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Bearing capacity of strip footings with horizontal confinement

Jean Salençon

Écolepolytechnique,laboratoiredemécaniquedessolides,91128Palaiseaucedex,France

Abstract

For a strip footing under axial loading, the bearingcapacity is influencedby the presenceof rigid walls confining the
foundationsoil. This problemis investigated withinthe frameworkof the theoryof yield design,considering botha perfectly
rough anda frictionlesscontactconditionat theinterfaceswith thewalls in the caseof apurelycohesivesoil. Upperboundsfor
the correctionfactor to be applied to the classicalvalue of the bearingcapacityare determined,as functions of the non-
dimensionalgeometricparameterof theproblem,throughthekinematicapproach,implementingvirtual velocity fieldsinspired
from the solution to the problemof invertedextrusion.In the perfectly roughcase,it appearsthat the new upperboundis a
significant improvementof thosealreadyavailable.A verysimplerelationshipis established,whichderivestheupperboundfor
thefrictionless wallsfrom theupperboundfor theroughwalls.A generalconclusionof theanalysis isthat,for thevaluesof the
geometricparameterthatarelikely to beencounteredin practice,theincreasein thebearing capacitydueto thepresenceof the
rigid walls remainsvery small.

Résumé

La capacité portante des fondations superficiellesen présencede parois rigides. La présence deparois rigides au
voisinage d’unefondationsuperficielle influesurla capacitéportante decettefondation.On étudieceproblèmedansle casd’un
sol cohérentsansfrottement interne en supposantque le contactavec les parois est soit parfaitementrugueuxsoit sans
frottement.En mettantenœuvre l’approchecinématiquedu calculà la ruptureavecdeschampsdevitessevirtuels inspirésde
l’étude de l’extrusion inverse,on déterminedes bornes supérieurespour le facteurde correctionà appliquerau coefficient
classique de capacitéportante,en fonction du paramètregéométriqueadimensionneldu problème.Dans le cas des parois
rugueuses,la nouvelle borne supérieureserévèlesignificativementmeilleurequecellesdisponiblesjusqu’alors.Une relation
simple est établie qui permetd’obtenir la borne supérieurepour les parois lissesà partir de cellevalable pour les parois
rugueuses.En conclusiondel’analyse,il apparaîtque,pourlesvaleursdu paramètre géométriqueréalistesdu point de vue dela
pratique,l’accroissementdecapacité portantedûà laprésencedesparoisrigidesdemeurefaible.
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1. The problem under investigation

In [1] we presented the results of a theoretical determination of the bearing capacity of strip footings submitted
to axial loading, when the soil foundation, with infinite thickness, is limited in thehorizontal directions by rigid
vertical walls. The soil foundation was either purely cohesive or frictional assuming a perfectly roughcontact
condition at the interfaces with the footing and with the rigid walls. The major part of the analysis was devoted
to obtaining upper bound estimates within the framework of the yield design theory [2] by revisiting the solution
to the problem of the bearing capacity of a surface footing on a soil layer with limited thickness.The virtual
velocity fields, which were implemented in the upper bound approach, took place in a soil layer whose thickness
was strictly proportional to the gap between the edge of the foundation and the adjacent wall. The same problem
will be investigated again, in the case of a purely cohesive soil, in both cases of a perfectlyrough or a frictionless
(smooth) contact condition (with no tensile strength) at the rigid walls, through a kinematic approach using virtual
velocity fields inspired from the analysis of inverted extrusion [3]. The notations are kept as in[1]. The width of
the footing is denotedB = 2b. The distance between the edge of the footing and the corresponding rigid containing
wall is denotedL. The cohesion of the foundation soil iscu with the Tresca strength criterion.

The axial force acting on the footing is denotedF (more precisely,F is the axial force per unit transversal
length acting on the footing). The problem is treated as a 2-dimensional one. The theoretical bearing capacity is
defined aspult = F/B whenF reaches its maximum value from the yield design point of view.

In consideration of the parameters of the problem, the non-dimensional expression ofpult can be written as:

pult = cuKc

(
L

b

)
Nc with Nc = π + 2 andKc(∞) = 1 (1)

whereKc(L/b) is the correction factor which takes the confining effect into account. In order to distinguish
the “rough” and the “smooth” case a superscript “r” or “s” will be introduced in Eq. (1), namely:K r

c(L/b) and
Ks

c(L/b).

2. Perfectly rough contact condition with the rigid walls

2.1. L/b � 2

Referring to Prandtl solution and to the extension of its stress-field by Shield as in [1], it comes out that:

∀
L

b
� 2, K r

c

(
L

b

)
= 1 (2)

2.2. 0 < L/b < 2

Investigating the range 0< L/b < 2, we now consider the virtual velocity field constructed, through the use of
Geiringer’s equations [4] on the symmetrical slip-line field presented in Fig. 1, which is inspired from [3]. Fig. 1
also shows the corresponding hodograph [5] when the footing is given a vertical virtual translation motionwith
velocity Û : zoneA′M ′SMA moves vertically as a rigid block with velocitŷU ; acrossA′M ′SG andG′R′Q′SMA

the velocity field is discontinuous, with a tangential jump equal toÛ
√

2/2; beneathG′R′Q′SG the soil is
motionless;G′A′C′ has a translation rigid body motion; since the hodograph and the slip-line field happen to
be geometrically similar and orthogonal to each other, the velocityOa′ of G′A′C′ is normal to the straight line
AS with ÛL/b as vertical component (symmetrically forGAC); the velocity field in the rest of the soil layer is
described in the hodograph.

Applying the upper bound approach of the theory of Yield design would require the explicit computation of the
maximum resisting rate of work in that virtual velocity field, which should then be compared with the work of the
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Fig. 1. Slip-line field and hodograph for perfectly rough walls whenL/b � 0.29.

external forces. As a matter of fact a short cut can be taken since Fig. 1 makes it possible to exhibit a so-called
“incomplete solution” as introduced by Bishop [6]. Starting from the stress-free surface boundary condition along
A′G′ andAG and assuming the vertical direction to be the direction of maximum pressure there, a stress-field is
constructed, which is in equilibrium with zero body forces and which saturates the Tresca strength criterion. The
network ofα andβ lines in Fig. 1 is the network of characteristics of this stress-field and the Hencky equations [3],
which are satisfied along these lines, determine the stress-field in the region under concern. PointS, where the two
symmetric parts of the network meet each other, is situated on the symmetry axis of the footing and is determined
from the condition that the vertical and horizontal directions be the principal axesfor the stress-field: hence arcs
C′R′ andM ′N ′ are equal to each other. Only a partial stress-field being constructed does not make it possible to
refer to the static approach of the theory of yield design. But, in consideration of Ewing and Hill’s theorem [7], since
the orientations of theα, β network and of its image in the hodograph are interchanged, the corresponding stress-
and velocity fields can be combined to produce an incomplete solution [6] with the benefit that the bearing capacity
computed by means of the partial stress-field is just the upper bound estimate given by the virtual velocity field.

Fig. 2. Slip-line field for perfectly rough walls when 0< L/b < 0.29.

The network in Fig. 1 remains valid untilR′ meets the rigid wall, which corresponds toM ′ meeting the footing.
With reference to the geometric parameters of the problem this amounts to:L/b � 0.29. For lower values ofL/b

the network is extended, as shown in Fig. 2, withβ lines tangent to the wall andα lines tangent to the footing on
the left-hand side and symmetrically on the right-hand side. The entire reasoning remains valid.

After constructing the network numerically through classical procedures, the stress-field is determined explicitly
at each node of the mesh and integration alongA′M ′S (or, more conveniently, alongA′N ′S), in order to obtain the
corresponding upper bound for the bearing capacity, is straightforward. Referring to Eq. (1), we write:

pult = cuK
r
c

(
L

b

)
Nc � cu

[
K r

c

(
L

b

)]′
Nc (3)

where[K r
c(L/b)]′ is the upper bound for the correction factorK r

c(L/b).
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The results are presented in Fig. 3 together with the upper bound proposed previously [1] and with the closed-
form upper bound recently obtained by Puzrin and Randolph [8] through an innovative method. This one becomes
rapidly greater than the others whenL/b decreases and, in a comparison with [1], we observe that a significant
reduction of the upper bound for the correction factor has been gained from the approach presented here: for the
same value ofL/b, the increase in the bearing capacity due to horizontal confinement is now reduced by some 50%.
This strengthens the conclusion that, for practically relevant values ofL/b, the increase in the bearing capacity due
to confinement remains very small: smaller than 10% forL/b > 0.72 and smaller than 20% forL/b > 0.45.

It may also be recalled that in the solution proposed in [1], the thickness of the layer where the virtual velocity
field took place was kept equal tod = L

√
2/2 for any value ofL/b � 2, so thatd/b decreased to 0 in proportion

with L/b. In the present case it is observed in Fig. 3 that the decrement ofd/b with L/b due to the presence of the
rigid walls is limited.

Fig. 3. Influence of confinement on the bearing capacity: perfectly rough walls[Kr
c(L/b)]′ , frictionless walls[Ks

c(L/b)]′, previous upper bound
(dashed line), Puzrin and Randolph [8] upper bound (dotted line).

3. Frictionless contact condition with the rigid walls

Since introducing a frictionless contact condition instead of the perfectly rough one results in reducing the
resistance of the corresponding interfaces, it is clear from the definition of the bearing capacity that:

∀
L

b
> 0, Ks

c

(
L

b

)
� K r

c

(
L

b

)
(4)

Therefore[K r
c(L/b)]′ remains an upper bound for the correction factor in the case of the frictionless contact

condition. But we can also anticipate that new virtual velocity fields involving slipping of the soil along the walls
may now be considered, which would lead to better upper bound estimates forKs

c(L/b).

3.1. L/b � 1

Such a virtual velocity field can be produced from Prandtl classical solution, as shown in Fig. 4,for values ofL/b

within the range 1� L/b � 2. The footing being given a rigid body vertical translation motion with the velocityÛ ,
the classical virtual velocity field is maintained inA′BA, in A′BC′ and inABC; in A′C′E′F ′ (resp.ACEF )
we still encounter a virtual rigid body translation motion parallel toC′E′ (resp.CE) with velocity Û

√
2/2; E′F ′

(resp.EF ) is a velocity discontinuity line such thatE′F ′G′ (resp.EFG) receive the vertical velocitŷU .
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Fig. 4. Slip-line field for frictionless walls when 1� L/b � 2.

This virtual velocity field can still be combined with the stress-field of Prandtl solution restricted to
G′A′AGEBE′ in order to produce an incomplete solution. It follows that the corresponding upper bound for
the correction factor is just:

1�
L

b
� 2, Ks

c

(
L

b

)
= 1 (5)

3.2. 0 < L/b � 1

For 0< L/b � 1, Fig. 5 presents the virtual velocity field derived from Fig. 1 by truncating the slip-linefield
with the frictionless rigid walls passing through pointsC andC′. The hodograph gives the complete description
of the virtual mechanism: inA′P ′R′SRCAA′ the velocity field is the same as in Fig. 1; it is discontinuous across
R′P ′A′ (and symmetric) with a jump equal tôU

√
2/2; finally A′C′G′ andACG move vertically with velocity

Ûb/L. Looking for an incomplete solution with this virtual velocity field, it is clear that restricting the stress field
constructed in the “rough” case to the zone limited by the rigid walls in the “smooth” case complies with the
frictionless contact condition. Comparison of the orientations of theα, β networks in the hodograph and in the
slip-line field completes the proof of an incomplete solution.

The slip-line field in Fig. 5 is valid untilA′M ′S becomes tangent to the footing, which corresponds to
0.14� L/b � 1. For lower values ofL/b the slip-line field is extended, as shown in Fig. 6, withα lines tangent to
the footing on the left-hand side (β lines on the right-hand side): the entire reasoning remains valid.

Producing an incomplete solution in both cases makes it easier to apply the upper bound approach. The upper
bound estimate for the correction factor being denoted[Ks

c(L/b)]′, we have:

pult = cuK
s
c

(
L

b

)
Nc � cu

[
Ks

c

(
L

b

)]′
Nc (6)

Fig. 5. Slip-line field and hodograph for frictionless walls whenL/b � 0.14.
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Fig. 6. Slip-line field for frictionless walls when 0< L/b < 0.14.

It follows from the correspondence between the slip-line fields in Figs. 1 and 5 that the same upper bound
estimate of the bearing capacity is obtained for a given value ofL/b � 0.14 in the “smooth” case and for twice that
value in the “rough” case. In other words:

∀
L

b
> 0.14,

[
Ks

c

(
L

b

)]′
=

[
K r

c

(
2L

b

)]′
(7)

For smaller values ofL/b the correspondence is no more valid but may be retained, if necessary, as a good estimate.
The corresponding results are presented in Fig. 3. The increase of the bearing capacity is not significant

for practically relevant values ofL/b: it remains smaller than 10% forL/b � 0.36 and smaller than 20% for
L/b � 0.22. This comes from the fact that, in a comparison with the unlimited soil foundation, the overall increase
of the resistance of the constituent materials of the system introduced through the existence of the rigid walls is
counterbalanced by the frictionless contact condition.
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