plate since it
evolves from the side at y = ±2 km to the center, as the load is
increased from P2 to P3.
[19] It is now proposed to make use of the stress shape

factor R to analyze the evolution of the stress state during
folding. This factor is defined as the principal stress ratio
R = (s2 � s3)/(s1 � s3), with the continuum mechanics
convention that stresses are positive in tension and the
ranking: s1 � s2 � s3. R is varying from 0 to 1 and is
presented in the inner circle of Figure 4, for the six possible
orientations of the principal stresses. The stress shape factor
does provide some insight on the potential mode of failure
defined by the type of faulting or jointing first activated
[Sibson, 1985; Sassi et al., 1993; Sassi and Faure, 1997]).
It was first considered by Wallace [1951] and Bott [1959] to
infer the slip direction along faults. The three failure modes
presented on the right of Figure 4 correspond to reverse
fault (compression), strike-slip and normal fault (extension)
for a vertical s1, s2, and s3, respectively. The left-hand side
of Figure 4 corresponds to a rotation by 90	 of the two
horizontal principal stresses, as can be judged by the
stereonet diagrams with Schmidt projection on the lower
hemisphere (same convention for all stereonets in what
follows). These stereonets illustrate the orientation of the
normals to potential failure planes, based on a Mohr-
Coulomb criterion with a friction angle of 25	 and a R of
0.5. To distinguish between the three failure mode sectors
in the right- or left-hand side of Figure 4, the R* stress
factor is now introduced on the outer circle and is con-
structed to vary continuously from 0 to 3. The ranges of 0
to 1 (dark blue to blue colors), one to two (blue to light
green colors) and 2 to 3 (light green to red colors)
corresponds to the compression, strike-slip and extension
failure mode, respectively.
[20] The stress distribution for the elastic solution is now

analyzed by plotting the stress shape factor R* on the
current configuration of the fold at the three loading stages
discussed above (Figures 5–7). The isocontours of R* are
plotted in two views, the first looking at the plate from
above and the second from underneath. To complete these
data, the values of the principal stresses are provided at a
few representative sites together with their orientations in
stereonet diagrams. Circles, triangles, and squares are used
to identify s1, s2, and s3 directions, respectively.
[21] Figure 5 provides the two views of the structure at

load P1, which is less than the Euler load. The principal
stresses have the same orientation over the whole domain
with the maximum stress (s1, circles) being vertical. The
principal stress along the dominant compressive direction in
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the x direction (north) is minimum (s3, squares). The
intermediate stress (s2, triangles) is along the minor com-
pressive direction which is the y direction. The two com-
pressions in the horizontal directions have already modified
the stress regime from the initial extension regime. The
magnitude of the minimum stress has a gradient, mainly in
the x direction, over both the top and bottom surface. This is

the first expression of the development of the perturbation
responsible ultimately for buckling. This gradient partly
explains the variation in R* from 0.1 to 0.35. Such values
reveal that the expected failure mode is in conjugate reverse
faults striking along the y axis. The magnitude of the stress
deviator, approximately 5 MPa, would require a friction
coefficient lower than 0.3 to trigger faulting.

Figure 2. Isocontours of the vertical displacement (km) over the elastic structure. The isocontours are
plotted (a) prior to buckling, (b) at its onset, and (c) at the end of the simulation in. The load at these three
instants are P1, P2, and P3 defined in Figure 3.
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[22] Figure 6 presents the spatial variation of the stress
shape factor R* at load P2 which is slightly larger than the
Euler load. The principal stresses are still Andersonian with
the maximum principal stress along the vertical direction.
The intermediate and minor stresses are permuting in
orientation over the domain. The stress shape factor is
varying from 0 to 1.25 over the domain, indicating that
the intermediate principal stress varies from the minimum
horizontal principal stress to the vertical stress. R* is close
to 1 along the axis of the emerging fold in both the upper
and lower outer arcs. The expected failure mode includes
the reverse faulting discussed above as well as the strike-
slip mode characterized by conjugate vertical faults for a
stress shape factor greater than 1. The distribution of R*
correlates with the shape of the emerging fold (Figure 2b),
which is rather two-dimensional, especially from the view
of the top surface. The onset of buckling is sufficient to
reduce in the outer arc the compression in the x direction,
explaining the shift in principal stress directions in the
horizontal plane, as can be seen from the values of the
principal stresses presented in Figure 6.
[23] Figure 7 is constructed at load P3, which corresponds

to the latest stage of folding. The orientation of the principal
stresses varies significantly over the domain. The maximum
principal stress is not always vertical and is even found to
be positive in the outer arc. This is clearly seen at the top of
the anticline, element E6T. Please note that every element is
identified with a set of two letters and a number, as

illustrated in Figure 2a. The first letter ranges from A to J
along the x axis, starting from the elements at x = �2 km.
The integer ranges from 1 to 10 in the y direction. The
second letter designates the depth at which the element is
found and is either T, M, or B which stands for top, middle,
or bottom, respectively.
[24] Looking first at the top view in Figure 7a, four stress

regions should be distinguished. In the inner arcs (series of
elements around AT and JT, 0.5 	 R* 	 0.75), the
compression stress regime is the same as in Figure 5 with
an increase in the stress deviator. Failure could be in
conjugate reverse faults striking in the y direction. In the
second region, corresponding to outer arcs at the structure
boundaries (elements around D10T to G10T and D1T to
G1T, 0.75 	 R* 	 1.5), the tensile stress calls for the
opening of axial joints whereas the stress deviator could
motivate a failure by strike-slip faulting. The third region is
defined by the top center (elements such as F6T and E5T,
1.5 	 R* 	 2). Strike-slip failure mode is expected there but
the proximity of the extension failure domain announces
also the potential activation of joints. Note that strike-slip
fault could be replaced by normal faults since the magnitude
of the intermediate and minor principal stresses are rather
close. The fourth region is what remains and is identified by
the dark blue color (0 	 R* 	 0.5). The main result in that
region is that the two horizontal principal stress directions
are not aligned with the compression directions. The mag-
nitude of the two horizontal stresses (minor and intermedi-

Figure 3. The force P is work conjugate to the displacement d prescribed on the boundaries. The eight
curves correspond to (1) the elastic fundamental solution; (2) the elastic imperfect structure; (3) a single
set of systematic joints with q2 (defined in Figure 1b) set to 40	 and sliding mode only; (4) a single set of
systematic joints with q2 = 50	 and sliding mode only; (5) a set of horizontal discontinuities plus a set of
vertical systematic joints with q2 = 50	; (6) new fractures plus a set of inherited joints with q2 = 50	; (7)
new fractures plus a set of inherited joints with q2 = 0	; and (8) new fractures activated before buckling.
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ate) are close, indicating a potential failure in reverse faults
with a high dispersion in azimuth.
[25] Similar regions can be distinguished on the bottom

view in Figure 7b. The bottom outer and inner arc have
similar stress state and failure mode as the top outer and
inner arc, respectively. There is thus a variation in stress
state and failure mode through the thickness of the plate.
For example, looking at the center of the fold (elements E6T
and F5B), the principal stress directions are identical but the
vertical stress is intermediate and minor at the top and
bottom, respectively. At this central location, the failure
modes is composed of axial joints and strike-slip (or
normal) faults at the top and reverse faults striking E-W at
the bottom.
[26] The elastic solution of folding is instrumental to

explain qualitatively the potential first failure mode and its
spatial variation over the structure. It could be applied to the
laboratory experiments reported by Withjack and Scheiner
[1982] for explaining the fault patterns in the Frontier sand-
stone reservoir of the Elk basin dome (Rocky Mountains).
Our methodology would provide a better assessment of the
stress histories prior to faulting. However, the stresses are not
realistic during the fold development beyond the first poten-

tial activation. For example, we reproduce here part of the
first fracture pattern discussed by Gholipour [1998] for the
Oligo-Miocene Asmari carbonate reservoirs (Khuzistan,
southwest Iran), but not its evolution during folding. The
objective of sections 4–6 is to amend the rock rheology and
to detect the activation of pervasive inherited discontinuities
before and during folding.

4. Activation of Inherited Discontinuities

[27] This section explores the role of inherited disconti-
nuities in the development of a fold. It is proposed that the
studied structure is pervasively fractured prior to any
deformation in up to two orientations and that the fracture
activation is in a sliding mode only. Sections 4.1 and 4.2 are
concerned with inherited systematic joints (vertical planes)
and weak interlayers (horizontal planes), respectively. Sec-
tion 5 will complement that analysis by including the
possibility for new orientations to be activated.

4.1. Activation of Inherited Systematic Joints

[28] Systematic joints are represented by vertical surfa-
ces with the second Euler angle set to either q2 = 40	

Figure 4. The relation between the stress shape factor R (varying from 0 to 1 in the inner circle) and the
type of tectonic faulting. The R* factor on the outer circle is a linear transformation of R so that R* varies
from 0 in compression to 3 in extension. The stereonet diagrams show the orientation of the principal
stress axes and the contour plots of normals highlight the orientations where the fault verify the Mohr-
Coulomb failure criterion (for a R of 0.5 and a friction angle of 25	). Note that the principal stresses are
ranked following the continuum mechanics convention. (Modified from Sassi and Faure [1997] with
permission from Elsevier.)
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(simulation 3) or q2 = 50	 (simulation 4) and correspond-
ing to a strike of N050	 and N040	, respectively. The first
and second Euler angles defining the orientation of the
normal n are the angle between n and the vertical axis and

the angle between the projection of n in the horizontal
plane and the x direction, respectively (Figure 1b). Note
that these sets of discontinuities strike obliquely with
respect to the fold axis obtained with the elastic solution

Figure 5. Isocontours (20) of the principal stress ratio over the elastically deformed structure prior to
buckling (point P1 in Figure 3). The stereonet diagrams provide the orientation of the principal stresses
(circle, s1; triangle, s2; and square, s3) with the x axis oriented to the north.
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reported in section 3. Evidences of the activation during
folding of inherited systematic joints, striking obliquely
with respect to a fold axis, are reported, for example, in
the Frontier sandstone outcropping in the limb of the Split

Mountain anticline (Utah) [Silliphant et al., 2002]. For the
simulations the cohesion, friction, and hardening in sliding
mode of the joints are set to 20 MPa, 0.6, and 10 MPa,
respectively.

Figure 6. Isocontours (20) of the principal stress ratio over the elastically deformed structure during
buckling (point P2 in Figure 3). The stereonet diagrams provide the orientation of the principal stresses
(circle, s1; triangle, s2; and square, s3) with the x axis oriented to the north.
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Figure 7. Isocontours (20) of the principal stress ratio over the elastically deformed structure during
buckling (point P3 in Figure 3). The stereonet diagrams provide the orientation of the principal stresses
(circle, s1; triangle, s2; and square, s3) with the x axis oriented to the north.
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[29] The results of the two simulations in terms of P–d
curves correspond to curves 3 and 4 in Figure 3. There is no
difference between the elastic solution (curve 2), and these
two new simulations before the onset of buckling which is
thus elastic. It is close to point P3, in the postbuckling
regime, that fractures are first activated. The set striking at
N050	 in simulation 3 is better oriented for activation than
the set at N040	 in simulation 4. This result is consistent with
the elastic solution shown in Figure 7. The two P–d curves
of simulations 3 and 4 separate from the elastic solution with
curve 4 keeping a positive slope. For simulation 3, there is a
maximum load followed by a negative slope signaling a
stability transition.
[30] The stress path during folding and the activation of

the fractures are presented for simulation 4 in a space
spanned by the resolved shear stress and the normal stress
for the plane striking N040	 in Figure 8. The circles and the
squares represent the initial and final stress states, respec-
tively. The elastic domain is delimited by a dashed line
defining the initial Mohr-Coulomb criterion for the inherited
set. There are three circles because the normal stress is
depth-dependent in the initial configuration. The resolved
shear stress is of course zero initially because the two
horizontal principal stresses are first identical. The curves
in Figure 8 are obtained at various positions within the
structure and they can be arranged in three groups. The four
curves close to the one obtained for element A3T are from
the inner arc either on the top or the bottom layers of
elements and constitute the first group. Note that elements
are identified as before even though the number of
elements (9 � 9) requires a different range for the letters
and integers (A to I and 1 to 9 only). The normal stress is
large, and the resolved shear stress is not sufficient to
trigger fault activation. The second group is composed of
the single curve E5M found at middle depth at the

structure center. The stress evolution is minor compared
to the first group. The last group is the most interesting
and is composed of the stress paths for elements E1T and
E5T found in the outer arc. The normal and resolved shear
stresses are increasing during the elastic buckling until
fractures in E5T are first activated. Beyond that first
activation, followed by the activation in E1T, the resolved
shear stress decreases along the direction set by the Mohr-
Coulomb line. There is thus a tendency for the stress to
evolve toward tensile normal stresses which should trigger
an opening of fractures (see element E5T). Looking at the
elastic solution (Figure 7), the activation in these elements
was predicted: a failure mode in strike-slip was foreseen in
view of the stress shape factor larger than 1.
[31] The results discussed above could be compared to the

observations of Silliphant et al. [2002], despite the differ-
ence in depth and folding mode (forced versus buckled
fold). We predict the observed activation of the inherited
systematic joints in the fold closure area (for example,
position E1T). It is suggested that this activation occurred
also at the top of the fold which is eroded.

4.2. Activation of Interlayer Slips and
Systematic Joints

[32] Simulation 5 is the last reported in this section and
concerns the vertical inherited set of simulation 4 striking
at N040	 plus a horizontal set which mimics the weakness
of bedding interfaces. The cohesion, friction coefficient,
and hardening modulus are set to 0, 0.1, and 10 MPa,
respectively, for this horizontal set. The friction coefficient
along the bedding planes has to be lower than 0.2 to
ensure that this orientation is activated. This activation is
rather unstable numerically and a viscoplasticity extension
of the model presented in section 2 is employed for the
two orientations. The linear viscosity function presented in
Appendix B is selected, and the viscosity constant is set to
1019 Pa s for a nominal strain rate of 10�12 s�1. The P–d
curve of this simulation is curve 5 in Figure 3. This curve
is close to the elastic solution because of the viscosity
effects during buckling. This result illustrates how time-
dependent rheology could delay the stability transition (or
the maximum load), compared to the strain-rate-independ-
ent results obtained for simulation 4 (or 3). Of more
interest here is the activation of the two families of
inherited discontinuities which are analyzed with the help
of Figure 9. Figure 9a for the bedding planes shows that
the evolution of the normal stress and of the resolved shear
stress occurs over a small range compared to the one
found in simulation 4. The normal stress is always of the
order of �20 MPa and the resolved shear stress is less
than 10 MPa. There are three groups of curves in Figure
9a corresponding to three initial stress states encountered
at the top, middle, and bottom layer of the structure. The
evolution is similar for the top and bottom layers. It is in
the middle of the structure that the resolved shear stress is
more important and where sliding first occurs during the
initiation of buckling. The bedding sliding occurs first in
the fold limbs (e.g., elements C3M, C8M, H3M, and
H8M) and then spreads over the whole mid region and
in the fold limbs at the top and bottom of the structure.
The distance between the final stress state and the yield
surface is of the order of 5 MPa and the strain rate of the

Figure 8. The time history of the resolved shear stress and
the normal stress for vertical fractures striking N040	
(simulation 4) at different locations in the fold identified by
two letters and a number, a notation defined in Figure 2. The
circles and the squares denote the initial and final stress
states, respectively. The dashed segments mark the
boundary of the initial elastic domain.
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order of 5 10�12 s�1, which is 5 times the nominal strain
rate.
[33] The influence of the sliding over the bedding planes

on the activation of the set of vertical joints which have
been considered here is now discussed. From Figure 9b, it is
observed that the evolution of the stress state on these
vertical joints is qualitatively similar to the one observed
without sliding along bedding planes (see Figure 8), but the
activation is now reduced. This result is in line with the
finding of the experiments reported by Couples and Lewis
[2000]. Also, the model problem presented here could be
seen as a 3-D generalization of the 2-D analysis of Cooke et
al. [2000] proposed to explain the interlayer slips in the
Navajo aeolian sandstone outcropping in the limb of the
East Kaibab monocline (Utah). The role of weak bedding
planes is not explored further in the rest of this paper
because of the similarity of the stress histories, with or
without interlayer slips.
[34] A single vertical orientation was considered in this

section. It has been shown that the normal stress evolves

toward the tensile domain because of the buckling kine-
matics. There are thus reasons for investigating the activa-
tion of other orientations and to include also the activation
in an opening mode. These two objectives are considered in
section 5.

5. Synfolding Fracture Pattern

[35] A continuous description of the fracture orientation
is not possible and a distribution every 10	 for the two Euler
angles is instead proposed. Every orientation lumps the
contribution of fractures in its neighborhood. This lumping
should be accounted for by a numerical factor or integration
weight. This factor is combined here directly with the
material properties of the orientations. To differentiate
between new and inherited fractures, the former are
assumed to have larger cohesion, tensile strength and hard-
ening moduli. Consequently, the four parameters cS0, cS1,
cO0, and cO1 of the plasticity model are assigned values 5,
10, 5, and 10 MPa for the inherited fractures and 40, 100, 8,
and 100 MPa for the new fractures. A friction coefficient of
0.6 is considered for all orientations.
[36] Two simulations are documented here and they differ

by the orientation of the inherited fractures. In simulation 6,
there is a single set of vertical discontinuities striking N040	
as in simulation 4. In simulation 7, the inherited set is also
vertical but striking E-W. This particular choice is proposed
to investigate the influence of discontinuities created during
an early compressive stage prior to buckling. The typical
example in the field would be stylolites which are com-
pressive features perpendicular to the principal compressive
directions often activated in opening during folding.

5.1. Activation of Inherited Joints and of
New Fractures

[37] The presence of inherited discontinuities is often not
sufficient to accommodate the final deformation due to
folding. This is the case, for example, in the Frontier
sandstone reservoir of the Oil Mountain anticline (Wyom-
ing) reported by Hennings et al. [2000]. To study this
possibility, the opening and sliding of new discontinuities,
together with the activation of inherited joints, are permitted
in the simulation 6, which is now discussed.
[38] The P–d curve for simulation 6 is presented as curve

6 in Figure 3. The stress histories for this simulation is
found in Figures 10a and 10b for the inherited set and for a
new vertical fracture set striking N100	, respectively. The
activation of the fractures occurs in the postbifurcation
range for a load larger than the Euler load between the load
levels P2 and P3. This activation occurs on the inherited set
before the load level achieved in simulation 4 because the
cohesion is now smaller. However, the two stress histories
are rather similar, as one can see by comparing Figures 10a
and 8. The activation of the inherited set perturbs the local
stress state and influences the opening of new vertical
fractures in the outer arc, as predicted by the elastic
solution. However, the new orientation corresponds to
vertical joints striking N100	 instead of the N090	 expected
by the elastic solution. The stress history on that N100	
plane is found in Figure 10b and share some similarities
with Figure 10a. The main difference could be described by
a scaling of the two axis: the resolved shear stress increase

Figure 9. The time histories (simulation 5) of the resolved
shear stress and the normal stress (a) for inherited horizontal
discontinuities and (b) for vertical fractures striking N040	,
at different locations in the fold. The circles and the squares
denote the initial and final stress states, respectively. The
dashed segments mark the boundary of the initial elastic
domain.
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is minor whereas the normal stress changes more drastically.
The elements in the inner arc are sustaining a compression
and cannot open. It is in the outer arc that elements such
as E1T to E5T are activated in an opening mode. This
activation occurs first in the fold center and spreads along
the outer arc axis. Note that the resolved shear stress
trajectories is modified before the opening (sharp decrease
in t), as a result of the activation of the inherited set. The
t–sn curve follows a straight segment toward the opening
cutoff which is dictated by the evolution of the resolved
shear stress along the Mohr-Coulomb line of the inherited
set. This strong interaction is simply due to the assumption
that the same macrostress acts on the two fracture sets. The
joint set opening in the outer arc has a drastic consequence
on the load bearing capacity of the structure, curve 6 in
Figure 3. At the end of the simulation, the displacement at
the boundary is nearly constant in time while the load drops
sharply. This response is characteristic of the development

of an instability: the nominal strain rate tends to zero,
whereas the local strain rate in the fold outer arc is increased
by several orders of magnitude. As a final remark, note that
the activation of the new outer arc joints leads to a reduction
of the stress magnitude in the outer arc and, consequently,
eliminates any opening of the inherited set which was
foreseen in simulation 4. This is a second strong interaction
between inherited and new fractures.

5.2. Activation of ‘‘Stylolites’’ and of New Fractures

[39] The second simulation of this section (simulation 7)
proposes a simple interpretation for the inherited set. This
set is vertical and perpendicular to the major compressive
direction and is seen as composed of stylolites which are
formed during the early compression prior to buckling as
suggested, for example, by Averbuch et al. [1992] for the
Cenozoic cover of Lagrasse fold in the northeastern fore-
land of Pyrenees. Also, for the Devonian sandstone folded
in the Tata province (Moroccan Anti-Atlas), large compres-
sive stresses of the order of 100 MPa were predicted
numerically by Guiton et al. [2003] during the early
compression phase prior to buckling. Stylolites have been
reported in the same area by Cortes [2000]. The details of
the compaction mechanism responsible for the stylolites are
not considered here nor the associated loss of mass. The
stylolites constitute a weak orientation which could be
activated either in opening or sliding during buckling.
New orientations are also considered as in section 5.1
(simulation 6).
[40] It is found that during folding, the inherited set is the

only system which is activated. The P–d curve of this
simulation is curve 7 in Figure 3. Figure 11 presents the
stress history for the inherited set of stylolites at the element
E5T. Only the normal stress is represented, as a function of
the normalized displacement at the boundary, since the
resolved shear stress remains close to zero at all times.
The activation of the inherited set occurs in the postbuckling
range between load P2 and load P3. This activation occurs
first at the top center of the structure (element E5T) under
increasing load but, as the activation spreads to the whole
outer arc, the load bearing capacity drops drastically.
[41] A similar chronology is reported in the Precambrian

quartzite of the Baraboo syncline (Wisconsin) by Dalziel
and Stirewalt [1975]. They suggest, first, the formation of
planes of dissolution perpendicular to the major compres-
sive direction during the early layer-parallel shortening and,
second, the opening reactivation of these planes because of
the outer arc extension associated to the folding.

6. Prefolding Fracture Pattern

[42] All the discontinuities studied so far are activated
during the buckling development. This section accounts for
fracture activation prior to buckling. This early deformation
is homogeneously distributed over the structure. For exam-
ple, McQuillan [1973] suggests that the carbonate of the
Asmari reservoir, in several anticlines of the Zagros moun-
tain foothills, was pervasively fractured in many orienta-
tions before folding. These sets of discontinuities constitute
preferential sites for further sliding or opening or, to the
contrary, could be deactivated during folding in certain
regions of the structure. To investigate this scenario, the

Figure 10. The time histories (simulation 6) of the
resolved shear stress and the normal stress (a) for inherited
vertical fractures striking N040	 and (b) for new vertical
fractures striking N100	. The circles and the squares denote
the initial and final stress states, respectively. The dashed
segments mark the boundary of the initial elastic domain.
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last simulation reported here assumes that all orientations
are potentially activated with a discretization of the hemi-
sphere by 10	, for the two Euler angles. The same material
properties are considered in all orientations. The friction
coefficient is set to 0.3 and the cohesion and tensile strength
to 0 and 5 MPa, respectively. The hardening moduli for
sliding and opening take for values 100 MPa. A viscosity of
1019 Pa s for a nominal compression rate of 10�12 s�1

complement the data set.
[43] The P–d curve 8 in Figure 3 results from this

simulation. Buckling is marked by a maximum load at
90% of the Euler load, and is followed by the characteristic
structural softening observed for the previous simulations. It
should be noted that buckling is initiated at a load and
displacement which are close to the elastic solution, curve 2.
Activation of discontinuities has not yet resulted in a
noticeable accumulation of irreversible macrodeformation.
However, this activation has already reduced the apparent
stiffness of the structure which determines the plastic
buckling load (see Leroy and Triantafyllidis [1996] for
further discussion).
[44] The discontinuities first activated prior to buckling

are conjugate reverse faults striking E-W (Figure 12a), as
predicted by the elastic solution. This information is read
from the stereonets presenting isocontours of the poles to
the activated orientation, weighted by the associated internal
variables for sliding g or for opening d. The contours are
normalized by the maximum magnitude of the internal
variable which is written next to every stereonet with a
normalization by a factor of 10�4. The color code is white to
black for an intensity varying from 0 to 1. The amount of

irreversible deformation is small (Figure 12a), confirming
the interpretation made from the P–d curve. Sliding occurs
first at the north and south plate boundaries and then takes
place over the whole structure through its thickness before
buckling initiates.
[45] The first phase of buckling (Figure 12b) is charac-

terized by the rather elliptical mode reported above at the
end of the previous simulations. The fracture activation in
the limb (element H4T) is not modified by buckling. It is
not the case at the saddle point (element I5T) where more
vertical orientations are now activated in a compressive
mode. This evolution from the early reverse faults toward
conjugate strike-slip faults is consistent with the stress shape
factor for the elastic solution (Figure 7a) close to 0.6. On the
fold outer arc (elements E1T and E5T), activated conjugate
faults are dipping subvertically to nearly 30	. The planes
dipping around 30	 and striking about E-W correspond to
the reverse faults discussed above and the subvertical faults
suggest strike-slip to extensive regime. This interpretation is
consistent again with the elastic solution in Figure 7a, where
the stress shape factor ranges from 0 to 2.25. Opening was
however not observed at that stage of loading because of the
zero cohesion adopted for all orientations.
[46] The development of the fold is marked by a change

in geometry from elliptical to circular during the loss of
bearing capacity of the structure (Figure 3). This change in
kinematics was not observed before and is thus due to the
ease of activating numerous discontinuities. The change in
mode results in a local rotation of the principal stress
directions and the deactivation of various orientations. To
document this effect, two stereonets are plotted from the

Figure 11. The time histories (simulation 7) at the top center of the structure of the normal stress on
inherited planes striking N090	 and the prescribed displacement at the boundary. The circle and the
square denote the initial and final stress states, respectively. The dashed line marks the boundary of the
initial elastic domain.
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Figure 12. Isocontours (20) of the vertical displacement (km) over the structure at three stages of
simulation 8. The isocontours are plotted (a) prior to buckling, (b) during the first buckling phase in an
elliptical mode, and (c) at the end of the simulation after the switch to the circular mode. The stereonet
diagrams (Schmidt projections on the lower hemisphere) show iscontours of the activated poles weighted
by the macro permanent deformation. Each plot is normalized by the maximum value at the site which is
also indicated next to the stereonet with a normalization by a factor of 10�4. The g and d identify the
mode of activation in sliding or opening, respectively. In Figure 12c, the P and C differentiate between
present and cumulated activation.
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same locality, marked by C and P which stand for cumu-
lated activation and presently activated, respectively. The
fracture pattern is not yet modified in the outer arc regions
from elements E1T to E5T. The saddle point of Figure 12b,
element I5T, is now an outer arc for a fold having the x
direction for axis. At this site, the activated fracture pattern
is in strike-slip mode. In the fold limb, element H4T, there is
a rotation of the principal stress directions which is marked
by the activation of strike-slip conjugate faults, anticlock-
wise rotated with respect to the pattern found in element
I5T. Note that joints striking NNW-SSE are now activated at
the same locality. This is the only place on the fold where
discontinuities are found to be open. In the inner arc
regions, the four corners of the plate, the presently activated
pattern shows a clockwise rotation compared to the C
stereonet and a deactivation of the subhorizontal planes.
This newly activated fracture pattern corresponds to reverse
faults striking NW-SE.

7. Concluding Discussion

[47] An elastoplasticity model, which accounts for the
presence of diffuse inherited weak directions or of new
orientations dictated by the local stress state, is applied to
analyze quantitatively the relation between buckling in three
dimensions and fracture pattern activation.
[48] The principal stress directions and magnitudes pre-

dicted with an elasticity theory provide the critical orienta-
tion and mode of potential faulting, with the application of a
Mohr-Coulomb criterion and the analysis of the stress shape
factor. Potential joints could also be inferred from the elastic
solution if a tensile stress is detected. Folding occurs in
three stages, and the failure modes inferred from the elastic
solution are as follows. During stage 1, prior to buckling,
the deformation is approximately homogeneous with poten-
tial reverse faulting. Stage 2 is characterized by the initia-
tion of buckling in a cylindrical mode, with an increase in
compression in the inner arc which could lead to reverse
faulting and to strike-slip faulting in the emerging outer arc.
During stage 3, the development of the three-dimensional
ellipsoidal fold leads to tensile principal stress in the outer
arc, where strike-slip to normal faults as well as joints could
be expected. This elastic solution, however, cannot describe
the relation between the fracture activation and the three
stages of fold development, common to most of the simu-
lations reported.
[49] This interaction has been studied starting with

inherited discontinuities perpendicular to the bedding and
chosen not to be parallel to the minor and major axes of the
fold. Buckling is elastic, but the diffuse discontinuities are
sliding in the outer arc during the fold development. The
activation of bed-perpendicular discontinuities is found to
be delayed and reduced in the presence of sliding along
bed-parallel discontinuities, representing weak bedding
interfaces. The stress path in a space spanned by the normal
stress and the resolved shear stress for the vertical weak
orientation is pointing toward the tensile domain during the
final stage of buckling, suggesting the possibility that
discontinuities could open. When this possibility is
accounted for, new joints striking at an angle to the fold
axis are found to open. This orientation, not predicted by

the elastic solution, is due to the rotation of the principal
stress directions during the earlier sliding along the
inherited vertical discontinuities. Furthermore, opening of
the new orientations limits the evolution of the normal
stress toward tensile values for the inherited vertical dis-
continuities which remain closed. This opening of disconti-
nuities reduces drastically the structure bearing capacity:
the final stage of buckling is governed by a redistribution of
the elastic stored energy without any further displacement
at the boundaries.
[50] It should be noted that during the early compression

prior to folding, the compressive stresses could be respon-
sible for a compaction by pressure solution, resulting in
stylolitic surfaces, which has not been modeled here. These
surfaces define a weak orientation if the normal stress
becomes tensile during buckling. To explore that possibility,
a weak orientation parallel to the fold axis has been
introduced and shown to be open during stage 2 of fold
development in the outer arc.
[51] Finally, the response of poorly consolidated sedi-

ments is explored. It is characterized by a layer-parallel
shortening, defined here as the homogenous compressive
deformation during stage 1, accommodated in a reverse
fault mode. This early activation reduces the buckling load
compared to the elastic Euler load. The ellipsoidal mode of
folding is accommodated by strike-slip faulting in the fold
limbs and strike-slip to normal faulting in the outer arc.
Furthermore, folding evolves from the ellipsoidal mode
toward a circular collapse mode. Reverse faulting is then
deactivated in the limbs and is replaced by both strike-slip
faulting and opening of joints, oriented consistently with the
circular shape of the fold.
[52] The application presented here of the elastoplastic-

ity model of Leroy and Sassi [2000] should be seen as an
attempt to reproduce in a simple manner the activation of
discontinuities in both sliding and opening. The reported
complexity of the fold structural evolution in the presence
of inherited weak orientations confirms the necessity to
apply first such simple models to palliate to the limitations
of the elastic solution. Furthermore, it was shown that
there is a connection between the rheological parameters
of the plasticity model and the density and size of
fractures, represented as penny-shaped cracks in an other-
wise elastic matrix. Further work is required to strengthen
this link. For example, the last results presented in this
paper were in the form of distributions in stereonet
diagrams of the two internal variables for the activated
orientations: the macro irreversible deformation in shear
and dilation. These two variables could be seen as the first
estimates of the sums of the sliding and opening of every
discontinuity sharing the same orientation in the represen-
tative volume element. These two internal variables should
be linked in the future in a more concrete way to the
density and size of the fractures. The study of exhumed
structures should provide the statistical distribution
between the fracture geometrical characteristics and the
overall accommodated deformation [Rives et al., 1992]. A
qualitative attempt, which was found useful to constrain
the fracture activation chronology, is given by Guiton et
al. [2003]. Field data should provide the basis for calibrat-
ing quantitatively the next plasticity models in order to
obtain a predictive model for subsurface structures of
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similar formations. It is hoped that the predictions for
naturally fractured reservoirs could then be instrumental in
constructing their subseismic fracture networks.

Appendix A: Kinematics and Weak Formulation
of Equilibrium

[53] The objective of this appendix is to introduce the
principle of virtual power which is at the basis of the finite
element approximation. Further information on the numer-
ical scheme are given by Guiton [2001].
[54] The Green-Lagrange deformation tensor

E ¼
1

2
ruþ t ruþ t ru � ruð Þ; ðA1Þ

in which u and r are the displacement field and the
gradient operator, is the necessary strain tensor in the
presence of finite rotations encountered during folding.
The weak formulation of equilibrium is the principle of
virtual power

Z

�0

T : ~edV ¼

Z

@�

~v:TdS þ

Z

�0

r0b � ~vdV ; ðA2Þ

where T, ~e, ~v, T, r0, and b are the second Piola-Kirchhoff
stress tensor, the virtual lagrangian strain rate tensor, the
virtual velocity, the prescribed force per unit area on part of
the boundary in its current configuration @�, the material
volumetric mass in the reference configuration �0 and the
body force acting on the solid, respectively. The virtual
Lagrangian strain rate tensor and the virtual velocity are
related by

~e ¼
1

2
r~vþ t r~vþ t r~v � rvþ t rv � r~vð Þ: ðA3Þ

[55] The force density T in this paper results from the
action of the overburden and the substratum on the top and
bottom surfaces of the domain, respectively. It is assumed
that this action results in compressive forces directed along
the current outward normal to the boundary, with an
intensity proportional to the lithostatic pressure:

T ¼ �r0g hRef þ zð Þn; ðA4Þ

in which g, hRef and z are the acceleration of gravity, the
initial middle depth of the studied domain and the current
vertical position from this reference depth to the point of
interest on the boundary. The transformation of the integral
over the current position of the boundary in the right-hand
side of equation (A2) to an integration over the reference
configuration respecting the kinematic assumptions of small
strain and finite rotation is given by Guiton [2001]. Note
that the same volumetric mass is considered for the
overburden material and the studied domain.

Appendix B: Numerical Algorithm

[56] This appendix pertains to the numerical algorithm for
the elastoplasticity constitutive relations presented in sec-
tion 2, which relies on the assumptions of small strain and

finite rotation. Consider known at time tn the macrostress tn

and strain E
n as well as the internal variables ga

n and da
n

which characterize the sliding and opening of a plane of
discontinuity a oriented by its normal na. There are M such
potential planes which correspond to either inherited weak
directions or to new orientations of discontinuities. The
finite number in the case of new fractures results from a
discretization of the hemisphere. To simplify the notation,
the list of 2M internal variables xb is introduced to combine
in a single notation the sliding and the opening modes. At
time tn+1, the finite element solution provides a series of
estimates for the displacement increment resulting in the
strain E

n+1. The objective of this appendix is to determine
the corresponding stress and the internal variables xb

n+1. It
requires the choice of an update algorithm, selected here to
be fully implicit. Note that above and in what follows, the
superscripts n and n + 1 determine if the quantity high-
lighted is estimated at time n or n + 1, respectively.
[57] The stress increment, defined as the difference

between the macrostress at time n + 1 and n is

�T ¼ T
nþ1 � tn ¼ De

: �E�
X

2M

b

�xbR
nþ1
b

!

; ðB1Þ

for a population of M orientations activated in either or both
sliding and opening. The fourth-order tensor De in equation
(B1) is simply, in the case of an isotropic elastic solid,

De ¼ K �
2G

3

� �

D� Dþ 2GIS ; ðB2Þ

in which IS, K, and G are the symmetric fourth-order
identity tensor, which associates to any second-order tensor
A the tensor (A + tA)/2, and the moduli of elasticity for bulk
and shear deformation, respectively. In equation (B1), the
tensor Rb

n+1 represents the flow direction in stress space
which is

Rnþ1
b ¼ Rnþ1

Sb 

1

2
mnþ1

b � nb þ nb �mnþ1
b

� �

;

Rnþ1
b ¼ Rnþ1

Ob 
 nb � nb; ðB3Þ

for either sliding (S) or opening (O). Note that the flow
direction is determined at time tn+1 rendering the update
algorithm equations (B1)–(B3) implicit in stress. This
difficulty is only true for the sliding mode since the normal
to the plane of discontinuity is oriented in the reference
configuration and is thus independent of the deformation
and of the stress path.
[58] The update algorithm is decomposed into a predictor

and a corrector step. The predictor is constructed with the
assumption that the increment in strain does not generate any
irreversible deformation. The stress predictor denoted T* is
thus based on the elastic response and the internal variables
take the values found at time tn, x*a = xa

n . These assumptions
are combined with equations (B1) and (B2) to provide

T* ¼ T
n þ K �

2G

3

� �

Dtr �Eð Þ þ 2G�E: ðB4Þ

[59] The validity of the assumptions postulated for the
predictor step is now checked by inserting the estimates in
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stress and internal variable in the 2M yield criteria (two for
each orientation). If all yield conditions are satisfied, the
predictor defines correctly the stress at the end of the time
step. If there is a yield criterion found to be unsatisfied, a
correction is required to account for the irreversible defor-
mation. Let us assume that m yield conditions need to be
enforced. The correction step then consists of solving the
following set of (m + 6) equations:

T
nþ1 ¼ T*�

Xm

b
�xb � K �

2G

3

� �

DbO dþ 2GRnþ1
b

� �

;

fb T
nþ1
b ; xnþ1

b

� �

¼ 0 b ¼ 1; ::;mð Þ; ðB5Þ

in which the Kronecker dbO is zero or one if b corresponds
to an internal variable for sliding or for opening,
respectively. This symbol marks the fact that the flow
direction Rb

n+1 has a zero trace in sliding and a trace of one
in opening. The m equations in the second line of equation
(B5) correspond to the yield conditions which are enforced
at the end of the time step in this implicit algorithm. The
exact expressions of the yield criteria are presented in
section 2.
[60] Some of the simulations reported in this paper are

based on the extension to viscoplasticity of the present
model. There is of course a physical justification for
introducing a strain rate dependency but it was done here
mainly for sake of numerical stability. It is a linear over-
stress model which is considered and the new algorithm is
obtained by replacing the m equations in equation (B5) by
the viscosity functions:

�xb ¼
�t

h
fb T

nþ1
b ; xnþ1

b

� �

b ¼ 1; ::;mð Þ; ðB6Þ

in which h is the viscosity parameter. Note that fb is then a
loading surface in stress space and not the boundary of the
elastic domain as for time-independent plasticity.
[61] The update algorithm has been completely defined

for both strain- rate-dependent and strain-rate-independent
cases. The linearization of these algorithms, to obtain the
consistent tangent required for the Newton-Raphson algo-
rithm [Simo and Taylor, 1985], is not presented here for
sake of conciseness and is given by Guiton [2001].
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d’ensemble durant le plissement de roches sédimentaires, thèse de Doc-
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