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Instability and friction

Instabilité et frottement

Quoc Son Nguyen

Laboratoire de mécanique des solides, CNRS-UMR7649, École polytechnique, 91128 Palaiseau cedex, France 

Abstract

A review on the stability analysis of solids in unilateral and frictional contact is given. The presentation is focussed on the 
stability of an equilibrium position of an elastic solid in frictional contact with a fixed or moving obstacle. The problem of 
divergence instability and the obtention of a criterion of static stability are discussed first for the case of a fixed obstacle. The 
possibility of flutter instability is then considered for a steady sliding equilibrium with a moving obstacle. The steady sliding 
solution is generically unstable by flutter and leads to a dynamic response which can be chaotic or periodic. This dynamic 
response leads to the generation of stick–slip–separation waves on the contact surface in a similar way as Schallamach waves in 
statics. Illustrating examples and principal results recently obtained in the literature are reported. Some problems of friction-
induced vibration and noise emittence, such as brake squeal for example, can be interpreted in this spirit.

Résumé

On présente dans cette Note une synthèse des résultats de la littérature sur l’analyse de stabilité des solides sous contact 
unilatéral avec frottement de Coulomb. Le problème de contact frottant d’un solide élastique avec un obstacle fixe ou mobile est 
examiné. La possibilité d’instabilité par divergence et la recherche d’un critère de stabilité statique d’un équilibre sont 
examinées dans le cas d’un obstacle fixe. La possibilité d’instabilité par flottement est ensuite discutée pour un équilibre 
résultant d’un glissement stationnaire avec un obstacle mobile. La solution de glissement stationnaire est dynamiquement 
instable par flottement et conduit à une réponse dynamique qui peut être chaotique ou périodique. En particulier, la réponse 
dynamique génère des ondes d’adhérence–glissement–séparation sur la surface de contact d’une façon comparable aux ondes de 
Schallamach en statique. Des exemples et des résultats récents de la littérature sont rapportés. Quelques problèmes de vibration 
et d’émission acoustique induites par le frottement, comme le crissement des freins par exemple, peuvent être interprétés dans 
cet esprit. 
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1. Solids in frictional contact with an obstacle

1.1. Coulomb’s law of dry friction

At a contact point of a solid with an obstacle, the relative velocityv = vs − vo is by definition the difference
between the velocities of the material points of the solid and of the obstacle in contact. The relative velocityv and
reactionR can be decomposed into normal and tangential components

v = vT + vNn, R = T +Nn (1)

wheren denotes the external normal vector to the obstacle at a contact point,vT is the sliding velocity vector,T
the tangential reaction vector andN the normal reaction,N andvN are scalars. The unilateral condition of contact
implies that the normal reaction must be non-negativeN � 0. When there is contact, Coulomb’s law of dry friction
states that the friction criterion must be satisfied and that the friction force must have the opposite direction to the
sliding velocity,

φ = ‖T ‖ − fN � 0 and ‖T ‖ = fN, T = −avT , a � 0, if vT �= 0 (2)

wheref denotes the friction coefficient. In particular, the dissipation by friction is−T ·vT = fN‖vT ‖. Coulomb’s
law has often been interpreted in the literature as a non-associated law since the velocity(vT , vN) is not a normal to
the domain of admissible forces. In particular, it has been discussed as a bi-potential law, cf. [1]. A more standard
interpretation consists of saying that Coulomb’s friction is a standard dissipative law with a state-dependent
dissipation potential, cf. [2,3]. Indeed, normality law is satisfied by the fluxvT and the forceT sinceT and
vT are related through a state-dependent dissipation potentialD(vT ,N)

T = −D,vT with D = fN‖vT ‖ (3)

whereD,vT is understood in the sense of sub-gradient. The set of admissible forces, which is a sphere of radius
fN , depends on the present state through the present value ofN .

1.2. Governing equations

The simple case of an elastic solid occupying a volumeV in the undeformed position is considered. The solid
is submitted to given forces and displacementsrd = rd(λ(t)), ud = ud(λ(t)) respectively on the portionsSr , Su of
the boundaryS, andλ(t) denotes a control parameter defining the loading history. On the complementary partSR ,
the solid may enter into contact with a moving obstacleh(m, t) < 0 and the non-penetration condition is

h
(
x + u(x, t), t

)
� 0 ∀x ∈ SR (4)

The mechanical response of the solid are governed by unilateral contact conditions, Coulomb’s law and classical
equations of elastodynamics. In Lagrange description, the governing equations are{

Div b = ρü, b =W,∇u ∀x ∈ V

b · ns = rd ∀x ∈ Sr , b · ns =Nn+ T ∀x ∈ SR, u= ud ∀x ∈ Su
(5)

whereW(∇u) andb denote respectively the elastic energy per unit volume and the unsymmetric Piola–Lagrange’s
stress. In particular, the unknowns(u,N) must satisfy the local equations

u= ud ∀x ∈ Su, h � 0, N � 0, Nh = 0 ∀x ∈ SR (6)

and the variational inequality{∫
V
(∇u∗ − ∇u̇) :W,∇u (∇u)dV − ∫

Sr
rd · (u∗ − u̇)da + ∫

V
ρü · (u∗ − u̇)dV

− ∫
SR
(v∗

N − vN)N da + ∫
SR

fN(‖v∗
T ‖ − ‖vT ‖)dS � 0 ∀u∗ ∈Uca

(7)
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Fig. 1. A solid in unilateral contact with an obstacle.

whereUca denotes the set of kinematically admissible rates

Uca= {
u∗ | u∗ = u̇d onSu

}
(8)

andv∗ andv are the relative rates

vN = n · u̇− voN, vT = u̇− (n · u̇)n− voT , v∗
N = n · u∗ − voN , v∗

T = u∗ − (n · u∗)n− voT , (9)

with n = h,m /‖h,m ‖ andvoN = −h,t /‖h,m ‖. The system of solid in frictional contact under loads is associated
with an energy potential and a dissipation potential:{

E(u,λ,µ) = ∫
V W(∇u)dV − ∫

Sr
rd(λ) · uda − ∫

SR
µh(x + u)da

D(N,vT )= ∫
SR

fN‖vT ‖da
(10)

whereµ denotes the Lagrange multipler associated with the constraints (4) andN = µ‖h,m ‖. The variational
inequality (7) can be condensed as

(J + E,u ) · (u∗ − u̇)+ D(N,v∗
T )− D(N,vT )� 0 ∀u∗ ∈ Uca (11)

whereJ denotes the inertial terms. Some regularizations of the frictional contact problem have been proposed in
the literature:

– Non-local Coulomb’s law, proposed by Duvaut [4], in which the local normal reactionN is replaced by its
mean value�N on an elementary representative surfaceSre

�N = 1

Sre

∫
Sre

N(x)ds

– Normal compliance law, discussed by Oden and Martins [5], Kikuchi and Oden [6], Andersson [7,8], Klarbring
et al. [9], . . . . It consists of replacing Signorini’s relations of unilateral contact by a relationship giving the
normal reaction as a function of the gaph(x + u(x)). For example, nonlinear springs of energyϕ(h) per unit
surface may be added to the system whereϕ(h) is a regular function permitting an approximation of Signorini’s
conditions. In particular, withϕ(h) = k

2〈h〉2−, then the normal compliance law consists of writing that

N = k‖h,m‖〈h〉−
General discussions on the existence of a solution of the quasi-static problem in small deformation have been
given in the literature, when there is regularization by normal compliance cf. [7,9] and by nonlocal Coulomb’s
law cf. [10]. In these cases, it has been proved that the existence of at least one solution is ensured when the
friction coefficient is small enough.
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2. Divergence instability of an equilibrium

There is flutter or divergence instability if, under disturbances, the system will leave the equilibrium position
with or without growing oscillations. As usual, the possibility of divergence instability can be discussed in a purely
static approach [11,12,3]. The quasi-static problem has been much discussed, cf. [6,10,13,8,7,14]. For the sake of
simplicity, the particular case of fixed obstacles is considered here. The obstacle is given by the time-independent
domainh(m) � 0. Normal and tangential relative velocities arevN = u̇N andvT = u̇T . The governing equations
follow from (6), (7) by deleting the inertia terms. If the rigid motion of the solid is not excluded by the implied
displacements, it is well known that the existence of an equilibrium position under applied loads is not always
ensured.

2.1. Rate problem in quasi-statics

The analysis of the static stability of an equilibrium follows from the consideration of the rate response as in the
theory of elastic and plastic buckling of solids. With the following notation

Vad=

u∗

∣∣∣∣∣∣
u∗ ∈ Uca and∀x ∈ SRc,

u∗
N = 0 if N > 0 and u∗N � 0 if N = 0,

u∗
T = 0 if φ < 0 and u∗T = −bT , b � 0 if φ = 0, N > 0


 (12)

it is clear thatu̇ ∈ Vad which is the set of admissible rates. The virtual work equation holds in rate form for all
u∗ ∈ Vad∫

V

∇(u∗ − u̇) :L : ∇u̇dV −
∫
Sr

ṙ · (u∗ − u̇)da −
∫
SR

Ṙ · (u∗ − u̇)da = 0

whereL=W,∇u∇u denotes the elastic modulus. SinceṪ · (u∗ − u̇)= Ṫ · (u∗
T − u̇T )+ Ṫ · (u∗

N − u̇N )n andṪ ·n = 0
whenT = 0, the last term can also be written as−Ṙ ·(u∗− u̇) = −N(u∗

T − u̇T ) ·C · u̇T −Ṅ(v∗
N −vN)− Ṫ ·(v∗

T −vT )

whereC denotes the curvature tensor of the obstacle at contact point. Taking account of the fact that:

Ṫ (vT − v∗
T )+ f Ṅ

(‖vT ‖ − ‖v∗
T ‖) � 0 (13)

which is a consequence of Coulomb’s law, cf. [13,15,3], the following statement is obtained

The rateu̇ ∈ Vad and satisfies the variational inequality∫
V

(∇u∗ − ∇u̇) :L : ∇u̇dV −
∫
Sr

ṙd · (u∗ − u̇)da −
∫
SRc

N(u∗
T − u̇T ) ·C · u̇T da

−
∫
SRc

(u∗
N − u̇N )Ṅ(u̇)da +

∫
SRc

f Ṅ(u̇)
(‖u∗

T ‖ − ‖u̇T ‖)da � 0 ∀u∗ ∈ Vad (14)

where

Ṅ(u̇)= d

dt
(n · b · ns) = (ns ⊗ n) :L : ∇u̇−R ·C · u̇ (15)

If a regularization of unilateral contact by normal compliances is introduced, there are no more unilateral
constraints. For some particular cases of elastic structures in frictional contact with normal compliances, the
framework of standard dissipative systems can be directly applied, cf. [16,17,3,18]. Such a system is defined by an
energy potentialE(q,λ) and a dissipation potentialD(q, q̇) which is convex and positively homogenous of degree
1 with respect tȯq. The quasi-static evolution is governed by

E,q +D,q̇ = 0 (16)
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whereD,q̇ denotes the sub-gradient ofD with respect tȯq. The associated rate equations are

E,qq ·q̇ + E,qλ λ̇+ D,qq̇ ·q̇ = 0 (17)

These equations can also be written in variational form as{
E,q · (q∗ − q̇)+ D(q, q∗)− D(q, q̇)= 0 ∀q∗
(q∗ − q̇) · (E,qq · q̇ + E,qλ λ̇)+ q̇ · (D,q (q, q

∗)− D,q (q, q̇)
) = 0 ∀q∗ ∈ Vad

Rate equations (14) are written in the same spirit, with some additional difficulties due to the presence of constraints
and to the state-dependent expressions of tangential and normal components in terms ofq̇.

2.2. Static stability criterion

It is assumed that under the action of a given dead load, an equilibrium position of a solid in frictional contact
with a fixed obstacle exists. The stability of this equilibrium is the subject of interest here.

The classical concept of static stability consists of defining the stability as the absence of additional displacement
when the load does not varyλ̇= 0. The equilibrium is thus statically stable if the rate problem admits only the trivial
solutionu̇= 0. The following statement is then straightforward [15,19,17,14,20,18]:

The condition of positivity

I(u∗)=
∫
V

∇u∗ :L : ∇u∗ dV +
∫
SRc

Nu∗
T ·C · u∗

T da +
∫
SRc

f Ṅ(u∗) ‖u∗
T ‖da > 0 for all u∗ �= 0 ∈ V 0

ad (18)

is a criterion of stability since it ensures the static stability of the considered equilibrium.
The significance of this criterion can be better understood from its energy interpretation in the same spirit as

Hill’s criterion of stability in plasticity, cf. [11,12,15,17]. A perturbation of the equilibrium by perturbation forces
is introduced fort � 0. Letu(t) denotes the perturbed motion starting from the equilibriumu(0)= ueq. The energy
balance at timet is

Wper(t) =
∫
V

(
W

(∇u(t)
) −W(∇ueq)

)
dV −

∫
Sr

rd (λ) · (u(t)− ueq
)
da −

t∫
0

∫
SR

R(τ) · u̇da dt +C(t)

whereWper (t) is the energy supplied by perturbation forces andC(t) is the kinetic energy of the solid at timet . At
the begining of the perturbation, i.e., for smallt , if the perturbed motion and the energy balance can be expanded
as

u(t)= ueq+ u1t + u2
t2

2
+ · · · , Wper(t) =W0 +W1t +W2

t2

2
+ · · · +C(t)

then, the following expressions are obtainedW0 = 0, W1 = 0, W2 = I (u1), cf. [15,17]. Thus, condition (18)
implies that the external world must supply energy at early times in order to perturbe the system from equilibrium.
This criterion ensures a certain stability in the energy sense, also called directional stability [12]. Its violation in a
direction of displacement leads to a divergence instability of the considered equilibrium since the system will leave
this position with a growing kinetic energy.

3. Flutter instability of the steady sliding equilibrium

For the sake of clarity, the stability of the steady sliding equilibrium of an elastic solid in contact with a moving
rigid half-space, in translation motion at a constant velocityw parallel to the free surface, is considered here in
small deformation.
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3.1. Steady sliding equilibrium

The steady sliding equilibriumu of the solid must satisfy∫
V

∇δu : L : ∇udV −
∫
Sr

rd · δuda −
∫
SR

(δuNN + fNτ · δuT )da = 0

This equation leads formally to a system of reduced equations of the form

N = kNN [uN ] + kNT [uT ] +Nd, T = fNτ = kTN [uN ] + kT T [uT ] + T d

The principal unknownuN must satisfy

uN = A[N] + B, N � 0, uN � 0, N · uN = 0 (19)

with {
A = (

kNN − kNT k
−1
T T kTN

)−1
(I − f kNT hT N)

hTN [N] = k−1
T T [Nτ ], B = (

kNN − kNT k
−1
T T kTN

)−1[
Nd − kNT k

−1
T T

[
T d

]] (20)

It is clear that the linear operatorA is not symmetric iff �= 0:(
N∗,A[N]) =

∫
SR

N∗(x)A[N](x)dS �= (
N,A[N∗]) (21)

Thus, a linear complementary problem (LCP) must be considered. In particular, the existence and uniqueness of a
steady sliding solution are ensured ifA is positive-definite orP -positive [21,22,3].

3.2. Instability of the steady sliding equilibrium

The stability of the steady sliding position can be obtained from the study of small perturbed motions. However,
the equations of motion cannot be linearized without the assumption of effective contact. Indeed, in the presence of
a loose contact, a small perturbed motion is not necessarily governed by linear equations because of the possibility
of separation. Under the assumption of an effective contact, if the sliding speed is never zero, the dynamic equations
can be written as∫

V

δu · ρüdV +
∫
V

∇δu :L : ∇udV +
∫
SR

NδuN dS +
∫
SR

fN
u̇T −w

‖u̇T −w‖ · δuT dS = 0 ∀δu, δN (22)

The linearization is then possible for sliding motions. The nature of this particular problem can be better understood
in the discretized form. After discretization, the equations of motion are


UN = 0
MYY Ÿ +KYYY = fΦ(Ẏ )N +FY

MNY Ÿ +KNY Y =N + FN

(23)

whereu= (UN,Y ) andΦ(Ẏ ) is a matrix dependent on the direction of sliding. The linearized equations for sliding
motions are


U∗
N = 0

MYY Ÿ
∗ +KYYY

∗ = fΦ N∗ + fΦẎ Ẏ
∗

MNY Ÿ
∗ +KNY Y

∗ = N∗
(24)

The general expressionu∗ = estU with U = (UN = 0,X) then leads to

s2MYYX +KYYX = f sΦẎX + fΦN , s2MNYX +KNYX =N (25)
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i.e., to the generalized eigenvalue problem

s2(MYY − fΦMNY )X − sfΦẎX + (KYY − fΦKNY )X = 0 (26)

Thus, the considered equilibrium is asymptotically stable (with respect to sliding motions) if�(s) < 0 for all s
and unstable if there exists at least one values such that�(s) > 0. This generalized eigenvalue problem can be
written as(s2 �M + s�C + �K)X = 0 with non-symmetric matrices�M, �K and complex eigenvalues and eigenvectors.
This analysis leads to the definition of a critical valuefd � 0 such that the considered equilibrium is unstable when
f > fd .

3.3. Example on the sliding contact of two elastic layers

The simple example of the frictional contact of two elastic infinite layers is considered here as an illustrating
example. This problem was discussed analytically by Adams [23], by Martins et al. [24] and by Renardy [28].

The contact in plane strain with friction of two infinite elastic layers, of thicknessh andh∗ respectively as
shown in Fig. 2, is considered. The lower face of the bottom layer is maintained fixed in the axesOxyz. The upper
face of the top layer, assumed to be in translation of velocityw in the directionOx, is compressed to the bottom
layer by an implied displacementδ < 0. At the interfacey = 0, the contact is assumed to obey Coulomb’s law of
friction with a constant friction coefficient. The celerities of dilatation and shear waves are first introduced:

c1 =
√
λ+ 2µ

ρ
, c2 =

√
µ

ρ
, τ = c2

c1

for the top layer and for the bottom layer (superscript *), to write the governing equations for the displacements of
the top layerwte1 + u(x −wt, y, t) and of the bottom layeru∗(x, y, t) under the form:



(
1− τ2

(
w

c2

)2)
ux,xx + τ2ux,yy + (

1− τ2
)
uy,xy = τ2

(
ux,t t − 2

w

c2
ux,tx

)

uy,yy + τ2
(

1−
(
w

c2

)2)
uy,xx + (

1− τ2
)
ux,xy = τ2

(
uy,t t − 2

w

c2
uy,tx

)
u∗
x,xx + τ ∗2u∗

x,yy + (
1− τ ∗2)u∗

y,xy = τ ∗2u∗
x,t t

u∗
y,yy + τ ∗2u∗

y,xx + (
1− τ ∗2)u∗

x,xy = τ ∗2u∗
y,t t

(27)

Boundary and interface conditions are

u(x −wt,h, t) = 0, u∗(x,−h∗, t) = 0, uy(x −wt,0, t)= u∗
y(x,0, t)

σyy(x,0, t)= σ ∗
yy(x,0, t), σxy(x,0, t)= σ ∗

xy(x,0, t), f σyy(x,0, t)= −σxy(x,0, t)

Fig. 2. Sliding contact of two elastic layers.
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The stability of the steady sliding solution can be obtained by a linearization of the dynamic equation under the
assumption of sliding perturbed motions near the steady sliding state. These motions are searched for under the
form of slip waves of wave-lengthL= 1/k:

u(x −wt, y, t) = e2πkct e2ikπ(x−wt)X(y), u∗(x, y, t)= e2πkct e2ikπxX∗(y)

The condition of existence of non null displacement modes(X, X∗) requires that the pairc andk must be a root
of the following equation:

F(c, k) = ρc2
2

(
A(p,q, kh)

)(
iB(p∗, q∗, kh∗)+ fC(p∗, q∗, kh∗)

)
+ ρ∗c∗

2
2(
A(p∗, q∗, kh∗)

)(
iB(p,q, kh)− fC(p,q, kh)

) = 0 (28)

wherep, q, A, B, C are appropriate functions [25]


p2 = 1+
(
c− iw

c2

)2

, q2 = 1+ τ2
(
c − iw

c2

)2

A(p,q, kh)= −4pq
(
1+ p2

) +pq
(
4+ (

1+p2
)2)cosh(2πpkh)cosh(2πqkh)

− ((
1+ p2

)2 + 4p2q2
)
sinh(2πpkh)sinh(2πqkh)

B(p,q, kh) = q
(
1− p2

)(
sinh(2πpkh)cosh(2πqkh)− pq cosh(2πpkh)sinh(2πqkh)

)
C(p,q, kh) = pq

(
3+ p2

) − pq
(
3+ p2

)
cosh(2πpkh)cosh(2πqkh)

+ (
2p2q2 + (

1+ p2
))

sinh(2πpkh)sinh(2πqkh)

The case of a rigid top layer is obtained whenc2 ⇒ +∞
F(c, k)= iB(p∗q∗, kh∗)+ fC(p∗, q∗, kh∗) = 0 (29)

For an elastic half-plane compressed into a moving rigid half-plane, cf. Martins et al. [24], the results are:

F(c)= iq∗(1− p∗2) + f
(
1+ p∗2 − 2p∗q∗) = 0 (30)

In the case of two elastic half-planes, cf. Adams [23], this equation can be written as:

F(c) = ρc2
2

((
1+ p2)2 − 4pq

)(
iq∗(1−p∗2) + f

(
1+ p∗2 − 2p∗q∗))

+ ρ∗c∗
2

2((1+ p∗2)2 − 4p∗q∗)(iq(
1− p2) − f

(
1+ p2 − 2pq

)) = 0 (31)

It has been established in each case that there exists a critical valuefd � 0 such that the steady sliding solution is
unstable forf � fd . For example,fd = 0 occurs for the system of two layers of finite depths while the possibility
fd > 0 may happen in the sliding contact of half-spaces, cf. [24,26,20,27,29].

4. Stick–slip-separation waves

The fact that the steady sliding solution is unstable leads to the study of possible dynamic bifurcations of the
sliding contact of solids. In the spirit of Hopf bifurcation [30], a periodic response can be expected as an alternative
stable response. This possibility has been explored in the example of two coaxial cylinders [27,31,32].

The mechanical response in plane strain of a brake-like system composed of an elastic tube, of internal radius
R and external radiusR∗, in frictional contact on its inner surface with a rotating rigid cylinder of radiusR +=

and of angular rotationΩ has been discussed, cf. Fig. 3. The mismatch= � 0 is a load parameter controlling the
normal contact pressures. This model problem enables us to exhibit the existence of nontrivial periodic solutions
in the form of stick–slip or stick–slip–separation waves propagating on the contact surface.
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Fig. 3. The problem of coaxial cylinders in frictional contact.

The governing equations of the system follow from the kinetic relations, the fundamental law, the linear elastic
constitutive equations, and the boundary unilateral contact conditions with Coulomb’s friction:



ε̄ = (∇ū)s

Div σ̄ = γ ¨̄u
σ̄ = ν

(1+ ν)(1− 2ν)
Tr(ε̄)I + 1

1+ ν
ε̄

ūr (ξ, θ, t) = ūθ (ξ, θ, t) = 0

σ̄rr (1, θ, t)= −p(θ, t), σ̄rθ (1, θ, t)= −q(θ, t)

ūr � δ, p � 0, p(ūr − δ)= 0

|q| � fp, q(1− ˙̄uθ )− fp|1 − ˙̄uθ | = 0

(32)

where non-dimensional variables are introduced,

ū= u

R
, σ̄ = σ

E
, r̄ = r

R
, γ = ρR2Ω2

E
, ξ = R∗

R
, δ = =

R
, t̄ =Ωt, ˙̄u= dū

dt̄
The steady sliding solution is given by,


ūer = δ

1

ξ2 − 1

(
ξ2

r̄
− r̄

)
, ūeθ = δf

1

ξ2 − 1

(
ξ2

r̄
− r̄

)(
1+ 1

ξ2(1− 2ν)

)

pe = δ
1

ξ2 − 1

1

1+ ν

(
ξ2 + 1

1− 2ν

)
> 0, qe = fpe

(33)

Since closed form dynamical solutions cannot be generated, two complementary approaches has been followed.
The first approach is semi-analytical after a reduction to a simpler system of equations. The second approach
consists of a numerical simulation by the finite element method and appropriate time-integrations.

An interesting simplification to the problem is obtained when the displacement is sought in the form

ūr =U(θ, t̄)F (r̄), ūθ = V (θ, t̄)F (r̄), F (r̄) = 1

ξ2 − 1

(
ξ2

r̄
− r̄

)
(34)

In this approximation, the following local equations are obtained from the virtual work equation


Ü − bU ′′ − dV ′ + gU = P

V̈ − aV ′′ + dU ′ + hV =Q

P � 0, U − δ � 0, P (U − δ)= 0

|Q| � fP, Q(1− V̇ )− fP |1− V̇ | = 0

(35)

where′ denotes the derivative with respect toθ anda, b, g, h, d are material and geometry constants. All of
them are positive except for the coupling coefficientd . Finally, only the non-dimensional displacements on the
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contact surfaceU(θ, t) andV (θ, t) and the non-dimensional reactionsP(θ, t) andQ(θ, t) remain as unknowns in
the reduced equations.

The steady sliding solution, given byUe = δ, Ve = δfg/h, P = Pe andQe = fPe , is unstable for the reduced
system. Indeed, under the assumption of sliding motions, a small perturbed motion is described byU = Ue,
V = Ve + V∗, P = Pe + P∗ andQ=Qe +Q∗. It follows that

V̈∗ − aV ′′∗ + f dV ′∗ + hV∗ = 0 (36)

If a general solution is sought in the formV∗ = est̄eikθ , then−s2 = ak2+h+ ikf d. Whenf = 0, it follows thats =
±iωk with ω2

k = ak2 +h. Thus two harmonic waves propagating in opposite senses of the form cos(kθ ±ωkt̄ +ϕ)

are obtained as in classical elasticity. Whenf > 0 and d >0, thens = ±(srk + isik), srk > 0, sik < 0, thus a
general solution of the differenceV∗ of the formV∗ = e±srk t̄ cos(kθ ± sik t̄ + ϕ) is obtained and represents two
waves propagating in opposite senses: an exploding wave in the sense of the implied rotation, and a damping wave
propagating in the opposite direction. Iff > 0 andd < 0, the exploding wave propagates in the opposite sense
since the previous expression ofs is still valid with srk > 0 and sik > 0.

It is expected that in some particular situations, there is a dynamic bifurcation of Poincaré–Andronov–Hopf’s
type. This means that the perturbed motion may evolve to a periodic response. This transition has been observed
numerically in many examples of the literature, cf., for example, [33] or [34]. To explore this idea, a periodic
solution has been sought in the form of a wave propagating at constant velocity:

U =U(φ), V = V (φ), φ = θ − c̄t̄ (37)

wherec̄ is the non-dimensional wave velocity,U andV are periodic functions of periodT = 2π/k. The physical
velocity of the wave is thusc = |c̄|RΩ and the associated dynamic response is periodic of frequency|c̄|kΩ . The
propagation occurs in the sense of the rotation whenc > 0. According to the regime of contact, a slip wave, a
stick–slip wave, a slip-separation wave or a stick–slip–separation wave can be discussed. The governing equations
of such a wave follow from (32):



(
c̄2 − b

)
U ′′ − dV ′ + gU = P(

c̄2 − a
)
V ′′ + dU ′ + hV =Q

P � 0, U � δ, P (U − δ)= 0

|Q| � fP, Q(1− V̇ )− fP |1− V̇ | = 0

(38)

The existence of stick–slip waves is obtained when the load is sufficiently strong or when the rotation is slow.
For example, forξ = 1.25 andf = 1, stick-positive slip solutions are obtained for 8� k � 12. It is found thatc
must have the sign ofd . These waves propagate in the sense of the previous exploding perturbed motions, thus
opposite to the rotation of the cylinder whend < 0, with a frequency and a celerity independent of the rotation
velocity Ω . The celerity is close to the celerities of dilatation and shear waves in the solid while the frequency
is inversely proportional to the radiusR. For example, for

√
E/ρ = 1000 m/s, ξ = 1.25, f = 1, R = 1 m and

Ω = 100 rad/s, the results obtained concerning the mode-8 wave areΨ = 0.839,c = 1255 m/s and the associated
frequency is 10045 Hz. Ifξ = 2,f = 0.3,R = 0.5 m,Ω = 10 rad/s, a frequency 8240 Hz and a celerity 1030 m/s
are obtained fork = 4 as shown in Fig. 4. Forξ = 1.15, for example,d is positive and the propagation goes in the
rotation direction. The limiting caseξ ⇒ 1 can be interpreted as the sliding motion of a rigid plate on an elastic
layer or of a rigid half-space on an elastic half-space [23,24]. The obtained solution is a wave with an oscillation
about the steady sliding response. The amplitude of the wave is linearly proportional to the rotationΩ . It also
increases with the friction coefficientf and decreases with the mismatch. Thus, for vanishing rotations, the steady
sliding solution is recovered as the limit of the dynamic response. The stick–slip solution can no longer be available
if the rotation is strong enough since the associated pressure may become negative. In the same spirit, for a small
mismatch, the pressure may become negative under the assumption of a stick–slip regime everywhere. This means
that the possibility of separation is not excluded when the mismatch is not strong enough or if the rotation or the
friction coefficient is sufficiently high.
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Fig. 4. Semi-analytical approach: an example of stick–slip wave in mode 4 withξ = 2, f = 0.3, Ω = 10 rad/s,R = 0.25 m andδ = 0.005. It
is found thatΨ = 0.644,c = 1030 m/s. Phase diagram and variations ofV/Ve , P/Pe andQ/Qe in [0,2π/k].

Fig. 5. A mode-4 stick–slip–separation wave, obtained by numerical simulations forξ = 2, Ω = 50 rad/s, f = 0.7, δ = 0.001. The isovalues
of the radial displacement (mm): separation, slip and stick nodes on the contact surface are given respectively in red, green, blue.

A numerical simulation with an explicit scheme using Lagrange multipliers [35,36] has been performed. The
caseξ = 2 andf = 0.3 has been considered. Starting from a motionless initial state, the mismatch displacement
is then increased linearly from 0 to its final value. A cyclic limit response is then obtained for large time. The
numerical simulation leads to a stick–slip wave in mode 4 without forcing and the obtained response is close to the
analytical solution of the reduced approach.

It was also checked that a stick–slip–separation wave is effectively obtained when the mismatch is small enough
or when the friction is high enough. For example, whenΩ = 50 rad/s, δ = 0.001 andf = 0.7, the limit cycle
results as a stick–slip–separation wave. The result for radial displacements is shown in Fig. 5.
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In fact, it is well known that a periodic response does not systematically result from the flutter instability of
the steady sliding solution. It has been observed in various examples of discrete or continuous systems that the
response may be quasi-periodic or non-periodic or chaotic [37,5,38,3]. Periodic responses prevail in the example
of coaxial cylinders because of the special geometry of the system. Periodic solutions under the form of stick–slip
waves have been also obtained by Adams in the sliding contact of two elastic half-spaces [39]. The generation of
dynamic stick–slip–separation waves on the contact surface can be compared to Shallamach waves in the sliding
contact of rubber in statics, cf. [40,36,27,41,32,42,43,39,34,20,44].

5. Friction-induced vibrations and noises

It is well known that the presence of friction induces mechanical vibrations and noise emittences in the
sliding contact of solids. For example, the creaking noise of a door, the unsteady motion with fits and starts of
a windscreenwiper can be interpreted as stick–slip motions resulting from the instability of the steady sliding
solution. In particular, the phenomena of squeal [45] have been interpreted in the literature in this way. The squeals
of band brakes in washing machines have been discussed in [46]. The brake squeals of an automotive disk brake has
been examined in [27,47], cf. Fig. 6. The squeal of a system glass–rubber in finite deformation is considered in [34].

Fig. 6. Some unstable modes of the system pad-disk in an automotive disk brake [27,25]
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