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A procedure for identifying the plastic behavior of single
crystals from the local response of polycrystals

T. Hoca,∗, J. Crépin b, L. Gélébartb, A. Zaouib

a MSSMAT, UMR 8579, Ecole Centrale Paris, Grande voie des vignes, 92295 Châtenay Malabry, France
b LMS, CNRS—Ecole Polytechnique, 91128 Palaiseau, France

The overall and local tensile responses of an α iron multicrystalline sample are investigated in order to derive the 
plastic constitutive equations for the constituent single crystals. The macroscopic stress–strain curve and some statistical 
characteristics of the strain field measured on the sample surface are compared with their simulated counterparts. The 
optimal values of the material parameters of four types of hardening laws are derived by a minimization procedure. The 
best results are obtained with a nonlinear anisotropic law which uses the dislocation densities on the slip systems. This 
procedure is then validated on a fine-grained polycrystalline sample of a similar material by using the measured 
displacement field on the edge of a selected area as boundary conditions for finite element method (FEM) computation. 
The resulting optimal material parameters for the single crystal are found to be consistent with the values available in the 
literature, and the whole simulated strain fields as well as the evolution of the crystallographic texture, is compared 
satisfactorily with the experimental data.
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1. Introduction

In the last few decades, important advances have
been made in developing efficient micromechan-
ical models for the prediction of the overall plastic
and viscoplastic behavior of polycrystalline
materials from that of the constituent crystals.
Nevertheless, several difficulties still prevent fully
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1-41-13-14-30.
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guaranteed and convenient prediction tools, with a
wide validity range, from being available for
industrial needs in the field of metal forming. Two
main problems can be considered as being among
the most critical ones.

On one hand, the improved polycrystalline mod-
els which have been derived recently from power-
ful nonlinear homogenization techniques (e.g.[1–
3]) lead to reduced intergranular interactions and
softer overall responses with respect to previous
ones of the Taylor[4] or Hill–Hutchinson [5,6]
type. As a consequence, it becomes even more
necessary to reach an accurate description of the
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plastic or viscoplastic constitutive behavior of the
constituent grains. This can be performed through
direct mechanical investigations on single crystals
but, in addition to needing demanding and expens-
ive experimental tests, such investigations cannot
yield definitive answers to the questions addressed.
Crystals and polycrystals with the same chemical
composition can hardly be tested and only simple
homogeneous mechanical tests can generally be
performed.

On the other hand, many important mechanical
properties of polycrystals cannot be deduced solely
through direct upscaling from single crystal plas-
ticity. Damage, as well as phase transformations,
recrystallization, shear banding, etc., depend
strongly on very local mechanical states that are
beyond the scope of homogenization procedures,
since the latter hardly give access to more than
average values. Similarly, the determination of
critical values for the activation of various mech-
anisms (slip, twinning, cleavage, debonding, etc.)
and the analyses of strain heterogeneity or strain
localization cannot be done unambiguously with
tests on single crystals. Furthermore, specific strain
heterogeneity patterns may develop in polycrystals
in the early plastic regime, as observed under uni-
axial tension in steel [7] or zirconium alloys [8],
which consist of strain bands oriented at ±45° to
the tensile axis. Such bands extend over several
grains and obviously cannot be predicted by mean
field polycrystalline models.

Fortunately, two types of approaches have been
developed intensively recently, which provide new
tools for addressing these difficult problems:
experimental microextensometry techniques and
advanced numerical simulations. For the last two
decades, the development of microextensometric
techniques [9–11], combined with image corre-
lation analysis, has made it possible to measure
accurate displacement and strain fields on the sur-
face of samples. In particular, the use of scanning
electron microscopes (SEMs) now allows charac-
terization of the deformation of large areas, several
square millimeters, in relation with the microstruc-
ture. In parallel, the electron back-scattering dif-
fraction (EBSD) techniques give access to the lat-
tice orientation of the individual grains, whereas
the orientation imaging microscopy (OIM) tech-

nique, which is based on the EBSD scan, makes it
possible to combine microextensometry measure-
ments with the determination of the local lattice
orientation field evolution. On the other hand, the
amazing increase in numerical computation capa-
bilities has made it possible to simulate large
polycrystalline areas and to derive local mechan-
ical fields by the finite element method (FEM)
[11–14].

Consequently, significant comparisons can now
be performed between accurate strain field
measurements and their simulated counterparts. Of
course, the constitutive equations which are used
in the finite element simulations cannot be taken
for granted, since they are generally what one is
looking for. In the first approximation, however,
they may be improved from this comparison itself
so as to lead to improved physically based consti-
tutive equations [15,16]. To the best of our knowl-
edge, the first studies that compared such experi-
mental data and numerical simulations were
published by Becker and Panchanadeeswaran [17]
in 1995. These results showed good agreement for
some grains and not such a good agreement for
others. Further, similar studies performed on multi-
crystals [18] and polycrystals [19] in order to pre-
dict their strain heterogeneity, although qualitat-
ively interesting, predicted a degree of
heterogeneity somewhat smaller than that recorded
experimentally. This can be due to the fact that the
material parameters used in the crystal constitutive
equations were derived from single crystal investi-
gations [20,21] or from indirect identification. This
reverse analysis used macroscopic experimental
responses and an upscaling polycrystal model [22].
In order to improve the accuracy of the mechanical
prediction, a few recent studies [11,23,24] also
used measured local strain fields.

This paper aims at reporting a novel procedure
for identifying the material parameters of single
crystals in the plastic regime by comparing the
experimental response of a polycrystalline sample
to FEM computations. This response does not
reduce to the macroscopic tensile stress–strain
curve, but also includes some statistical character-
istics of the strain field within the grains. The first
sample studied is a multicrystal with only one grain
through the thickness and a quasi-2D microstruc-
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ture (Section 2). Two kinds of constitutive equa-
tions have been checked. The simple ones use the
slip rates on the easy glide slip systems as harden-
ing parameters and the more complex ones are
based on the dislocation densities on the slip sys-
tems. The proposed procedure, which takes
recourse to the statistical strain distribution at sev-
eral prescribed strain levels, definitely shows the
merits of the latter description with respect to the
former one, especially when anisotropic hardening
interactions are taken into account. These results
are validated on a second fine-grained polycrystal-
line sample constituted with a similar material
(Section 3). The same experimental techniques are
used for straining and characterizing this sample
and the FEM computation makes use of constitut-
ive equations derived from the same identification
procedure. The boundary conditions are, however,
no more homogeneous, but defined by the meas-
ured displacement field on the edge of a given area
of the sample. The comparison of the measured
and computed strain fields in this area, as well as
that of the overall stress–strain responses and of
the crystallographic texture evolutions, shows
fairly good agreement. This illustrates the advan-
tages of the present novel identification procedure
as compared with former ones. Finally, the physi-
cal soundness of the values found for the material
parameters of the selected constitutive law is dis-
cussed briefly and justified in physical terms
(Section 4).

2. Identification procedure

2.1. Material and experimental techniques

The selected material is an ARMCO iron multi-
crystal whose chemical composition is described
in Table 1.

The ARMCO multicrystal, of dimensions

Table 1
Chemical composition of the multicrystalline sample (10�3 wt.%)

C Mn P S Al Ti Si Cu Cr Ni Fe

ARMCO 4 �5 8 2 �5 – �5 �5 �5 – Bal

16 × 4 mm2, is fitted with an extensometer. This
sample has only one grain through the thickness
and the grains have a diameter of 2 mm along the
large faces. The tensile test is performed along the
one axis in the chamber of a SEM. The local strain
field on the sample surface is measured by a
microextensometry technique [8,25], whose prin-
ciple consists in taking SEM images of a square
microgrid deposited on the surface before and after
deformation. The in-plane displacements of the
crosses of this microgrid are determined by a corre-
lation method. The strain field is then derived from
this displacement field. The choice of the pitch of
the microgrids depends on the precision and resol-
ution required to measure intragranular strain
fields. For the multicrystal, it can be fixed at
20 µm, whereas it has to be about 10 times smaller
for the polycrystalline sample (Section 3). The lat-
tice orientation of each grain is measured by
EBSD. The whole orientation field associated with
the studied microstructure is obtained by automati-
cally prescribing the electron beam displacement
for steps of 1 µm on a regular mesh.

2.2. Experimental results

Fig. 1 shows the initial crystallographic orien-
tation field for the multicrystal. All the 27 grains
along the gauge length of the sample have been
indexed. This field results from about 160 000
measurements at all the points of the fiducial grids,
i.e., it includes 5000 points per grain.

In Fig. 2, typical measurements of the axial
strain field over the multicrystalline sample are
reported for a prescribed overall axial strain of 5%.

Fig. 1. Crystallographic orientation field for the multicrystal.
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Fig. 2. Experimental E11 axial strain field for the multicrystal-
line sample.

These results are in qualitative agreement with
literature results [18]. In particular, the maximum
value of the local axial strain is about two times
larger than the macroscopic one. The strongest
strain values are frequently localized near the grain
boundaries but they seem to draw an overall pat-
tern inclined at ±45° to the tensile axis.

In view of the subsequent identification pro-
cedure, these local strain heterogeneities, nor-
malized by the macroscopic axial strain, are
characterized by their statistical distribution (Fig.
3).

This information is richer than the set of strain
averages per grain; it will be taken in what follows
as the main experimental basis for comparison with
simulated results, together with the overall stress–
strain response.

2.3. Plasticity model for the single crystal

2.3.1. Framework
A crystalline plasticity constitutive model,

which accounts for crystallographic glide and lat-

Fig. 3. Statistical distribution of the normalized local strain
(E11) values for the multicrystalline sample (5% macroscopic
strain).

tice rotation at finite strain, has been implemented
in the ABAQUS FE code. Such an implementation
of the constitutive relations as a “User Material”
subroutine in the ABAQUS code has been
described by Smelser and Becker [26,27]. The
mechanical modeling is consistent with the frame-
work developed by Peirce et al. [28] and also
adopted by Teodosiu et al. [15]. The kinetics of
large transformations is based upon the multiplicat-
ive decomposition of the deformation gradient into
its elastic and plastic parts. The velocity gradient
L is decomposed additively into an elastic part
Le and a plastic part Lp due to glide on crystallo-
graphic slip systems. A system (s) is defined by its
unit slip direction

>
g(s) and unit slip plane normal

>
n(s):

L � D � W � Le � �
s

ġ(s) >
g(s)�

>
n(s) (1)

where D and W are the symmetric and antisym-
metric parts of L, respectively and ġ(s) is the slip
rate on system (s). The Jaumann derivative of the

Kirchhoff stress tensor t
�

is associated to the elastic
strain rate through the elastic moduli K, which are

the usual elastic moduli when the elastic strains are

small. t
�

is given by

t
�

� K:D��
s

γ̇(s)R(s) (2)

R(s) is a tensor describing the slip geometry. It can
be expressed as

R(s) � K:P(s) � W(s)·t�t·W(s) (3)

where P(s) is the symmetric part of
>

g(s)�
>

n(s) and
W(s) its antisymmetric part.

The plastic slip rates obey a viscoplastic power
law with a threshold value. The activation of a slip
system (s) is governed by Schmid’s law, i.e.,
|t(s)|�t(s)

c , where t(s) is the resolved shear stress on
slip system (s) and t(s)

c the associated critical shear
stress, which depends on the structural variables
and temperature:

ġ (s) � ġo|t
(s)

t(s)
c |

n

sgn(t(s)) if |t(s)|�t(s)
c (4)

and ġ (s) � 0 otherwise
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Here, ġo is a reference strain rate which is usually
of the order of 10�3 at room temperature for met-
allic materials, while the exponent n is of the order
of 100.

2.3.2. The case of bcc crystals
For body-centered cubic (bcc) crystals, such as

α-iron, glide occurs along the �1 1 1� directions
and can be considered as operating on the {1 1 0}
and {1 1 2} planes, which leads to Nsys = 24 slip
systems [29,30]. The hardening characteristics
depend on the interaction mechanisms between the
different (activated and latent) slip systems. They
are commonly modeled by a hardening matrix h
defined by

ṫ(s)
c � �

u

hsuġ(u) (5)

For the sake of simplicity, the hardening matrix
coefficients can be taken to be constant with only
two values, one for the diagonal terms, expressing
self-hardening, and another one for the off-diag-
onal terms, which is associated with latent harden-
ing. This linear hardening description (A and B
types, with two and three parameters, respectively,
according to whether the h matrix is isotropic or
not) is adopted as a first approximation in what
follows (see Table 2).

For a detailed description, the coefficients of the
hardening matrix can be expressed in terms of
internal variables whose evolution is related to the
deformation history [31]. Here, these internal vari-
ables are chosen as the average dislocation den-
sities r(s) on each slip system (s). The evolution of
the total dislocation density, based on Orowan’s
relation and an annihilation process of dislocation
dipoles [32], is given by

Table 2
Parameters for the description of the crystal behavior

Linear hardening t(s)
c (t = 0) hss hsu

A tA0 HA
0 HA

0

B tB0 HB
0 qBHB

0

Nonlinear hardening t0 ass asu r0 K Gc

C tC0 aC
0 aC

0 rC
0 KC GC

c

D tD0 aD
0 qDaD

0 rD
0 KD GD

c

ṙ(s) �
1
b� 1

L(s)�Gcr(s)�|ġ (s)| (6)

where b is the magnitude of the Burgers vector, Gc

a parameter proportional to the characteristic
length associated with the annihilation process of
dislocation dipoles and L(s) the mean free path of
system (s). The latter can be expressed as

L(s) � K� �
u � s

r(u)��1/2

(7)

where r(u) is the total dislocation density on latent
systems (u) and K a material parameter. This
model is inspired from earlier work by Mecking
and Kocks [33] and Teodosiu et al. [15] for fcc
crystals and adapted to the bcc structure at inter-
mediate temperatures. The critical resolved shear
stress on system (s) is composed of two compo-
nents [34,35] and can be related to the dislocation
densities by:

t(s)
c � t0 � mb��

u

a(s)(u)r(u) (8)

where the friction stress t0 is assumed to be the
same on all the slip systems and depends on tem-
perature. The interactions between two families of
dislocations (s) and (u) are characterized by the
matrix a(s)(u), whose terms are taken constant with
two values, for the diagonal terms and the off-diag-
onal terms, respectively.

In what follows, two versions of this nonlinear
hardening description are used (cf. Table 2): the
isotropic variant (C type, five parameters) and the
anisotropic variant (D type, six parameters).
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2.4. Identification method

For the four types of constitutive equations con-
sidered, the set of optimal material parameters is
derived through the automatic software SiDoLo
[36]. This procedure consists in a quantitative com-
parison between experimental and simulated data,
with the measured and simulated strain values
defined as local averages on the same area. The
latter have been obtained by finite element compu-
tation of the stress and strain fields of the simulated
sample, subjected to the same boundary conditions
as the experimental one. The shape and initial lat-
tice orientation of the grains are determined by
EBSD measurements (Fig. 4).

Two sets of data are available. The first one is
derived from the overall stress–strain response and
the second one consists of the reduced statistical
distribution of the local strain values. The pro-
cedure makes use of both sets, which are combined
with a given weight in the global functional to be
minimized. This functional integrates, for each set
of parameters A, the distance between the meas-
ured and computed values. It is written in the form:

	(A) � �N
n � 1

jn(A)Pn (9)

with

jn(A) �
1
Tn
�Tn

i � 1

[Ecn(i)]t (10)

Here, N is the total number of values considered
(N = 9: eight values come from the statistical distri-
bution of the E11 strain components and one value
is derived from the tensile stress–strain curve). Pn

is a weighting matrix, which expresses the relative
weight one wishes to apply to the various data;
[Ecn(i)]t denotes a transposed matrix formed with
the difference between the measured and computed
values of the nth data taken at “time” (i); Tn stands

Fig. 4. Meshing of the simulated multicrystal.

for the total set of observation “times” for the
nth data.

As the objective was to compare the local strain
fields predicted by several types of constitutive
equations, in order to determine which one repro-
duces the best overall response, a larger weight was
attributed to the global stress–strain curve than to
the local strain distribution (0.6 and 0.1,
respectively).

2.5. Results of the multicrystal investigation

The major practical advantage of the multicrys-
talline sample (Figs. 1 and 4), which consists of
27 large grains extending over the whole thickness
with boundaries nearly perpendicular to the sur-
face, is twofold. First, the entire gauge length can
be simulated and subjected to the actual boundary
conditions; second, the mesh can be refined easily.

The identification procedure described above has
been applied to this sample and to the four consti-
tutive laws A, B, C and D. For optimized para-
meter values, all these laws lead to global stress–
strain responses that are very close to the experi-
mental one. Fig. 5 shows a comparison between
optimized simulated reduced E11 distributions and
the experimental one, for a macroscopic axial
strain equal to 5%. The very large spread in the
experimental values, from 0.6 to 1.5 times the
average value, has to be emphasized first. It reveals
a strong heterogeneity of the strain field. Obvi-

Fig. 5. Experimental and simulated normalized distributions
of the E11 strain field component after optimization for the four
tested constitutive laws (multicrystalline sample; overall axial
strain: 5%).
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Table 3
Optimal material parameters for the multicrystal

Law

B tB0 = 59 MPa HB
0 = 303 MPa qB = 1.26

D tD0 = 46 MPa aD
0 = 0.23 qD = 1.15 rD

0 = 67 000 mm�2 KD = 37 GD
c = 2.4 nm

ously, type A and B laws, which are based on a
linear hardening description, are unable to capture
this important feature. On the other hand, for both
linear and nonlinear hardening, strain heterogen-
eity is favored by latent hardening, with a factor q
of the order of 1.2, as expected from the literature
(see below).

The optimal values of the material parameters
for the multicrystal are given in Table 3 for type
B and D laws. These values will be discussed in
Section 4.

The multicrystalline sample investigated is very
convenient for application of the proposed identi-
fication procedure. However, it is not representa-
tive of normal situations, which are mainly con-
cerned with polycrystalline materials. For this
reason, the proposed approach has been validated
on an IF–Ti steel polycrystal. The validation is car-
ried out using the D type law, as the latter yields
much better results than the other three.

3. Validation on a polycrystalline sample

The chemical composition of the IF–Ti steel is
given in Table 4.

This composition is close to that of the ARMCO
multicrystal, but is, nevertheless, slightly different.
Though the constitutive law D is still likely to be
appropriate, the material parameters are not
expected to be the same. The polycrystalline sam-
ple has a grain size of 20 µm and an initial crystal-
lographic texture close to a �1 1 1� fiber texture.

Table 4
Chemical composition of the polycrystalline sample (10�3 wt.%)

C Mn P S Al Ti Si Cu Cr Ni Fe

IF–Ti 4 129 7 5 44 108 13 6 18 20 Bal

For both strain measurements and numerical
simulation, an adequate area of the sample has to
be defined first. Since only the surface microstruc-
ture is to be modeled, it is preferable to select an
area large enough to be representative of the whole
microstructure. This can be checked by comparing
the EBSD measurements to the experimental crys-
tallographic texture derived from X-ray diffrac-
tion analysis.

Nevertheless, this surface area cannot be too
large, since a sufficient number of points of the
deposited microgrids for microextensometry
measurements have to be inside the grains in order
to capture the intragranular strain heterogeneity.
Thus, a compromise has to be found between these
contradictory requirements. It leads to an area of
100 x 100 µm2, containing 87 grains and 1600
fiducial grid points with a 2.5 µm pitch (Fig. 6).

The E11 strain field in this area is shown in Fig.
7 for an overall axial strain of 2.25%. As for the
multicrystal, localized strain bands inclined at an
angle of roughly ±45° with respect to the tensile
axis can already be observed at this strain value.

The reduced statistical distribution of the meas-
ured axial strain field is shown in Fig. 8 for three
values of prescribed axial strain, namely 2.25%,
7.5% and 26.8%. The amplitude of this reduced
quantity is quite constant whatever the macro-
scopic strain. Note that at the lower strain (2.25%),
the distribution looks bimodal rather than Gaus-
sian, in contrast to what is observed at larger
strains (7.5% and 26.8%). This evolution could be
the consequence of some spreading of the initial
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Fig. 6. Selected area for the investigation of the polycrystal-
line sample.

Fig. 7. Experimental E11 axial strain field for the polycrystal-
line sample (overall axial strain: 2.25%).

localized strain bands at larger strain, due to
work hardening.

An adequate definition of the boundary con-
ditions is needed for the FEM simulation. Although
the area under study was large enough to be
reasonably representative, applying the macro-
scopic homogeneous conditions imposed on the
whole sample may lead to errors. Since the dis-
placement field is to be measured, it seems more
sensible to use the values measured at the border

Fig. 8. Statistical distribution of the measured normalized
local strain (E11) values for the polycrystalline sample
(macroscopic strain: 2.25%, 7.5% and 26.8%).

of this area as boundary conditions [11]. The mesh
used consists of one layer of elements (C3D8R)
with prescribed in-plane boundary conditions from
the experimental data and free surface conditions
for the normal direction.

As mentioned above, use is made of constitutive
law D, with anisotropic nonlinear hardening. The
optimal parameters are identified at a macroscopic
strain of 2.25% (Table 5). As expected, these para-
meters are not very different from those derived for
the ARMCO multicrystal (Table 3). Nevertheless,
differences do exist, which deserve discussion
(Section 4).

Fig. 9 shows the evolution of the simulated stat-
istical distribution of the reduced local axial strain
for several macroscopic strains. The experimental
distribution at 7.5% is also reproduced. The simu-
lated distributions seem to have a Gaussian shape
and look more homogeneous than the experimental
ones. The shape of the distribution stabilizes
beyond strains of 8–9%, that is, later than the
experimental values (Fig. 8). However, globally,
there is fairly good agreement between experi-
ments and simulations.

It is now possible to analyze the spatial distri-
bution of the local strain field, which was not taken
into account in the identification procedure. Fig.
10 represents the computed strain field E11 for a
macroscopic strain of 2.25%. When compared to
the experimental field (Fig. 7), this figure shows
very close similarity. In particular, the pattern of
localized deformation bands corresponds rather
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Table 5
Optimal material parameters for the polycrystal

Polycrystal MPa mm�2 nm

D law tP0 = 60 aP
0 = 0.29 qP = 1.2 rP

0 = 78 000 KP = 24 GP
c = 1.3

Fig. 9. Experimental (at 7.5%) and simulated (at 1.5%, 2.7%,
7.5%, 12.5% and 18%) normalized distributions of the E11

strain field component after optimization for the D type consti-
tutive law (polycrystalline sample).

Fig. 10. Computed E11 strain field at 2.25% (polycrystalline
sample).

well to the experimental one, except in the upper
right corner, which might be due to a specific
microstructural environment beneath the surface.

The validation of the present approach can also
be made from a more macroscopic point of view,
by comparing the evolution of crystallographic tex-

tures (Fig. 11) and the macroscopic strain–stress
curves (Fig. 12). These two figures show that, at
least for the grain lattice orientations, the area
investigated is a reasonably representative one.
Constitutive law D is able to reproduce both the
macroscopic behavior of the studied material and
the evolution of its crystallographic texture rather
well. However, the macroscopic localization asso-
ciated with global softening occurs earlier in the
simulation than in the experiment.

Fig. 11. Comparison of computed and experimental texture
evolution: (a) initial X-ray diffraction experimental pole; (b)
experimental X-ray diffraction pole figure after a 27% tensile
deformation along the transverse direction; (c) experimental
EBSD pole figure on the selected subarea in the initial state;
(d) corresponding simulated pole figure after a 27% defor-
mation along the transverse direction.

9



Fig. 12. Experimental (EXP) and simulated (FE) macroscopic
strain–stress curves for the polycrystal.

4. Discussion and conclusion

The foregoing analysis shows that, from a
macroscopic point of view, the crystallographic
textures and overall responses obtained from
experimental results and simulations are very close
to each other quantitatively. The same conclusion
holds for the localization pattern of the strain het-
erogeneity. This good agreement can be due to the
fact that the boundary conditions applied to the
simulation come from experimental measured dis-
placements. Another simulation with homogeneous
boundary conditions is shown in Fig. 13. We
observe that the strain localization pattern is now
quite different and differs significantly from the

Fig. 13. Component E11 of the strain field for the polycrystal
obtained by finite element computation with homogeneous
boundary conditions.

experimental one. It can be understood that the use
of experimental boundary conditions allows us not
only to take into account the actual in-plane hetero-
geneous loading but also, in a reasonable way, to
integrate information concerning the subsurface
microstructure of the sample.

Secondly, we observe that constitutive equations
of types A and B can hardly reproduce more than
the overall response for a given simple loading
path because of their phenomenological character.
For the materials investigated, latent hardening
seems to affect the amplitude of the local strain
heterogeneity in a significant manner. Constitutive
law D is found to be realistic enough to reproduce
the main characteristics of the experimental local
responses. It is then interesting to compare the
values of the associated optimal material para-
meters with those found in the literature. The value
of parameter Gc, which characterizes a distance
associated with the annihilation of dislocation
dipoles [32,33], is assumed to be a few Burgers
vectors. Here, the optimal value for Gc is consist-
ently found to be of the order of 5–10b. As for the
initial mean free-path parameter L, which is related
to K and r0 by the relation

Ls �
K

��
u � s

r0

(11)

its value is expected to be typically a few tens of
micrometers. According to our results, it would be
30 µm for the multicrystal and 18 µm for the
polycrystal. This last value is consistent with the
grain size of the polycystal (20 µm). Moreover, we
find, for the multicrystal, a mean free-path twice
as large as the one found for the polycrystal, which
follows the right direction. The description of the
hardening used in this paper is an extension of the
Mecking–Kocks evolutionary law, with a lattice
friction parameter and a term due to the interaction
of dislocations. The average value of the interac-
tion coefficient (√(1 /Nsys)Σua(s)(u)) is 0.5, which is
consistent with values mentioned in the literature
[37]. The conclusion is the same for the latent
hardening parameters [30,38,39].

Concerning these parameters, the literature
shows that, as long as we are interested in the
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Table 6
Initial and final optimized values for the parameters of the D law (polycrystal)

tP0 (MPa) aP
0 qP rP

0 (mm�2) KP GP
c (nm)

Ai 46 0.23 1.15 67 000 37 2.4
Af 60 0.29 1.2 78 000 24 1.3
Bi 61 0.5 1.42 30 000 10 5
Bf 64.4 0.26 1.19 72 000 21.5 1.2

macroscopic response to a monotonic uniaxial
loading, it is not necessary to take into account the
latent hardening parameter [40]. On the contrary,
if one wishes to predict the mechanical behavior
of a material from its response to a sequential load-
ing [22], the interaction matrix has to be nonuni-
form, in order to account for the different interac-
tions that are observed experimentally [38]. These
results show a direct relation between the local het-
erogeneity and the hardening mechanisms. Thus, it
is clear that only a matrix containing more than
two different components is able to predict the
local strain heterogeneity of the polycrystal fully.
However, the constitutive law used in this paper
(with only two terms) has been found to describe
the heterogeneity of the multicrystal more satisfac-
torily than that of the polycrystal. From a physical
point of view, the major difference between these
two microstructures lies in the influence of the
grain boundaries on the local strain distribution. In
the multicrystal case, only a few measured points
are affected directly by the grain boundaries, and
the activation of a new event inside a grain, for
instance as a new activated slip system, does not
affect the adjacent grains very much. Most of the
measured points undergo a quasi-monotonic load-
ing path. In contrast, in the case of a polycrystalline
material with small grain size, all the points are
affected by the response of the neighboring grains
and the local loading path is certainly not mono-
tonous.

One of the major potential errors of this inverse
identification procedure originates in the fact that
a local optimum can be found, instead of the global
one that is looked for. In order to check this point,
we have modified the initial values of the set of
parameters. Table 6 shows the results obtained for
the polycrystalline material and hardening law D.

Two sets of initial parameters (Ai, Bi) have been
used; Af and Bf are the parameters obtained after
identification. The resulting relative difference
between each optimized parameter of the two sets
is less than 10%.

Similarly, a refinement of the mesh by a factor
of 2.5 has been realized and is found not to modify
the simulation results significantly.

Finally, we stress the fact that, at this stage, the
proposed identification procedure based on the
comparison between experimental and simulated
results has only taken into account a few data,
namely the local strain distribution and the macro-
scopic response. From a mathematical point of
view, more efficient use could have been made of
all the displacement fields in the resolution of the
inverse problem. Such an investigation is now in
progress. Nevertheless, it can already be concluded
that a simplified identification procedure coupled
with an experimental investigation performed on a
polycrystal material is able to lead to satisfactory
material parameter values for the physical consti-
tutive laws. No tests on single crystals are needed.
Consequently, these material parameters can be
used in turn more confidently at the crystal level
in order to better predict the overall polycrystal
response through adequate upscaling models.
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