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Mobility of lattice defects: discrete and
continuum approaches

O. Kressea, L. Truskinovskyb;∗

aDepartment of Aerospace Engineering and Mechanics, University of Minnesota,

Minneapolis, MN 55455, USA
bLaboratoire de M�echanique des Solids, UMR 7649, Ecole Polytechnique 91128 Palaiseau, France

In this paper, we study a highly idealized model of a moving lattice defect allowing for an explicit, 
“�rst principles” computation of a functional relation between the macroscopic con�g-urational 
force and the velocity of the defect. The discrete model is purely conservative and contains 
information only about elasticities of the constitutive elements. The apparent dissipation is due to the 
presence of microinstabilities and the nonlinearity-induced tunneling of the energy from long to 
short wavelengths. This type of “radiative damping” is believed to be generic and accounting for a 
considerable fraction of inelastic irreversibility associated with fracture, plastic-ity and phase 
transitions. The paper contains direct comparison of the exact lattice solution with various 
continuum and quasicontinuum approximations. Despite its simplicity, the model can be used 
directly for the description of dynamic phase transitions in thin �lms.

Keywords: A. Phase transformations; Defects; B. Dynamics; Lattice model; C. Kinetic relations; Pinning

1. Introduction

Irreversible processes in solids can usually be traced to the motion of various lattice

defects. Typically, the migration of these defects is a dissipative process with the energy

loss in the core region manifesting itself through the localized increase of temperature.

In the classical continuum elasticity the drag forces restraining the motion of the defects

are absent and they can propagate freely and uniformly with arbitrary velocity. This

“freedom” has long been realized as a source of nonuniqueness in the mathematical
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structure of the theory, pointing to the necessity of additional constitutive modeling.

After the pioneering insights of Eshelby and subsequent developments in the theories of

fracture, plasticity and phase transitions it has became common to present the missing

constitutive information in the form of a functional relation between the velocity of

the defect and the conjugate energy release rate known in di�erent contexts as driving

or con�gurational force.

The function relating velocity of a defect with the corresponding con�gurational

force (kinetic relation) is usually either postulated or obtained from direct experimen-

tal measurements. Both approaches bring into constitutive theory a set of parameters

of often unclear physical nature. Thus, the most popular phenomenological kinetic re-

lations simply assert that the dissipation is either a quadratic function of velocity or a

homogeneous function of degree one. While some of these phenomenological contin-

uum models provide reasonably good overall description, the details of the dissipation

process can only be understood by studying the phenomena taking place at the micro-

scopic level, where the discrete nature of the material cannot be neglected. The term

discreteness here should be understood rather broadly as inferring to di�erent scales

from crystal lattice to grain structure.

In this paper, we investigate the consequences of the direct lattice modeling of a

mobile crystal defect and compare the resulting picture with the one provided by var-

ious continuum and quasicontinuum approximations. To make the analysis completely

transparent we do not attempt to model a particular defect but instead consider a pro-

totypical model. The main requirement to such a model is that elastic energy at the

microlevel allows for internal buckling; the associated microscopic instability may then

be of quite di�erent nature as suggested, for instance, by the phenomena of twinning

or fracture. In the situation when no dissipation is assumed at the microlevel, the

macromodel can still be dissipative if the nonlinearity is su�ciently strong to support

an irreversible energy 
ux from macro- to microscales and if the dispersion is su�-

ciently rich to make the process of energy transmission between the scales possible.

The associated “radiative damping” explains at least some of the drag experienced by

dislocations, cracks and phase boundaries moving in discrete lattices. A review of the

role of radiative damping in plasticity can be found in Al’shitz and Indenbom (1975).

A systematic study of the radiative damping (or wave resistance) in fracture mechanics

was initiated by the pioneering paper of Slepyan (1981).

Our model essentially reduces to an array of linearly coupled bistable elements

(Fig. 1). This mechanical system, a simpli�ed version of which was considered by

Slepyan (2000), can be viewed as describing a thin �lm undergoing “thickness” phase

transition or as a model of a side motion of a step on the surface of a generic domain

boundary. To drive the system we apply to the elements an external force which creates

a bias towards one of the energy wells and makes the propagation of a longitudinal

switching wave (kink), energetically favorable. Our goal then is to compute the energy

release rate and relate it to the velocity of the kink through a kinetic relation.

This prototypical system represents a two-well adaptation of the discrete FK model

(Frenkel and Kontorova, 1938). In its original (purely longitudinal and spatially peri-

odic) form the model was used repeatedly for the description of dynamic dislocations

(see Braun and Kivshar, 1998 for a recent review). Following the work of Atkinson
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Fig. 1. Schematic con�guration of particles around the core of a defect moving with the velocity v.

and Cabrera (1965), we chose the nonlinear potential to be two-parabolic with equal

elastic moduli. The advantage of this “symmetric” piece-wise linear approximation is

that it lends itself to fully analytical treatment through a direct Fourier transform.

Closely related discrete piece-wise linear models in fracture mechanics, requiring for

their analysis somewhat less transparent Wiener–Hopf technique, have been considered

previously by Slepyan (1981, 1982, 2001 a, c) and Marder and Gross (1995). A dif-

ferent model of a phase transition in a chain of bistable springs with “nonsymmetric”

energy well structure, which also requires application of the Wiener–Hopf method, was

studied by Slepyan and Troyankina (1984), and Slepyan (2001b). In the context of re-

action di�usion problems similar piece-wise linear models have been recently studied

by Cahn et al. (1999).

In the present paper, we focus on the comparison of the radiation pattern emerging

from the discrete model of Atkinson and Cabrera (1965) with the patterns produced by

various continuum and quasicontinuum approximations. We recall that in the classical

continuum limit subsonic kinks can propagate without any damping: the disappearance

of radiative damping in this case is a consequence of a lack of dispersion. To improve

the classical model, we consider two di�erent dispersive approximations, polynomial

(Boussinesq, 1872) and rational (Rosenau, 1986). Both models augment the classical

continuum theory by bringing nonzero internal scales: in the Boussinesq model addi-

tional strain gradient terms are added to the free energy, while in the Rosenau model it

is the kinetic energy which is modi�ed through the introduction of “transversal inertia.”

We remark that similar Boussinesq approximation of the FK model has been recently

considered by Abeyaratne and Vedantam (1999); a related but di�erent model of the

Rosenau type was studied by Theil and Levitas (2000).

As we show in this paper both Boussinesq and Rosenau quasicontinuum approxima-

tions produce simple analytic kinetic relations which are in good quantitative agreement

with the discrete theory for near sonic and supersonic velocities, where the number of

radiated waves in the wake of the defect is small. At small velocities, when the number
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of radiated waves becomes large and the generated waves have lengths comparable to

the lattice spacing, the agreement is expectedly poor. In particular, while both quasi-

continuum models predict a nonzero trapping domain, the values of the Peierls stress

in the approximate models are signi�cantly lower than in the discrete model. Overall,

since the Boussinesq model has a very limited domain of application, our analysis

suggests that preference should be given to the Rosenau model and the corresponding

higher order quasicontinuum approximations.

The paper is organized as follows. In Section 2, we introduce the original discrete

model, nondimensionalize variables and formulate the boundary-value problem for the

traveling waves. In Section 3, we use Fourier transform to obtain the exact solution

of the discrete model. As a part of the solution, we explicitly construct the spectrum

of generated waves. In Section 4, we compute the total microscopic energy 
ux at

in�nity and relate it to the rate of dissipation at the macroscopic level. This gives a

simple analytic expression for the con�gurational force as a function of the velocity

of the defect. Various continuum and quasicontinuum approximations are juxtaposed

in Section 5; in each case we obtain a dispersion spectrum and explicitly compute the

corresponding kinetic relation. In Section 6 we summarize our results. For convenience,

some technical derivations are presented in Appendices A and B.

2. The model

Consider an array of particles attached at equal distances � to a rigid background by

bistable springs with energy density w(ũ n). By ũ n we denote the vertical displacement

of the particle with index n. To bias one of the energy wells, we introduce an external

force per unit length �̃, acting in the direction of the displacement ũ n and independent

of the position of the particle. Finally, we assume that the neighboring particles interact

through standard harmonic forces, characterized by an elastic modulus E. The potential

and kinetic energies of the chain can be written in the form

V =
∑

n

1

2
E�

(

ũ n+1 − ũ n

�

)2

+ �[w(ũ n)− �̃ũ n]; K =
∑

n

1

2
�� ˙̃u2n; (1)

where � is the mass density per unit spring length. The Euler–Lagrange equations are

then

�� �̃u n −
E

�
(ũ n+1 − 2ũ n + ũ n−1) + �[w′(ũ n)− �̃] = 0: (2)

To overcome considerable analytical di�culties associated with solving Eq. (2) for the

general w, we consider a special double-well potential represented by two parabolas

(Fig. 2)

w(ũ n) =

{

1
2
cũ2n; ũ n ¡ a

2
;

1
2
c(ũ n − a)2; ũ n ¿ a

2

(3)

and study a special class of steady-state motions of the chain given by the traveling

wave ansatz ũ n(t) = ũ(�n − ṽt). The associated particle motion is relatively simple as
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Fig. 2. The piece-wise linear force-elongation relation for the bistable spring (3) with a = 1 and c = 4.

The propagating defect corresponds to a transition between points � and �. The con�gurational force is

proportional to the di�erence in areas A2 − A1.

the con�guration of the chain reproduces itself in discrete moments of time. Without

loss of generality we may assume that ũ(0)=a=2. Then in coordinate system x̃=�n− ṽt

moving with the velocity ṽ, all springs located at x̃ ¿ 0 are in one of the energy wells

(phase 1) while all springs located at x̃ ¡ 0 are in the other energy well (phase 2). By

focusing on this particular class of solutions we eliminate the possibility of repeated

transition between the wells and restrict our attention to isolated defects. Eq. (2) can

then be rewritten in the form

��ṽ2
d2ũ

dx̃2
− E

�
[ũ(x̃ + �)− 2ũ(x̃) + ũ(x̃ − �)] + �[cũ(x̃)− �̃ − acH (−x̃)] = 0; (4)

where H is the Heaviside function. As we see the nonlinearity was replaced by an

additional force of known magnitude added at each bond that has snapped due to the

advancement of the defect.

To highlight the essential parameters, it is convenient to use nondimensional variables

x =
x̃

�
; u=

ũ

a
; v= ṽ

√

�

E
; � =

�̃

ac
: (5)

In the dimensionless form the nonlinear di�erential advance-delay equation (4) can be

rewritten as

v2
d2u

dx2
− [u(x + 1)− 2u(x) + u(x − 1)] + 
20[u(x)− � − H (−x)] = 0; (6)

where we introduced the main nondimensional parameter of the problem


0 = �

√

c

E
: (7)
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For consistency of the model we must require that

u(0) =
1

2
(8)

and

u(x)¡
1

2
; x ¿ 0; u(x)¿

1

2
; x ¡ 0: (9)

The last two inequalities oblige the solution to stay inside the two designated energy

wells and play the role of the admissibility conditions.

Observe that con�gurations of the chain at x =±∞ must correspond to static equi-

librium. By selecting the two limiting states in di�erent energy wells we obtain the

following boundary conditions:

u(x)→
{

�; x → ∞;

� + 1; x → −∞:
(10)

Since we expect a nonzero radiation of elastic waves at ±∞ these boundary conditions

should be understood as describing only the average values of the displacement �elds.

The boundary conditions (10) are compatible with admissibility conditions if � ¡ �0=
1
2
, which represents the ultimate (spinodal) strength of our nonlinear springs.

3. Solution of the discrete problem

The piece-wise linear discrete boundary-value problem (6)–(10), can be solved by

the complex Fourier transform. We leave the details to Appendix A where we extended

the methodology introduced in the dislocation context by Atkinson and Cabrera (1965).

The solution can be written as a combination of plane waves

u(x) =



























� − 
20

∑

k∈M+

eikx

kL′(k)
; x ¿ 0;

� + 1 + 
20

∑

k∈M−

eikx

kL′(k)
; x ¡ 0:

(11)

Here

L(k) = 
20 + 4 sin
2 k

2
− v2k2 (12)

and the participating wave numbers, characterizing linear modes generated ahead and

behind the moving kink, are arranged in sets M+ and M−. We recall that a plane wave

ei(kn−
t) can be a part of the solution if and only if its frequency satis�es the dispersion

relation for the linear problem inside the wells 
2 = 
20 + 4 sin
2k=2. The same plane

wave will also be a part of the traveling wave solution if 
(k)= vk which means that

phase velocity is equal to the velocity of the traveling wave. By applying these two

conditions we obtain that the wave numbers constituting the sets M+ and M− must

6



-100

-50

0

50

100

-10
-5

0
5

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Imk
Rek

 v

Fig. 3. A complete set of wave numbers generated by the kink moving with velocity v (solutions of the

equation L(k) = 0 at 
0 = 0:5).

necessary satisfy the condition

L(k) = 0; (13)

which, of course, also follows from the inversion of the Fourier transform (see

Appendix A).

At a given value of v Eq. (13) may have real and complex roots k (Fig. 3). An

in�nite number of complex roots correspond to exponentially damped localized modes

describing the core region. The complex roots appear in symmetric quadruples; among

them there is always a couple of symmetric pure imaginary roots providing a monotone

contribution. An additional �nite number of real roots represent acoustic radiation emit-

ted by the defect. These modes must satisfy radiation conditions: for the radiative waves

ahead of the moving kink the group velocity must be larger than the phase velocity,

while for the waves behind the kink, the group velocity must be smaller than the phase

velocity. From the de�nition of the group velocity we obtain vg=
′(k)=v+L′(k)=2vk.

Now we are in the position to specify the sets M+ and M−

M± = {k: L(k) = 0; {Im k ? 0} ∪ {Im k = 0; kL′(k)? 0}}: (14)

The radiative modes with real wave numbers are illustrated in Fig. 4 (curve D). One

can see that for every value of v there exists an odd number of real roots k, describing

symmetric couples of emitted waves ahead and behind the kink, and an additional
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Fig. 4. Propagating waves with the real wave numbers radiated by a kink moving with velocity v. Waves

marked by “+” and “−” propagate ahead and behind the front, respectively. The three di�erent curves
correspond to a discrete (D) and to the two quasicontinuum models (B) and (R) (see the text). Parameters

are the same as in Fig. 3.

wave in the wake. We also observe, that whenever L′(k) = 0, two distinct radiative

modes merge and for these special values of v the group velocity of a radiated wave

is equal to its phase velocity. The amplitudes of the corresponding resonant modes

diverge, and the solution blows up because the energy cannot escape from the core

region. One can show that the appearance of resonances is not generic and is related

to the over-symmetric setting of the model.

After the set of excited modes is known one can use the explicit relations (11) to

construct the pro�les of the displacement �eld. The associated � required to sustain

the steady motion of the defect can be found from the matching condition (8) (see

Appendix A). Several representative pro�les of the displacement �eld for di�erent

values of v are shown in Fig. 5. Notice that in the interval v ¿ 0:2243 the oscillations

can be seen only in the wake of the defect, which is in agreement with the imposed

radiation conditions: in this interval the only intersection of the line 
 = vk with the

curve 
=
(k) satis�es kL′(k)¡ 0 which means that the group velocity is smaller than

the phase velocity. The picture changes as we cross the resonance velocity v= 0:2243

because now the oscillations are present on both sides of the moving front. For instance,

in the interval 0:1324¡ v ¡ 0:2243 Eq. (13) has three real roots, responsible for one

propagating mode ahead (kL′(k)¿ 0) and two propagating modes behind (kL′(k)¡ 0)

the defect.

From Fig. 5(c,d) one can see that the admissibility conditions (9) may not be satis-

�ed below the �rst resonance velocity and therefore the corresponding traveling wave

solutions of form (11) do not exist. More systematic analysis shows that most proba-

bly the whole velocity interval v ¡ 0:26 must be excluded (see similar conclusions in
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Fig. 5. The displacement �eld around the core of a moving defect at v=2:0 (a); v=1:0 (b); v=0:224 (c);

v = 0:22 (d). Here 
0 = 0:5.

Marder and Gross, 1995). Since in this excluded velocity range one cannot expect the

steady motion of the defect, the description of the actual mode of propagation with

prescribed average velocity may require a di�erent ansatz.

4. Kinetic relation

As it has already been mentioned in the Introduction, the propagation of a defect

through the lattice can be viewed as a succession of internal instabilities associated with

the snapping of individual elastic bonds. The inherently dynamic nature of these internal

instabilities leads to the generation of high frequency vibrations in the lattice and results

in tunneling of the energy from long to short waves. For our special traveling wave

solutions the energy transfer between the scales shows as the radiation at in�nity. To

account for this loss at the macrolevel one can compute the rate of change of the total

energy

d(V + K)

dt
− dA

dt
=
dQ

dt
: (15)

Here dA=dt is the power supplied by the loading device and dQ=dt is the associated

“heat” generation. Due to the trivial thermodynamic nature of the system, the function
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R(v)=−dQ=dt may be interpreted as the rate of dissipation and expressed as a product

of the con�gurational force G(v) and the generalized 
ux represented in our case by

the velocity of the defect v

R(v) = G(v)v: (16)

The relation between the con�gurational force G and the velocity v will be called

kinetic relation. Kinetic relations are routinely employed in the modeling of various

lattice defects ranging from twin boundaries to crack tips. Our G can be viewed as an

analog of the Peach–Koehler force in the theory of dislocations, of the J integral in

the theory of cracks and of the Eshelby force in the theory of phase transitions.

To obtain an explicit kinetic relation in the present case, we notice that the rate of

macroscopic energy loss can be computed as the sum of the microscopic energy 
uxes

at in�nity (e.g. Slepyan, 2001a, b, c). We can write

R(v) = R+(v) + R−(v); (17)

where R±(v)—are the energy 
uxes at ±∞, respectively. To compute R±(v) we ob-

serve that outside the core region the governing equations are linear and therefore the

energy 
ux associated with an individual mode is equal to the product of the averaged

density of the total energy 〈Gk〉 and the relative velocity of the energy transport with
respect to the front |vg − v|. In particular

R+(v) =
∑

k∈N+

〈Gk〉+(vg − v);

R−(v) =
∑

k∈N−

〈Gk〉−(v − vg): (18)

Here Gk represents the sum of kinetic and potential energies per particle carried by

a linear wave with the wave number k; 〈〉 denotes averaging over su�ciently large
number of periods. In Eq. (18) we have used the fact that due to the asymptotic orthog-

onality of di�erent modes, the mixed terms do not contribute to the total 
ux. Since

the microscopic radiation involves only propagating modes with real wave numbers,

the sets N+ and N− can be de�ned as the subsets of M+ and M− satisfying additional

condition Im k = 0.

The average energy density associated with the radiative modes can be computed

directly from the de�nition

〈Gk〉= 〈G−G0〉k ; (19)

where

G(x) =







































1
2
v2(du

dx
)2 + 1

4
[u(x + 1)− u(x)]2 + 1

4
[u(x)− u(x − 1)]2

+ 1
2

20u

2 − �
20u(x); x ¿ 0;

1
2
v2(du

dx
)2 + 1

4
[u(x + 1)− u(x)]2 + 1

4
[u(x)− u(x − 1)]2

+ 1
2

20[u(x)− 1]2

−�
20u(x); x ¡ 0

(20)
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is the total energy per particle and

G0 =

{

− 1
2

20�

2; x ¿ 0;

− 1
2

20�

2 − 
20�; x ¡ 0
(21)

is the corresponding energy of the homogeneous states. For an individual mode char-

acterized by the real wave number k we obtain

〈Gk〉±=− 


2�v

∫ n−2�=k

n

[

1

2
v2

(

duk

dx

)2

+
1

4
(uk(x + 1)− uk(x))

2

+
1

4
(uk(x)− uk(x − 1))2 +

1

2

20(uk(x))

2

]

dx

= 2

40v

2

[L′(k)]2
: (22)

Now by using Eq. (18) we can rewrite the expressions for the rate of radiative damping

in the form

R(v) = v
40

∑

k∈N+

1

kL′(k)
− v
40

∑

k∈N−

1

kL′(k)
: (23)

Finally, comparing this formula with Eq. (16) we obtain an explicit representation for

the con�gurational force

G = 
40

∑

k∈N±

1

k|L′(k)| : (24)

The right-hand side of this expression can in principle be computed for any given v,

which furnishes a desired relation between the con�gurational force G and velocity v.

Before presenting the results of the numerical computations, it is instructive to check

the consistency of our approach and compute the expression for con�gurational force

in a di�erent way. Indeed, since the macroscopic motion at x=±∞ is absent and the

potential energies of the limiting homogeneous con�gurations are di�erent, a moving

defect converts macroscopic energy of the system at a rate

R(v) = [G0(+∞)−G0(−∞)]v

= {w0(+∞)− w0(−∞)− 
20�[u0(+∞)− u0(−∞)]}v

=
20�v: (25)

By comparing the two expressions for R, we obtain the relation between the driving

force G and the applied force per unit length �

G = 
20�: (26)

This formula can also be interpreted geometrically as the di�erence between the shaded

areas A2 − A1 in Fig. 2. The fact that the con�gurational force is a linear function of
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applied stress is not generic; in the case of di�erent moduli of the phases this relation

is quadratic. One can also see that due to (A.15) the two ways of computing the

con�gurational force represented by Eqs. (24) and (26) are consistent.

We begin the analysis of the resulting kinetic relation by �rst investigating two

important limiting cases:

1. Fast waves: v → ∞. According to the dispersion relation in this limit k → 0 and

kL′(k)→ −2
20, which gives

lim
v→∞

G =

20
2

: (27)

One can see that the stress required to maintain the limiting motion approaches

asymptotically the value � = 1
2
which corresponds to the spinodal limit (ultimate

strength); as we have already mentioned, no solution is possible for � ¿ 1=2.

2. Slow waves: v → 0. In this limit, the solution exhibits a growing number of excited

lattice waves and because of the accumulation of resonances the asymptotic behavior

of G is not straightforward. However, one can show that

lim
v→0

G = 
20�
D
p : (28)

In this expression

�D
p =


0

2

√

4 + 
20

(29)

is exactly the Peierls force (or critical toughness) in the static problem specifying the

upper limit of the “lattice trapping” (see Appendix B for details). The consistency of

static and dynamic computations con�rms that the traveling wave regimes originate

exactly from the bifurcation of the static solutions.

In the intermediate range of velocities between v=0 and ∞ the form of the kinetic

relation can be obtained numerically from the precise determination of the sets N± at

each value of v. The results for 
0=0:5 are presented in Fig. 6. An interesting feature

of the obtained kinetic curve is the presence of the in�nite number of resonances at low

velocities. As we have mentioned in the previous section, the traveling waves in this

area do not exist and the corresponding branches should be excluded. Notice also that

the kinetic relation can be smoothly extended from subsonic into supersonic region,

even though the use of the term “sonic velocity” in the present model is somewhat

questionable. The complete analysis of stability of the traveling wave solutions depicted

in Fig. 6 presents a considerable challenge.

5. Quasicontinuum approximations

Our analysis has been so far focused on the discrete model. When the size of the

core of the moving defect is mesoscopic the more natural description is furnished by

continuum mechanics with most microscopic degrees of freedom integrated out; a qua-

sicontinuum approximation aims at incorporating the leading e�ects due to discreteness
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Fig. 6. Con�gurational force as a function of velocity (kinetic relation) at 
0 = 0:5. The low velocity

domain around the resonances does not correspond to admissible traveling waves and must be excluded. The

corrected picture is shown in Fig. 7.

into the continuum model. Although our discrete model is conservative, the continuum

and quasicontinuum approximations may be dissipative since, due to nonlinearity, the

energy is not con�ned at long waves.

To construct continuum and quasicontinuum approximations for our discrete model

we replace the advance-delay terms in the main equation (6) by the corresponding

higher derivative approximation. We recall that

u(x + 1)− 2u(x) + u(x − 1) =
[

4 sinh2
(

1

2
D

)]

u(x); (30)

where D is the operator of di�erentiation. The right-hand side of Eq. (30) can be

formally approximated by either polynomial or rational (Pade) expansions of the form

(e.g. Wattis, 1993)

4 sinh2
(

1

2
D

)

≈ D2
[

I +
1

12
(D)2

]

≈ D2
[

I − 1

12
(D)2

]−1

: (31)

We begin with the polynomial approximation and rewrite Eq. (6) in the form (see also

Abeyaratne and Vedantam, 1999)

uxxxx − 12(v2 − 1)uxx − 12
20(u − �) =−12
20H (−x): (32)

As before, the nondimensional displacement �eld u(x) must satisfy additional admis-

sibility conditions (8)–(9). The nondispersive approximation, obtained by dropping in

expansion (32) the terms with spatial derivatives higher than two, represents a classical

continuum limit. In this limit Eq. (32) takes the form

(v2 − 1)uxx + 
20u= 
20[� + H (−x)]: (33)
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By applying the Fourier transform (as in the discrete problem) we obtain

u(x) = � − 
20
2�i

∫




eikx

kLc(k)
dk; (34)

where now

Lc(k) = 
20 + k2(1− v2): (35)

In the continuum model the dispersion relation Lc(k) = 0 has only two roots

k1;2 =±

√


20
v2 − 1 ; (36)

which are real if v ¿ 1 (supersonic region) and pure imaginary if v ¡ 1 (subsonic

region). By using the radiation conditions we can compute the integral in Eq. (34) and

obtain in the subsonic case

u(x) =















� +
1

2
e−x

√

20=(1−v2); x ¿ 0;

� + 1− 1

2
ex
√


20=(1−v2); x ¡ 0:

(37)

This classical solution satis�es the admissibility conditions at �=0 only. The fact that

in the classical theory the defect can propagate at zero force, is not surprising since in

this approximation the radiative damping is completely absent.

Now notice that the above subsonic branch of solutions is connected to a branch of

sonic “shock waves” at v = 1. In fact, for v = 1 the following discontinuous solution

can be constructed:

u(x) =

{

� if x ¿ 0;

� + 1 if x ¡ 0:
(38)

This solution is de�ned for 0¡ � ¡ 1=2. In the supersonic case, v ¿ 1, the traveling

wave solution satisfying the admissibility conditions takes the form

u(x) =



















1

2
; x ¿ 0;

3

2
− cos

√


20
v2 − 1 x; x ¡ 0:

(39)

This solution, existing only at � = 1=2, describes the motion of a supersonic phase

boundary at ultimate stress.

If we now restore the fourth spatial derivative in Eq. (32) we obtain the quasicon-

tinuum Boussinesq model. By applying the Fourier transform we can again represent

solution in the form

u(x) = � − 
20
2�i

∫




eikx

kLB(k)
dk; (40)
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where now

LB(k) = 
20 + k2(1− v2)− k4

12
: (41)

In the Boussinesq approximation the dispersion relation LB(k)=0 generates four wave

numbers for each value of v: two purely imaginary, describing the structure of the core

region and two real, describing the radiation pattern. Explicitly we can write

k1;2;3;4 =±

√

√

√

√

√ 6(1− v2)



1±
√

1 +

20

3(1− v2)2



: (42)

According to radiation conditions we must close the contour 
 in the upper half-plane

for x ¿ 0 and include one purely imaginary root only; for x ¡ 0 we must instead close

the contour in the lower half-plane and include one purely imaginary root and two real

roots. As a result we obtain

u± =







































































� +
1

4



1 +

√
3(1− v2)

√


20 + 3(v
2 − 1)2



 e−l±x ; x ¿ 0;

� + 1− 1

4



1 +

√
3(1− v2)

√


20 + 3(v
2 − 1)2



 el±x

−1
2



1∓
√
3(1− v2)

√


20 + 3(v
2 − 1)2



 cosm±x; x ¡ 0;

(43)

where the choice of signs ± indicates the cases v ? 1, respectively, and where

l± =

√

√

√

√

√±6(v2 − 1)





√

1 +

20

3(v2 − 1)2 ± 1



;

m± =

√

√

√

√

√±6(v2 − 1)





√

1 +

20

3(v2 − 1)2 ∓ 1



: (44)

Solution (43) satis�es all the admissibility conditions and the corresponding kinetic

relation can be obtained in an explicit form (cf. Abeyaratne and Vedantam, 1999)

G =

20
4

[

1±
√

3(v2 − 1)2
3(v2 − 1)2 + 
20

]

; v ? 1: (45)
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Fig. 7. The con�gurational force as a function of velocity of the defect in the discrete model (D), continuum

model (C) and quasicontinuum models (B) and (R). The horizontal arrow marks the instability limit for the

lattice trapping region leading to a transition to a fully developed inertial regime. For all curves 
0 = 0:5.

Here if v → ∞, we obtain the same spinodal limit (27) as in the discrete case. In the
other limiting case v → 0 we obtain

lim
v→0

G = 
20�
B
p ; (46)

where

�Bp =
1

4

(

1−
√

3

3 + 
20

)

: (47)

As we show in Appendix B this value of the applied force matches exactly the static

Peierls force computed for the Boussinesq model. The resulting kinetic equation is

presented in Fig. 7.

Although the kinetic relation for the traveling waves in the Boussinesq approximation

matches the kinetic relation in the discrete problem reasonably well, the initial-value

problem for the Boussinesq model is linearly ill-posed with unbounded growth rates

at short wavelengths (Pego et al., 1995, Christov et al., 1996). The reason for this

failure of the Boussinesq model is that the strain gradient part of the elastic energy

in this model is not positive de�nite (e.g. Kunin, 1982). An alternative (rational)

approximation of the delay-advance operator mentioned in Eq. (31), has the same

order as the Boussinesq model but has an advantage of always being stable at short

waves (Rosenau, 1986).

16



In the Rosenau approximation the equation for traveling waves takes the form

v2D4u − 12D2
[(

v2 − 1− 
20
12

)

u+

20
12

H

(

u − 1

2

)]

− 12
20(u − �)

= − 12
20H
(

u − 1

2

)

: (48)

For solutions describing an isolated kink, the singular nonlinear equation (48) can be

rewritten as two linear equations

v2uxxxx − 12
(

v2 − 1− 
20
12

)

uxx − 12
20(u − �) =

{

0; x ¿ 0;

−12
20; x ¡ 0
(49)

supplemented by the following matching conditions at x = 0:

[u] = [ux] = [uxxx] = 0; v2[uxx] = 
20: (50)

Here the square parentheses denote the jump discontinuity [ ] = ( )+− ( )−. Notice that
in the linearized Rosenau model the dispersion equation relating phase velocity of the

plane waves to the velocity of the kink and completely characterizing the radiative

pattern at in�nity, takes the form LR(k) = 0, where now

LR(k) = 
20 −
v2

12
k4 + k2

(

1 +

20
12

)

− k2v2: (51)

This equation has four roots: two real and two purely imaginary

k1;2;3;4 =±
√

1

2v2
[
20 + 12(1− v2)±

√

144(1− v2)2 + 24
20(1 + v2) + 
40]: (52)

The displacement �eld representing solution of Eq. (49) and satisfying the matching

conditions (50), is given by the formulas

u(x) =































� +
v2k21 − 
20
2v2(k21 − k23 )

eik3x ; x¿ 0;

� + 1− v2k21 − 
20
2v2(k21 − k23 )

eik4x +

[

v2k21 − 
20
2v2(k21 − k23 )

− 1

2
− �

]

cos k1x; x6 0:

(53)

Here k3 and k4 indicate purely imaginary roots (52) in the upper and lower half-planes,

respectively, and k1 is the positive real root. The explicit kinetic relation takes the form

G =

20
2


20 − v2k23
v2(k21 − k23 )

: (54)

In the limit v → ∞ we again obtain condition (27) which agrees with both the discrete

and the Boussinesq models. In the alternative limit v → 0 we obtain

lim
v→0

G(v) = 
20�
R
p ; (55)
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Fig. 8. Comparison of the dispersion spectra for discrete (D), continuum (C), Boussinesq (B) and Rosenau

(R) models. Here 
0 = 0:5.

where now

�Rp =

20

2(12 + 
20)
: (56)

To compare all four models we �x the value of the nondimensional parameter 
0
and superimpose the resulting kinetic relations on one graph (Fig. 7). One can see

that the kinetic curves for discrete (D) and both quasicontinuum models (B) and

(R) are almost indistinguishable in the region v ¿ 0:2243 where only one propagating

mode is emitted. It is also immediately obvious that the classical continuum model

(C) cannot be considered satisfactory since it predicts zero drag everywhere in the

subsonic range.

Both dispersive quasicontinuum approximations capture the e�ects of radiative damp-

ing although with di�erent level of detail. To understand the di�erence between the

radiation patterns in di�erent models we present on one graph all four dispersion spectra

(Fig. 8). As expected all models essentially agree in the domain of supersonic veloci-

ties and long waves where the dispersion spectra in all four theories reduce to two real

and two purely imaginary branches. Consequently for v ¿ 1 solutions generated by all

four models are almost identical. At v ¡ 1 purely imaginary branches in the models

(B), (R) and (C) practically coincide with the corresponding branches of the discrete

model (D). Therefore, in this velocity range the structure of the nonoscillatory part of
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(a) (b)

Fig. 9. (a) Comparison of the discrete model with continuum and quasicontinuum models at di�erent values

of 
0: force—velocity relations at 
0=0:01 and 
0=1:0; (b) the Peierls force for discrete (D), Boussinesq

(B) and Rosenau (R) models as a function of 
0.

the wave �eld near the core of the defect is similar in all four models. Another general

observation is that for real branches, the Boussinesq model provides a lower bound,

while the Rosenau model gives an upper bound of the discrete dispersion spectrum

(see Fig. 4).

By examining the slopes of the real branches of the dispersion relation in both (R)

and (B) models we conclude that they contribute to the wave �eld only behind the

kink. Therefore, these quasicontinuum approximations can be considered appropriate

only at v ¿ 0:2243, because below this resonant velocity the original discrete model

exhibits radiation both ahead and behind the kink. At subsonic velocities the Boussinesq

model radiates waves with basically one wavelength (k ≈ 3:5), while both discrete and

Rosenau models develop, as velocity tends to zero, radiation with smaller and smaller

wavelengths.

Important conclusions concerning the adequacy of the approximate models can be

drawn from the comparison of the static limits for the corresponding kinetic relations.

We recall that due to lattice trapping the solutions describing stationary kinks in the

discrete model exist in a �nite range of applied forces −�Dp ¡ � ¡ �Dp , where �Dp is the

corresponding Peierls force. In the continuum approximation static solutions exist only

at zero stress, which means that �Cp=0. In both Boussinesq and Rosenau approximations

the lattice trapping phenomenon is preserved. The relation among the values of Peierls

forces �Dp , �Bp and �Rp at di�erent values of 
0 is illustrated in Fig. 9. As one can see

from this �gure and from the comparison of the kinetic relations at di�erent values of


0, the agreement between the models improves as the reference length of the discrete

chain gets smaller or the harmonic coupling between the snap-springs gets stronger

(
0 → 0).

It is also instructive to compare the displacement �elds obtained in di�erent models

(see Fig. 10). As expected, in the supersonic and near sonic cases, the displacement

�eld obtained in discrete (D) and in di�erent quasicontinuum models practically coin-

cide (Fig. 10a,b): all models predict exponentially damped displacements at x ¿ 0 and
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Fig. 10. Displacement �elds for the discrete (D), Boussinesq (B), Rosenau (R) and continuum (C) models

at v = 2:0 (a), (b), v = 0:5 (c), (d) and v = 0:22 (e), (f). In all graphs 
0 = 0:5.

in�nite oscillatory tails at x ¡ 0. The agreement is so good because only long waves

are involved. Outside this range the discrete model basically agrees with the quasicon-

tinuum models in the velocity interval bounded below by the largest resonant velocity

for the discrete model. Below this critical velocity the discrete model exhibits simul-

taneous radiation ahead and behind the kink while the quasicontinuum models show

oscillatory components only behind the moving defect. The detailed comparison in this

range of velocities does not make much sense because no discrete solution seems to be

admissible. It is interesting, however, that at extremely small velocities, the behavior of
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the three models is very di�erent: the Boussinesq model has a conventional limit with

a �nite wavelength, the discrete solution converges to a piece-wise constant function

with the discontinuities at lattice points, while the Rosenau model has a nontrivial limit

represented by a stationary Young measure (cf. Theil and Levitas, 2000).

6. Conclusions

In this paper we studied a simple example of radiative damping in discrete lattices.

The goal was to simulate an isolated kink moving uniformly under the action of a

given con�gurational force. We computed an explicit expression for the dissipative

function in the discrete model and showed it to be of a dry friction type. We then

studied two related quasicontinuous models built on the polynomial (Boussinesq) and

rational (Rosenau) approximations of the �nite-di�erence part of the discrete model.

Although both models produced excellent agreement with the discrete model at high

velocities, they both failed at low velocities where due to lattice resonances the dis-

creteness of the model cannot be ignored. Since the Cauchy problem for the Boussinesq

model is ill-posed, preference should be given to the Rosenau and similar higher-order

Pade approximations generating much more realistic short wave part of the dispersive

spectrum.

One possibility which has not been explored in our paper is that the adequate con-

tinuum description of the discrete system, valid in the broad range of wavelengths and

wave velocities, is thermodynamical. We recall that the generation of short wave lattice

vibrations by the moving defect is in many respects similar to the localized increase

of temperature. Moreover, continuum models of phase transitions that take latent heat

and heat conductivity into account, generate kinetic relations which are in surprisingly

good qualitative agreement with our “�rst principle” kinetic relation obtained from

the discrete model. Speci�cally in both discrete and nonisothermal models the kinetic

curves are nonmonotone and exhibit a �nite range of trapping; other similarities include

the possibility of supersonic regimes and the multivaluedness of the kinetic functions

at su�ciently slow velocities (Ngan and Truskinovsky 1999, 2002). This intriguing

similarity is worth pursuing.
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Appendix A

Here we show how solution (11) of the piece-wise linear problem (6)–(10) can be

obtained by the Fourier method. We begin by representing the displacement �eld in

the form u(x) = u+(x) + u−(x), where

u+(x) =

{

u(x); x ¿ 0;

0; x ¡ 0;
u−(x) =

{

0; x ¿ 0;

u(x); x ¡ 0:
(A.1)
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Assume that for �= k + is the integrals

û+(�) =
1√
2�

∫ ∞

0

u(x)ei�x dx; û−(�) =
1√
2�

∫ 0

−∞

u(x)ei�x dx (A.2)

exist: the former for s ¿ 0, the latter for s ¡ 0. Then for some s+ ¿ 0, s− ¡ 0 the

Fourier transform can be inverted and we obtain

u(x) =
1√
2�

∫ ∞+is+

−∞+is+

û+(�)e
−i�x d�+

1√
2�

∫ ∞+is−

−∞+is−

û−(�)e
−i�x d�: (A.3)

To obtain an expression for û+(�), we recall that at x ¿ 0 the displacement �eld u+(x)

satis�es the equation

v2
d2u+

dx2
− [u+(x + 1)− 2u+(x) + u+(x − 1)] + 
20u+(x) = �
20: (A.4)

Applying the Fourier transform to Eq. (A.4) and using Eq. (8), we obtain

û+(�) =
1√

2�L(�)

[

v2u′+(0)−
i�

2
v2 −

(

∫ 1

0

ei�(x−1)u(x) dx

−
∫ 0

−1

ei�(x+1)u(x) dx

)

+ 
20�

∫ ∞

0

ei�x dx

]

; (A.5)

where

L(�) = 
20 + 4 sin
2 �

2
− v2�2: (A.6)

Now by using the inverse Fourier transform (A.3) we can write

u+(x) =
1

2�

∫ is++∞

is+−∞

e−i�x

L(�)

[

v2u′+(0)−
iv2�

2
+ �
20

∫ ∞

0

ei�� d�

−
(

∫ 1

0

u(�)ei�(�−1) d� −
∫ 0

−1

u(�)ei�(�+1) d�

)]

d�: (A.7)

One can repeat the same procedure for u= u−(x) and obtain

u(x) =
20
�

2�

∫ +∞

−∞

eikx

L(k)
dk

∫ ∞

−∞

e−ik� d�+

20
2�

∫ +∞

−∞

eikx

L(k)
dk

∫ 0

−∞

e−ik� d�

= � +
1

2
− 
20
2�i

∫ +∞

−∞

eikx dk

kL(k)
: (A.8)

In order to select the physically correct solution, we need to interpret the integral in

Eq. (A.8) as a contour integral along the path 
 which does not pass through singular

points. Consider �rst the singularity at k=0. By choosing a contour 
 close to the real
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axis and passing above the point k = 0 we obtain

u(x) = � − 
20
2�i

∫




eikx

kL(k)
dk: (A.9)

To compute the integral in Eq. (A.9) we can use the method of residues. For x ¿ 0

we need to complete the contour 
 in the upper half-plane and for x ¡ 0 in the lower

half-plane. In this way, we automatically include into the �eld only the waves which

are exponentially damped away from the phase boundary. The real roots of equation

L(k) = 0 require special analysis, because the corresponding waves do not decay at

±∞. By applying the radiation conditions and computing the residues we obtain (11),

(14).

In order to determine the value of applied force � which is necessary to sustain our

dynamic displacement pro�le we need to use the matching condition u(0)= 1=2. From

Eq. (A.9) we obtain

� =
1

2
+


20
2�i

∫




dk

kL(k)
: (A.10)

Now by closing the contour of integration in Eq. (A.10) in the upper half-plane, we

obtain

∫




dk

kL(k)
= 4�i

∑

k∈N+(k)

1

kL′(k)
+ 2�i

∑

L(k)=0;Im k¿0

A

A2 + B2
; (A.11)

where N+(k)={k: L(k)=0; Im k=0∪kL′(k)¿ 0}. For the complex roots k=k1+ik2,

A= k1 sin k1 cosh k2 − k2 cos k1 sinh k2 + (k
2
2 − k21 )v

2;

B= k2 sin k1 cosh k2 + k1 cos k1 sinh k2 − 2k1k2v2: (A.12)

Alternatively, we can compute (A.10) by closing the contour of integration 
 in the

lower half-plane. We obtain

∫




dk

kL(k)
=−2�i





1


20
+ 2

∑

k∈N−(k)

1

kL′(k)
+

∑

L(k)=0;Im k¡0

A

A2 + B2



 ; (A.13)

where now N−(k)= {k: L(k)= 0; Im k =0∪ kL′(k)¡ 0} and A and B are the same as

in Eq. (A.12) due to the symmetry of the complex roots. Since the function A(k1; k2)

is even in both k1 and k2, and since the complex roots are symmetric with respect to

the planes Im k = 0 and Re k = 0, we obtain

2�i
∑

L(k)=0;Im k¿0

A

A2 + B2
=−i�





1


20
+ 2

∑

k∈N+(k)

1

kL′(k)
+ 2

∑

k∈N−(k)

1

kL′(k)



 : (A.14)
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By substituting this expression into Eqs. (A.10)–(A.11) we obtain the desired relation

for �

� = 
20

∑

k∈N±(k)

1

|kL′(k)| : (A.15)

Appendix B

In statics our Eq. (2) takes the form

(un+1 − 2un + un−1)− 
20(un − �) =

{

0; n¿ 0;

−
20; n ¡ 0;
(B.1)

where we have already substituted the piece-wise linear force law (3) and used the

nondimensional variables (5), (7); the boundary conditions remain the same as in Eq.

(10).

Introduce new functions u+n and u−n , describing the solutions of (B.1) at n¿ 0 and

n ¡ 0, respectively. The compatibility conditions can be written in the form

u+0 = u−0 ; u+
−1 = u−

−1: (B.2)

By solving the �nite-di�erence problem (B.1)–(B.2) we obtain a (stable) solution in

the form

u+n = � +

√

4 + 
20 − 
0

2

√

4 + 
20

rn
2 ; u−n = 1 + � −

√

4 + 
20 + 
0

2

√

4 + 
20

rn
1 ; (B.3)

where

r1;2 = 1 +

20
2

± 
0

2

√

4 + 
20: (B.4)

Another (unstable) solution representing the so-called Peierls barrier (e.g. Hobart, 1965)

can be obtained if instead of conditions (B.2) we consider a di�erent set of matching

conditions

u+0 = u−0 =
1

2
: (B.5)

Then

u+n = � +

(

1

2
− �

)

rn
2 ; u−n = 1 + � −

(

1

2
− �

)

rn
1 ; (B.6)

where r1 and r2 are the same as in Eq. (B.4). The two solutions satisfy the admissibility

conditions for |�|¡ �Dp where

�Dp =

0

2

√

4 + 
20

(B.7)

is the Peierls force required to start the motion of the kink; at this force the stable and

unstable solutions annihilate each other.
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Notice that solution (B.3) and formula (B.7) can also be obtained by direct discrete

Fourier transform of Eq. (B.1). Indeed, by transforming Eqs. (B.1) we obtain

û D(k) =
√
2���(k) +

√

�

2
�(k)− 1√

2�


20
(1− e−ik)L0(k)

; (B.8)

where

û D(k) =
1√
2�

n=∞
∑

n=−∞

une
−ikn (B.9)

and

L0(k) = 
20 + 4 sin
2 k

2
: (B.10)

Now if we make an inverse discrete Fourier transform of û D(k)

un =
1√
2�

∫ +�

−�

û D(k)eikn dk; (B.11)

we obtain

un = � +
1

2
− 
20
2�

∫ �

−�

eikn

(1− e−ik) L0(k)
dk: (B.12)

The next step is to extend the above solution analytically by zero from the interval

−� ¡ k ¡ � to the whole real axis and choose the contour 
 passing above the pole

at the origin. Then we can write

un = � +

20
2�

∫




eikn

L0(k)(e−ik − 1)
dk: (B.13)

Since equation L0(k) = 0 does not have real roots, we can compute the integral in

Eq. (B.13) by closing the contour in the upper half-plane for n ¿ 0, and in the

lower half-plane for n ¡ 0. The relevant complex roots of the equation L0(k) = 0

are: p1 = 2i sinh
−1(
0=2) in the upper half-plane, and p2 = −2i sinh−1(
0=2) in the

lower half-plane. We obtain

u+n = � + i

20e

ikn

L′
0(k)(e

−ik − 1)

∣

∣

∣

∣

k=p1

;

u−n = � + 1− i 
20e
ikn

L′
0(k)(e

−ik − 1)

∣

∣

∣

∣

k=p2

: (B.14)

Now by noticing that eip1n = rn
2 and e

ip2n = rn
1 we can rewrite (B.14) in form (B.3),

and from condition (B.5) obtain the expression for Peierls force (B.7).

Now for consistency of our construction we need to show that the static solution

(B.3), (B.12) is compatible with the dynamic solution discussed in the main body of

the paper. The idea of the analysis below can be traced to the works of Celli and

Flytzanis (1970) and Slepyan (1982). First notice that we need to identify the limiting

dynamic solution u(x) represented by a function of continuum argument with the static

solution un represented by a function of a discrete argument. Suppose, that at v = 0
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there exists a piece-wise constant function u0(x) describing discrete solution of the

static problem, which is the limit of the solution of the dynamic problem u(x − vt) at

v= 0. By computing the Fourier transform of the function u0(x) we can write

û 0(k) =
1√
2�

∫ ∞

−∞

u0(�)e
−ik� d�

=
1√
2�

n=∞
∑

n=−∞

∫ n+1

n

u0(x)e
−ikx dx

=
1√
2�

n=∞
∑

n=−∞

un

e−ik(n+1) − e−ikn
−ik

=
1− e−ik
ik

û D(k): (B.15)

Then by noticing that in the limit v → 0 the Fourier image of dynamic solution is

û 0(k) =
√
2���(k) +

√

�

2
�(k)− 
20√

2�ikL0(k)
(B.16)

and by applying to (B.16) the rescaling procedure (B.15), we obtain

lim
v→0

u(n − vt) = un = � +
1

2
+


20
2�

∫ +�

−�

eikn

L0(k)(e−ik − 1)
dk; (B.17)

which is exactly (B.12).

In the Boussinesq approximation instead of (B.1) we have

uxx +
uxxxx

12
− 
20(u − �) =

{

0; u ¡ 1
2
;

−
20;
1
2
¡ u:

(B.18)

The boundary and compatibility conditions are the same as in the dynamic case. The

compatibility conditions at x = 0 take the form

[u] = [ux] = [uxx] = [uxxx] = 0: (B.19)

The solution of (B.18), (B.19) can be written explicitly

u(x) =











1
4
(1 +

√

3
3+
20

)e−r1x + ( 1
4
(1−

√

3
3+
20

)− �) cos r2x + �; x ¿ 0;

− 1
4
(1 +

√

3
3+
20

)er1x + ( 1
4
(
√

3
3+
20

− 1)− �) cos r2x + � + 1;x ¡ 0;

(B.20)

where

r1;2 =

√

√

√

√∓6 + 6

√

1 +

20
3

: (B.21)
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From the admissibility conditions we �nd that |�|¡ �Bp . Here

�Bp =
1

4

(

1−
√

3

3 + 
20

)

(B.22)

is the desired expression for the Peierls force.

Finally in the continuum case we obtain

uxx − 
20u=

{

−
20�; n¿ 0;

−
20 − 
20�; n ¡ 0:
(B.23)

The solution of the above equation satisfying the matching conditions [u] = [ux] = 0 at

x = 0 is

u(x) =

{

1
2
e−
0x + �; x¿ 0;

− 1
2
e
0x + � + 1; x ¡ 0:

(B.24)

Since it satis�es admissibility conditions only for �=�Cp =0, the corresponding Peierls

force is equal to zero.
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