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Bearing capacity of strip footings with horizontal confinement

Jean Salencon

Ecolepolytechniquelaboratoire demécaniquadessolides,91128Palaiseaucedex France

Abstract

For a strip footing under axial loading, the bearing capacityis influencedby the presenceof rigid walls confining the
foundationsoil. This problemis investigated withirthe frameworkof the theoryof yield design,considering botta perfectly
rough andafrictionlesscontactconditionat the interfaceswith thewalls in the casef a purely cohesivesoil. Upperboundsfor
the correctionfactor to be appliedto the classicalvalue of the bearingcapacityare determined,as functions of the non-
dimensionalgeometricparametenf the problem,throughthe kinematicapproachimplementingvirtual velocity fieldsinspired
from the solutionto the problemof invertedextrusion.In the perfectly roughcase,it appearghat the new upperboundis a
significant improvemenf thosealreadyavailable A very simplerelationshipis establishedwhich derivesthe upperboundfor
thefrictionless wallsfrom the upperboundfor theroughwalls. A generakconclusionof theanalysis ighat,for the valuesof the
geometrigparametethatarelikely to be encounteredh practice theincreasen the bearing capacitgueto the presencef the
rigid walls remainssery small.

Résumé

La capacité portante des fondations superficiellesen présencede parois rigides. La présence dearoisrigides au
voisinage d’'undondationsuperficielle influesurla capacitéportante deettefondation.On étudiece problemedansle casd’un
sol cohérentsansfrottementinterne en supposantjue le contactavec les parois est soit parfaitementugueuxsoit sans
frottement.En mettanten ceuvre I'approcheinématiquedu calcul a la ruptureavecdeschampsde vitessevirtuels inspirésde
I'étude de 'extrusion inverse,on déterminedes bornes supérieurgsur le facteurde correctiona appliquerau coefficient
classique de capacitgortante,en fonction du parametregéométriqueadimensionneblu probléme.Dansle cas des parois
rugueusesla nouvelle borne supérieuse révélesignificativemenmeilleureque cellesdisponiblegusqu’alors.Une relation
simple est établie qui permetd’obtenir la borne supérieurg@our les parois lisses partir de cellevalable pour les parois
rugueusesEn conclusionde 'analyse,il apparaigue,pourlesvaleursdu parametre géométriquéalistesdu pointde vue dda
pratique 'accroissementle capacité portantdl a laprésencelesparoisrigidesdemeurdaible.
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1. The problem under investigation

In [1] we presented the results of a theoretical determination of the bearing capacity obatim$ submitted
to axial loading, when the soil foundation, with infinite thickness, is limited inhtbgzontal directions by rigid
vertical walls. The soil foundation was either purely cohesive or frictional assuming a perfectly contgtt
condition at the interfaces with the footing and with the rigid walls. The major part of the analysidevated
to obtaining upper bound estimates within the framework of the yield design theory [2] by revisiting the solution
to the problem of the bearing capacity of a surface footing on a soil layer with limited thickhlesssirtual
velocity fields, which were implemented in the upper bound approach, took place in a soil layer whose shicknes
was strictly proportional to the gap between the edge of the foundation and the adjacent wall. The same problem
will be investigated again, in the case of a purely cohesive soil, in both cases of a pedagthyor a frictionless
(smooth) contact condition (with no tensile strength) at the rigid walls, through a kinematic approach using virtual
velocity fields inspired from the analysis of inverted extrusion [3]. The notations are kepfHs Tine width of
the footing is denote® = 2b. The distance between the edge of the footing and the corresponding rigid containing
wall is denoted.. The cohesion of the foundation soildg with the Tresca strength criterion.

The axial force acting on the footing is denot&d(more preciselyF is the axial force per unit transversal
length acting on the footing). The problem is treated as a 2-dimensional one. The theoretical bearing capacity is
defined apyir = F/B when F reaches its maximum value from the yield design point of view.

In consideration of the parameters of the problem, the non-dimensional expresgigicah be written as:

L .
Pult = CUKC(Z>N° with N =7 + 2 andK¢(oc0) =1 (@)

where K¢(L/b) is the correction factor which takes the confining effect into account. In order to distinguish
the “rough” and the “smooth” case a superscript “r” or “s” will be introduced in Eq. (1), nan#€lyL /b) and
KE(L/b).

2. Perfectly rough contact condition with the rigid walls
21. L/b>2

Referring to Prandtl solution and to the extension of its stress-field by Shield as in [1], it cobthatou

L L
VZ >2, Ké(;) =1 2

22.0<L/b<?2

Investigating the range @ L /b < 2, we now consider the virtual velocity field constructed, through the use of
Geiringer’s equations [4] on the symmetrical slip-line field presented in Fig. 1, whichgsédsfrom [3]. Fig. 1
also shows the corresponding hodograph [5] when the footing is given a vertical virtual translation witition
velocity U: zoneA’M’SM A moves vertically as a rigid block with velocity; acrossA’M’SG andG'R' Q'SM A
the velocity field is discontinuous, with a tangential jump equaﬁo@/z; beneathG’R'Q'SG the soail is
motionless;G’A’C’ has a translation rigid body motion; since the hodograph and the slip-line field happen to
be geometrically similar and orthogonal to each other, the velagityof G’A’C’ is normal to the straight line
AS with (7L/b as vertical component (symmetrically farAC); the velocity field in the rest of the soil layer is
described in the hodograph.

Applying the upper bound approach of the theory of Yield design would require the explicit computation of the
maximum resisting rate of work in that virtual velocity field, which should then be comparbdtveitwork of the
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Fig. 1. Slip-line field and hodograph for perfectly rough walls wiigih > 0.29.

external forces. As a matter of fact a short cut can be taken since Fig. 1 makes it possible to exhibit a so-called
“incomplete solution” as introduced by Bishop [6]. Starting from the stress-free surface boundary condition along
A’G" and AG and assuming the vertical direction to be the direction of maximum pressure there, a stress-field is
constructed, which is in equilibrium with zero body forces and which saturates the Tresca strength criterion. The
network ofa andg lines in Fig. 1 is the network of characteristics of this stress-field and the Hencky equations [3],
which are satisfied along these lines, determine the stress-field in tha tewler concern. Poirt, where the two
symmetric parts of the network meet each other, is situated on the symmetry axis of the footing and is determined
from the condition that the vertical and horizontal directions be the principalfaxeése stress-field: hence arcs

C’'R’ andM’'N’ are equal to each other. Only a partial stress-field being constructed does not make it possible to
refer to the static approach of the theory of yield design. But, in consideration of Ewdriditia theorem [7], since

the orientations of the, g8 network and of its image in the hodograph are interchanged, the corresponding stress-
and velocity fields can be combined to produce an incomplete solution [6] with the benefit that the bearing capacit
computed by means of the partial stress-field is just the upper bound estimate given by the eflioiity field.
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Fig. 2. Slip-line field for perfectly rough walls whenOL /b < 0.29.

The network in Fig. 1 remains valid unfif’ meets the rigid wall, which correspondsi meeting the footing.
With reference to the geometric parameters of the problem this amourdtgia: 0.29. For lower values of. /b
the network is extended, as shown in Fig. 2, witfines tangent to the wall and lines tangent to the footing on
the left-hand side and symmetrically on the right-hand side. The entire reasonirigsesla.

After constructing the network numerically through classical procedures, the stress-field is determined explicitly
at each node of the mesh and integration alanhly’S (or, more conveniently, along’N’S), in order to obtain the
corresponding upper bound for the bearing capacity, is straightforward. Referring to Eq. (1), we write:

L L\7
PuItZCuKé(E>Nc<Cu|:K(;(E>j| N¢ (3)

where[K{(L/b)] is the upper bound for the correction facfof(L/b).



The results are presented in Fig. 3 together with the upper bound proposed previously [1] and witketie clo
form upper bound recently obtained by Puzrin and Randolph [8] through an innovative method. This one becomes
rapidly greater than the others whérib decreases and, in a comparison with [1], we observe that a significant
reduction of the upper bound for the correction factor has been gained from the approach presented here: for the
same value ol./b, the increase in the bearing capacity due to horizontal confinementis now reduced by some 50%.
This strengthens the conclusion that, for practically relevant valuggiafthe increase in the bearing capacity due

to confinement remains very small: smaller than 10%fgb > 0.72 and smaller than 20% fdr/b > 0.45.
It may also be recalled that in the solution proposed in [1], the thickness of the layer wherguhévwélocity
field took place was kept equal tb= L+/2/2 for any value ofL /b < 2, so thatd/b decreased to 0 in proportion
with L/b. In the present case it is observed in Fig. 3 that the decremeribofith L /b due to the presence of the
rigid walls is limited.
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Fig. 3. Influence of confinement on the bearing capacity: perfectly rough ilid /b)1', frictionless walld KS(L/b)]’, previous upper bound
(dashed line), Puzrin and Randolph [8] upper bound (dotted line).

3. Frictionless contact condition with the rigid walls

Since introducing a frictionless contact condition instead of the perfectly rough one results in reducing the
resistance of the corresponding interfaces, it is clear from the definition of the bearing capacity that:

L L L
v—>0, Kg < K{
b b b

(4)

Therefore[K{(L/b)]' remains an upper bound for the correction factor in the case of the frictionless contact

condition. But we can also anticipate that new virtual velocity fields involving slippinge&bil along the walls
may now be considered, which would lead to better upper bound estimat&§(foyb).

31.L/b>1

Such avirtual velocity field can be produced from Prandtl classical solution, as shown infBrgcaues ofL /b
within the range K L/b < 2. The footing being given a rigid body vertical translation motion with the veldgity
the classical virtual velocity field is maintained KiBA, in A’BC’ and inABC; in A'C'E'F’ (resp.ACEF)

we still encounter a virtual rigid body translation motion paralleCt&’ (resp.C E) with velocity (7«@/2; E'F’
(resp.EF) is a velocity discontinuity line such th#&' F’G’ (resp.E F G) receive the vertical velocityy .



Fig. 4. Slip-line field for frictionless walls whend L/b < 2.

This virtual velocity field can still be combined with the stress-field of Prandtl solution restricted to
G'A’AGEBE’ in order to produce an incomplete solution. It follows that the corresponding upper bound for
the correction factor is just:

L
1< =<2, K§(—> =1 )

b
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32.0<L/b<1

For 0< L/b < 1, Fig. 5 presents the virtual velocity field derived from Fig. 1 by truncating the slipfite
with the frictionless rigid walls passing through poiiisand C’. The hodograph gives the complete description
of the virtual mechanism: id’ P’R’"SRC A A’ the velocity field is the same as in Fig. 1; it is discontinuous across
R'P’A’ (and symmetric) with a jump equal 18«/5/2; finally A’C’G’ and ACG move vertically with velocity
ﬁb/L. Looking for an incomplete solution with this virtual velocity field, it is clear that resitrg the stress field
constructed in the “rough” case to the zone limited by the rigid walls in the “smooth” case comjilethes
frictionless contact condition. Comparison of the orientations ofathg networks in the hodograph and in the
slip-line field completes the proof of an incomplete solution.

The slip-line field in Fig. 5 is valid untilA’M’S becomes tangent to the footing, which corresponds to
0.14< L/b < 1. For lower values of. /b the slip-line field is extended, as shown in Fig. 6, witlines tangent to
the footing on the left-hand sidg (ines on the right-hand side): the entire reasoning remains valid.

Producing an incomplete solution in both cases makes it easier to apply the upper bound approach. The upper
bound estimate for the correction factor being den¢f€X(L/b)]’, we have:

L L\T
Pult=CuK§<z)Ncgé‘u[Kg(E)} N¢ (6)
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Fig. 5. Slip-line field and hodograph for frictionless walls whiefb > 0.14.



Fig. 6. Slip-line field for frictionless walls when€ L/b < 0.14.

It follows from the correspondence between the slip-line fields in Figs. 1 and 5 that the same upper bound
estimate of the bearing capacity is obtained for a given valug/bf> 0.14 in the “smooth” case and for twice that
value in the “rough” case. In other words:

vio 0.14, [KS(E)} = [Kg(z—Lﬂ (7)
b b b

For smaller values af /b the correspondence is no more valid but may be retained, if necessary, as a good estimate.
The corresponding results are presented in Fig. 3. The increase of the bearing capacity is not significant

for practically relevant values af/b: it remains smaller than 10% fat/b > 0.36 and smaller than 20% for

L/b > 0.22. This comes from the fact that, in a comparison with the unlimited soil foundation, the oueratse

of the resistance of the constituent materials of the system introduced through the existence of the rigid walls is

counterbalanced by the frictionless contact condition.
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