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Instability and friction
Instabilité et frottement

Quoc Son Nguyen

Laboratoirede mécaniquedessolides, CNRS-UMR764% colepolytechnique91128Palaiseaucedex France

Abstract

A reviewon the stability analysisof solidsin unilateralandfrictional contactis given. The presentations focussedn the
stability of an equilibrium position of an elasticsolid in frictional contactwith a fixed or moving obstacle.The problemof
divergencdnstability andthe obtentionof a criterion of staticstability arediscussedirst for the caseof a fixed obstacleThe
possibility of flutter instability is thenconsideredor a steadysliding equilibriumwith a moving obstacle The steadysliding
solutionis genericallyunstableby flutter and leadsto a dynamicresponseavhich can be chaoticor periodic. This dynamic
responsdeadsto the generatiorof stick—slip—separatiowaveson the contactsurfacein a similar way asSchallamachvavesin
statics.lllustrating examplesand principal resultsrecentlyobtainedin the literatureare reported.Someproblemsof friction-
induced vibratia andnoise emittence, such as brake squeal for example, can be interjorétedspirit.

Résumé

On présentedanscette Note une synthésedesrésultatsde la littérature sur I'analyse de stabilité dessolidessouscontact
unilatéralavecfrottementde Coulomb.Le problémede contactfrottantd’un solideélastiqueavecun obstaclefixe ou mobile est
examiné.La possibilité d’'instabilité par divergenceet la recherched'un critére de stabilité statiqued’'un équilibre sont
examinéegdansle casd'un obstaclefixe. La possibilité d'instabilité par flottementest ensuitediscutéepour un équilibre
résultantd’un glissementstationnaireavec un obstaclemobile. La solution de glissementstationnaireest dynamiquement
instablepar flottementet conduita une réponsedynamiquequi peut étre chaotiqueou périodique.En particulier, la réponse
dynamiquegénéredesondesd’adhérence—glissement—séparasanla surfacede contactd’unefagoncomparable augndesde
Schallamaclenstatique Desexemplest desrésultatsécentsdela littératuresontrapportésQuelquegprobléemege vibration
et d’émissionacoustiquenduitespar le frottement,commele crissementesfreins par exemple peuventétreinterprétésdans
cet esprit.
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1. Solidsin frictional contact with an obstacle
1.1. Coulomb’s law of dry friction

At a contact point of a solid with an obstacle, the relative veloeity vy — v, is by definition the difference
between the velocities of the material points of the solid and of the obstacle in contact. The relative vedocity
reactionR can be decomposed into normal and tangential components

v=vr +uNn, R=T+ Nn Q)

wheren denotes the external normal vector to the obstacle at a contact ppiistthe sliding velocity vectorT

the tangential reaction vector andthe normal reactiony andvy are scalars. The unilateral condition of contact
implies that the normal reaction must be non-negative 0. When there is contact, Coulomb’s law of dry friction
states that the friction criterion must be satisfied and that the friction force must have the opposite direction to the
sliding velocity,

¢=ITI—-fN<O0 and [I'|=fN, T=-—avr,az0, ifvr+#0 @

where f denotes the friction coefficient. In particular, the dissipation by friction1s vy = f N|vr|. Coulomb’s

law has often been interpreted in the literature as a non-associated law since the ye}qaity) is not a normal to

the domain of admissible forces. In particular, it has been discussed as a bi-potential law, cf. [1]. A more standard
interpretation consists of saying that Coulomb’s friction is a standard dissipative law with a state-dependent
dissipation potential, cf. [2,3]. Indeed, normality law is satisfied by the figxand the forcel' sinceT and

vr are related through a state-dependent dissipation poténtigl, N)

T=-D with D = £ N|vr|| (3)

sUT

whereD,,, is understood in the sense of sub-gradient. The set of admissible forces, which is a sphere of radius
f N, depends on the present state through the present valie of

1.2. Governing equations

The simple case of an elastic solid occupying a volumia the undeformed position is considered. The solid
is submitted to given forces and displacemefits- r¢ (1 (1)), u? = u?(1(t)) respectively on the portior, S, of
the boundarys, andi(¢) denotes a control parameter defining the loading history. On the complementa$y part
the solid may enter into contact with a moving obstdale, r) < 0 and the non-penetration condition is

h(x +u(x,t),t) >0 VxeSg (4)

The mechanical response of the solid are governed by unilateral contact conditions, Coulomb’s law and classical
equations of elastodynamics. In Lagrange description, the governing equations are

{Divb:,oii, b=W,y» VYxeV

b-ng=r¢ VxeS., b-ng=Nn+T VxeSg, u=u? Vxes, ()

whereW (Vu) andb denote respectively the elastic energy per unit volume and the unsymmetric Piola—Lagrange’s
stress. In particular, the unknow@s N) must satisfy the local equations

u=u? VxeS,, h>0, N>0, Nh=0 VxeSg (6)
and the variational inequality

{fV(Vu* — Vi) : W,y, (Vu)dV — fSr rd . (u* — i) da + [y pii - (u* — i) dV

7
= [ 0y —onIN da+ [y, FNCIG = or[)dS >0 Vu* € Uga 7)



Fig. 1. A solid in unilateral contact with an obstacle.

whereUc, denotes the set of kinematically admissible rates

Ucaz{u* [u* =u? onSu} (8)
andv* andv are the relative rates

UN=n-U—UVyN, Vr=u—n-1)n—vr, VN=n-u"—vey, vp=u"—(n-u)n—uvr, 9)
withn=h,,, /Ih,m || andv,y = —h,; /|h,m ||. The system of solid in frictional contact under loads is associated
with an energy potential and a dissipation potential:

{E(u, o) = [y, W(Vu)dv — fSr r4(\) - uda — fSR wh(x + u) da

D(N,vr) = st fNlvr|lda

where . denotes the Lagrange multipler associated with the constraints (4Naadt||k,,, ||. The variational
inequality (7) can be condensed as

(J+Eu) - @" —u) +D(N,v7) =D(N,vr) 20 Vu* € Uca 11)

whereJ denotes the inertial terms. Some regularizations of the frictional contact problem have been proposed in
the literature:

(10)

— Non-local Coulomb’s law, proposed by Duvaut [4], in which the local normal reactios replaced by its
mean valueV on an elementary representative surfage

— 1
N =— N(x) dS
Sre
Sre
— Normal compliance law, discussed by Oden and Martins [5], Kikuchi and Oden [6], Andersson [7,8], Klarbring

et al. [9],.... It consists of replacing Signorini’s relations of unilateral contact by a relationship giving the
normal reaction as a function of the gapx + u(x)). For example, nonlinear springs of enetgy:) per unit
surface may be added to the system whe¥e is a regular function permitting an approximation of Signorini’s
conditions. In particular, witkp (k) = %(h)%, then the normal compliance law consists of writing that

N =kllh,mll(h)-

General discussions on the existence of a solution of the quasi-static problem in small deformation have been
given in the literature, when there is regularization by normal compliance cf. [7,9] and by nonlocal Coulomb’s
law cf. [10]. In these cases, it has been proved that the existence of at least one solution is ensured when the
friction coefficient is small enough.



2. Divergenceinstability of an equilibrium

There is flutter or divergence instability if, under disturbances, the system will leave the equilibrium position
with or without growing oscillations. As usual, the possibility of divergence instability can be discussed in a purely
static approach [11,12,3]. The quasi-static problem has been much discussed, cf. [6,10,13,8,7,14]. For the sake of
simplicity, the particular case of fixed obstacles is considered here. The obstacle is given by the time-independent
domaini(m) < 0. Normal and tangential relative velocities ate = ity andvy = iir. The governing equations
follow from (6), (7) by deleting the inertia terms. If the rigid motion of the solid is not excluded by the implied
displacements, it is well known that the existence of an equilibrium position under applied loads is not always
ensured.

2.1. Rate problem in quasi-statics

The analysis of the static stability of an equilibrium follows from the consideration of the rate response as in the
theory of elastic and plastic buckling of solids. With the following notation

M*GUcaandVXGSRC,
Vad={qu* |uj =0if N>0andu#, >0if N =0, (12)
wh=0if¢p <Oand . =—bT, b>0ifp =0, N>0

it is clear thatit € Vag which is the set of admissible rates. The virtual work equation holds in rate form for all
u* € Vad

/V(u*—u):L:de-/f.(u*—u)da—/ie.(u*—a)dazo

1% Sy Sk

whereL = W, v,v, denotes the elastic modulus. Sirce(u* — i) = 7 - (u% —iip) + T - (¥ —iiy)n andT -n =0
whenT = 0, the last term can also be written-a® - (u* —i) = —N (ub —ii) - C-tir — N (v —vn) — T - (v —vr)
whereC denotes the curvature tensor of the obstacle at contact point. Taking account of the fact that:

T(vr —vp) + fN(lor |l = llv7 ) <O (13)
which is a consequence of Coulomb’s law, cf. [13,15,3], the following statement is obtained

The ratei € Vg and satisfies the variational inequality

/(vu*—vu):z::wdv—/r'd-(u*—u)da—/N(u;—m)-c-mda
\%4

Sr SRC
- /w;@ )N Gi)da + / FN Gl — larl)da>0 Vu* € Vag (14)
Ske SRe
where
N(ﬂ):%(n.b.ns)=(ns®n):L:W—R.C.a (15)

If a regularization of unilateral contact by normal compliances is introduced, there are no more unilateral
constraints. For some particular cases of elastic structures in frictional contact with normal compliances, the
framework of standard dissipative systems can be directly applied, cf. [16,17,3,18]. Such a system is defined by an
energy potentiak (g, A) and a dissipation potentiBl(g, ¢) which is convex and positively homogenous of degree
1 with respect t@;. The quasi-static evolution is governed by

E.q+D,4=0 (16)



whereD,; denotes the sub-gradientDfwith respect taj. The associated rate equations are
Evgq-d+Eqah+D,g4-g=0 (17)
These equations can also be written in variational form as

{E,q -(¢* =) +D(¢.4") —D(g,9) =0 Vg*
(@*—4) (Eqq-¢+E. M) +¢-(D.g(q.9%) —D.g(q.9)) =0 Vg* € Vag

Rate equations (14) are written in the same spirit, with some additional difficulties due to the presence of constraints
and to the state-dependent expressions of tangential and normal components in terms of

2.2. Static stability criterion

It is assumed that under the action of a given dead load, an equilibrium position of a solid in frictional contact
with a fixed obstacle exists. The stability of this equilibrium is the subject of interest here.

The classical concept of static stability consists of defining the stability as the absence of additional displacement
when the load does not vaky= 0. The equilibrium is thus statically stable if the rate problem admits only the trivial
solutioniz = 0. The following statement is then straightforward [15,19,17,14,20,18]:

The condition of positivity

I(u*)=/Vu*:£:Vu*dV+/Nu’}'Cou’}da—i—/fN(u*) lu% || da > O forallu*yéOeVe?d (18)
14 Skre SRe

is a criterion of stability since it ensures the static stability of the considered equilibrium

The significance of this criterion can be better understood from its energy interpretation in the same spirit as
Hill's criterion of stability in plasticity, cf. [11,12,15,17]. A perturbation of the equilibrium by perturbation forces
is introduced for > 0. Letu(r) denotes the perturbed motion starting from the equilibrit{@) = ueq. The energy
balance at time is

t
Woert) = /(W(Vu(t)) — W(Vueg)dV — /rd(x) (u(t) — ueq) da — // R(t)-idadr + C(1)
1% S 0 Sk

whereWpe (t) is the energy supplied by perturbation forces arig) is the kinetic energy of the solid at timeAt
the begining of the perturbation, i.e., for smalif the perturbed motion and the energy balance can be expanded
as

2 2

t
u(t):ueq+u1t+u25+---, Wper(t)=W0+W1t+W2§ +---+C@)

then, the following expressions are obtaingg = 0, W1 =0, W2 = I (u1), cf. [15,17]. Thus, condition (18)
implies that the external world must supply energy at early times in order to perturbe the system from equilibrium.
This criterion ensures a certain stability in the energy sense, also called directional stability [12]. Its violation in a
direction of displacement leads to a divergence instability of the considered equilibrium since the system will leave
this position with a growing kinetic energy.

3. Flutter instability of the steady sliding equilibrium
For the sake of clarity, the stability of the steady sliding equilibrium of an elastic solid in contact with a moving

rigid half-space, in translation motion at a constant velogitparallel to the free surface, is considered here in
small deformation.



3.1. Steady sliding equilibrium
The steady sliding equilibriuma of the solid must satisfy

/V8u:L:VudV—/rdoéuda—/(&ANN—i—fNr~8ur)da=0
S Sk

This equation leads formally to a system of reduced equations of the form
N =kynlun]+knrlurl+ N9, T = fNt=krylun]+krrlur] +T°
The principal unknowm y must satisfy

uy =A[N]1+B, N>0 uy>0, N-uy=0 (29)
with
A= (knny — kNTk;%kTN)il(I — fknThrN) (20)
_ -1 _ -1 —1rad —1[d
hrNIN1=krz[NT], B=(knny —knrhrpkrn) "[N? —knrkpz[T9]]
Itis clear that the linear operatéris not symmetric iff # 0:
(N*,A[N]) = / N*(x)A[N](x)dS # (N, A[N*]) (21)
Sk

Thus, a linear complementary problem (LCP) must be considered. In particular, the existence and uniqueness of a
steady sliding solution are ensuredhifis positive-definite oP-positive [21,22,3].

3.2. Instability of the steady sliding equilibrium

The stability of the steady sliding position can be obtained from the study of small perturbed motions. However,
the equations of motion cannot be linearized without the assumption of effective contact. Indeed, in the presence of
a loose contact, a small perturbed motion is not necessarily governed by linear equations because of the possibility
of separation. Under the assumption of an effective contact, if the sliding speed is never zero, the dynamic equations
can be written as

/3u.pizdv+/vau L :VudV—l—/N(SuNdS—i—/fNH SurdS=0 Vou,SN (22)
T —
1% SR SR

The linearization is then possible for sliding motions. The nature of this particular problem can be better understood
in the discretized form. After discretization, the equations of motion are
Uy=0
Myy)i—i— KyyY = f®(Y)N + Fy (23)
MyyY + KnyyY =N+ Fy
whereu = (Uy, Y) and® (Y) is a matrix dependent on the direction of sliding. The linearized equations for sliding
motions are
Uy=0
MyyY*+ KyyY*= f® N*+f(p}}Y* (24)
MyyY* + KyyY* = N*
The general expressiarf = €' U with U = (Uy =0, X) then leads to
s2MyyX 4+ Kyy X = fs®y X + fON, SPMyyX + Kyy X =N (25)



i.e., to the generalized eigenvalue problem
s*(Myy — fOMyy)X —sf @y X + (Kyy — fOKyy)X =0 (26)

Thus, the considered equilibrium is asymptotically stable (with respect to sliding motidi&))if< 0 for all s

and unstable if there exists at least one valich thathi(s) > 0. This generalized eigenvalue problem can be
written as(s’M + sC + K)X = 0 with non-symmetric matriced, K and complex eigenvalues and eigenvectors.
This analysis leads to the definition of a critical valfye> 0 such that the considered equilibrium is unstable when

f>Jfa
3.3. Example on the sliding contact of two elastic layers

The simple example of the frictional contact of two elastic infinite layers is considered here as an illustrating
example. This problem was discussed analytically by Adams [23], by Martins et al. [24] and by Renardy [28].
The contact in plane strain with friction of two infinite elastic layers, of thicknessd h* respectively as
shown in Fig. 2, is considered. The lower face of the bottom layer is maintained fixed in th@ axesThe upper
face of the top layer, assumed to be in translation of velagiiy the directionOx, is compressed to the bottom
layer by an implied displaceme#it< 0. At the interfacey = 0, the contact is assumed to obey Coulomb’s law of
friction with a constant friction coefficient. The celerities of dilatation and shear waves are first introduced:

A4 20 n
= s c2=_/—,
o Vo

for the top layer and for the bottom layer (superscript *), to write the governing equations for the displacements of
the top layemwtes + u(x — wt, y, t) and of the bottom layer* (x, y, t) under the form:

2
of W 2 2 2 w
<l_ § <C2) )“x,xx + Uy + (L= 2)uy =7 <ux’” B Zc-zux’tx)

2
w w
Uy,yy + Tz(l - <c_2> >”y-,xx + (1 - fz)”x,xy = T2<”y-ﬂ - Zc_zuy-,IX) (27)
Uy yx T*Zui yy T (1 T*Z) Uy xy = T*Zui,rt

%2, % *2 %2 %
)))+T u)xx+(1 T )x,\f) TUy gy

Boundary and interface conditions are

u(x —wt,h,t) =0, u*(x,—h"*1)=0, uy(x—wt,O,t)zuj(x,O,t)

oyy(x,0, t)_cr (x,0,1), oxy(x,0, t):cr;"y(x,O, 1), foy(x,0,t) = —0xy(x,0,1)

Fig. 2. Sliding contact of two elastic layers.



The stability of the steady sliding solution can be obtained by a linearization of the dynamic equation under the
assumption of sliding perturbed motions near the steady sliding state. These motions are searched for under the
form of slip waves of wave-length = 1/k:

w(x — wi, y, 1) = e27ket @ikm—wn x (1 WH(x, y, 1) = e27ket kT xe ()
The condition of existence of non null displacement modés X*) requires that the pair andk must be a root
of the following equation:
Fle,k) = pc5(A(p,q, ki) (iB(p*,q* kh*) + fC(p*,q*, kh*))
+0* 3 (A", q* k™) (iB(p, g, kh) — FC(p, g, ki) =0 (28)
wherep, ¢, A, B, C are appropriate functions [25]

. 2 ; 2
—1 — 1

p2=1+(c w) ’ q2=1+t2(c w)
c2 c2

A(p,q.kh) = —4pq(1+ p?) + pg(4+ (1 + p2)2) cosh2z pkh) cosh2r gkh)

- ((1 + p2)2 + 4p2q2) sinh(2r pkh) sinh(2 gkh)
B(p,q,kh) =q (1 — p2) (Sinf‘(ankh) cosi2rqkh) — pg cosR2r pkh) sinh(ankh))
C(p,q,kh) = pq(3+ p?) — pq(3+ p?) cosh2r pkh) cosh2r gkh)

+ (2p2¢? + (1+ p?)) sinh(2r pkh) sinh(2r gk)

The case of a rigid top layer is obtained when= +oo
F(c,k)y=iB(p*q*, kh*) + fC(p*,q* kh™) =0 (29)
For an elastic half-plane compressed into a moving rigid half-plane, cf. Martins et al. [24], the results are:
F@)=ig*(1—p?) + f(1+ p** = 2p*¢*) =0 (30)

In the case of two elastic half-planes, cf. Adams [23], this equation can be written as:
2 Pk * * * ok
Fo) = pc3((1+ p?)° = 4pq)(iq*(1— p*?) + f(1+ p™* - 2p"q"))

+p*es?((L+ p*2)° — 4p*q*)(ig (L - p?) — F(1+ p® —2pq)) =0 (31)

It has been established in each case that there exists a critical fzalti® such that the steady sliding solution is
unstable forf > f;. For examplef; = 0 occurs for the system of two layers of finite depths while the possibility
f4 > 0 may happen in the sliding contact of half-spaces, cf. [24,26,20,27,29].

4. Stick—slip-separ ation waves

The fact that the steady sliding solution is unstable leads to the study of possible dynamic bifurcations of the
sliding contact of solids. In the spirit of Hopf bifurcation [30], a periodic response can be expected as an alternative
stable response. This possibility has been explored in the example of two coaxial cylinders [27,31,32].

The mechanical response in plane strain of a brake-like system composed of an elastic tube, of internal radius
R and external radiug*, in frictional contact on its inner surface with a rotating rigid cylinder of radtus A
and of angular rotatios? has been discussed, cf. Fig. 3. The mismatck 0 is a load parameter controlling the
normal contact pressures. This model problem enables us to exhibit the existence of nontrivial periodic solutions
in the form of stick—slip or stick—slip—separation waves propagating on the contact surface.



Fig. 3. The problem of coaxial cylinders in frictional contact.

The governing equations of the system follow from the kinetic relations, the fundamental law, the linear elastic
constitutive equations, and the boundary unilateral contact conditions with Coulomb’s friction:
g = (Vu)y
Dive = yii

Vv

= Trwa—a Ot
ur(£,0,t) =ug,0,t)=0
orr(L,0,0)=—p@O,1), 0r0(1,0,1)=—-q(0,1)
ur=6, p=0, p,—48=0
gl < fp,  q(L—itg) — fpll—itg =0
where non-dimensional variables are introduced,

_u  _ o  _ r pR2§22 R* A . di
i=—, 6=—, F=—, y= , E=—, §=—, =8t u=—
R E R E

The steady sliding solution is given by,

ms (7). mamart (€)1 gt )
%2 I\ F B ¥ W £2(1— 2v) (33)

1 1 1
pe =24 £2+ >0, ge=fpe
£2-11+v 1-2v

Since closed form dynamical solutions cannot be generated, two complementary approaches has been followed.
The first approach is semi-analytical after a reduction to a simpler system of equations. The second approach
consists of a numerical simulation by the finite element method and appropriate time-integrations.

An interesting simplification to the problem is obtained when the displacement is sought in the form

€

(32)

2
i, =U@,1)F(F), g =V(@O,1)F(F), F(f)z‘;%z%l(é’; —f) (34)

7

In this approximation, the following local equations are obtained from the virtual work equation
U—-bU"—dV' +gU =P

V—aV'+dU +hV =0

P>0, U-6§20, PU-6)=0

10I<fP, Q(L-V)—fP|I1-V|=0
where’ denotes the derivative with respecté@nda, b, g, h, d are material and geometry constants. All of
them are positive except for the coupling coefficignt-inally, only the non-dimensional displacements on the

(35)



contact surfacé/ (9, r) andV (6, r) and the non-dimensional reactioA$, t) andQ (6, tr) remain as unknowns in
the reduced equations.

The steady sliding solution, given l&y, =6, V., =8fg/h, P = P, andQ, = f P,, is unstable for the reduced
system. Indeed, under the assumption of sliding motions, a small perturbed motion is descritieg by,

V=V, + Ve, P=P,+ P,andQ = Q. + Q.. It follows that
Vi—aV! + fdV,+hV,=0 (36)
If a general solution is sought in the forvy = e€*? then—s2 = ak?+ h+ikfd. When f = 0, it follows thats =
+iwy with a),f = ak? + h. Thus two harmonic waves propagating in opposite senses of the fotkPcbs 7 + ¢)
are obtained as in classical elasticity. Whegn- 0 and d >0, thens = £(sx + isit), sr« > 0, six <0, thus a
general solution of the differendé, of the form V, = e*5' cogké + s;xf + ¢) is obtained and represents two
waves propagating in opposite senses: an exploding wave in the sense of the implied rotation, and a damping wave
propagating in the opposite direction. ff> 0 andd < 0, the exploding wave propagates in the opposite sense
since the previous expressionsoils still valid with s, > 0 and §; > 0.

It is expected that in some particular situations, there is a dynamic bifurcation of Poincaré—Andronov—Hopf’s
type. This means that the perturbed motion may evolve to a periodic response. This transition has been observed
numerically in many examples of the literature, cf., for example, [33] or [34]. To explore this idea, a periodic
solution has been sought in the form of a wave propagating at constant velocity:

U=U(), V=V, ¢=0-ci (37)

wherec is the non-dimensional wave velocity,andV are periodic functions of periofl = 27/ k. The physical

velocity of the wave is thus = |c| RS2 and the associated dynamic response is periodic of frequépay. The
propagation occurs in the sense of the rotation wéien0. According to the regime of contact, a slip wave, a
stick—slip wave, a slip-separation wave or a stick—slip—separation wave can be discussed. The governing equations
of such a wave follow from (32):

(2—b)U"—dV'+gU =P
(c2—a)V"+dU' +hV =0

P>0, U>=68 PU-6=0
Q1< fP, QU-V)—fP|1-V|=0

The existence of stick—slip waves is obtained when the load is sufficiently strong or when the rotation is slow.
For example, fog = 1.25 andf = 1, stick-positive slip solutions are obtained foK8& < 12. It is found that
must have the sign af. These waves propagate in the sense of the previous exploding perturbed motions, thus
opposite to the rotation of the cylinder whén< 0, with a frequency and a celerity independent of the rotation
velocity £2. The celerity is close to the celerities of dilatation and shear waves in the solid while the frequency
is inversely proportional to the radiug. For example, fon/E/p = 1000 nys, &£ =1.25, f =1, R=1 m and
£2 =100 rad's, the results obtained concerning the mode-8 waverate€0.839,¢c = 1255 ny's and the associated
frequency is 10045 Hz. f =2, f =0.3, R =0.5m, 2 = 10 rad's, a frequency 8240 Hz and a celerity 1030sm
are obtained fok = 4 as shown in Fig. 4. Far = 1.15, for exampled is positive and the propagation goes in the
rotation direction. The limiting case = 1 can be interpreted as the sliding motion of a rigid plate on an elastic
layer or of a rigid half-space on an elastic half-space [23,24]. The obtained solution is a wave with an oscillation
about the steady sliding response. The amplitude of the wave is linearly proportional to the r@atioalso
increases with the friction coefficierftand decreases with the mismatch. Thus, for vanishing rotations, the steady
sliding solution is recovered as the limit of the dynamic response. The stick—slip solution can no longer be available
if the rotation is strong enough since the associated pressure may become negative. In the same spirit, for a small
mismatch, the pressure may become negative under the assumption of a stick—slip regime everywhere. This means
that the possibility of separation is not excluded when the mismatch is not strong enough or if the rotation or the
friction coefficient is sufficiently high.

(38)
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Fig. 4. Semi-analytical approach: an example of stick—slip wave in mode 4witR, f = 0.3, 2 = 10 rad's, R = 0.25 m ands = 0.005. It
is found thatv = 0.644,¢ = 1030 nys. Phase diagram and variations\gfV,, P/ P, andQ/ Q. in [0, 27/ k].
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Fig. 5. A mode-4 stick-slip—separation wave, obtained by numerical simulatiogs=f@, 2 =50 rad's, f = 0.7, § = 0.001. The isovalues
of the radial displacement (mm): separation, slip and stick nodes on the contact surface are given respectively in red, green, blue.

A numerical simulation with an explicit scheme using Lagrange multipliers [35,36] has been performed. The
caset =2 and f = 0.3 has been considered. Starting from a motionless initial state, the mismatch displacement
is then increased linearly from O to its final value. A cyclic limit response is then obtained for large time. The
numerical simulation leads to a stick—slip wave in mode 4 without forcing and the obtained response is close to the

analytical solution of the reduced approach.

It was also checked that a stick—slip—separation wave is effectively obtained when the mismatch is small enough
or when the friction is high enough. For example, whenr= 50 rad's, § = 0.001 andf = 0.7, the limit cycle
results as a stick—slip—separation wave. The result for radial displacements is shown in Fig. 5.
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In fact, it is well known that a periodic response does not systematically result from the flutter instability of
the steady sliding solution. It has been observed in various examples of discrete or continuous systems that the
response may be quasi-periodic or non-periodic or chaotic [37,5,38,3]. Periodic responses prevail in the example
of coaxial cylinders because of the special geometry of the system. Periodic solutions under the form of stick—slip
waves have been also obtained by Adams in the sliding contact of two elastic half-spaces [39]. The generation of
dynamic stick—slip—separation waves on the contact surface can be compared to Shallamach waves in the sliding
contact of rubber in statics, cf. [40,36,27,41,32,42,43,39,34,20,44].

5. Friction-induced vibrations and noises

It is well known that the presence of friction induces mechanical vibrations and noise emittences in the
sliding contact of solids. For example, the creaking noise of a door, the unsteady motion with fits and starts of
a windscreenwiper can be interpreted as stick—slip motions resulting from the instability of the steady sliding
solution. In particular, the phenomena of squeal [45] have been interpreted in the literature in this way. The squeals
of band brakes in washing machines have been discussed in [46]. The brake squeals of an automotive disk brake has
been examined in [27,47], cf. Fig. 6. The squeal of a system glass—rubber in finite deformation is considered in [34].
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Fig. 6. Some unstable modes of the system pad-disk in an automotive disk brake [27,25]
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