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Continuum Micromechanics: Survey
André Zaoui1

Abstract: The foundations of classical homogenization techniques, which aim at predicting the overall behavior of heterog
materials from that of their constituents, are reviewed. After introductory definitions and a methodological preamble, attention is
on linear elasticity, for which the basic principles of estimating and bounding the overall properties are introduced and illustrated
context, special recourse is made for that to the solution of the inclusion and inhomogeneity problems as reported by Eshelby
Approaches proposed recently to account in a better way for the structural morphology of the considered materials are briefly m
The case of linear elasticity with eigenstrains is then discussed: several applications, including heterogeneous thermoelastic
investigated within this framework. Finally, outlines of nonlinear micromechanics are briefly reported from a historical point o
from rate-independent elastoplasticity to nonlinear elasticity and viscoplasticity, examples of a fruitful interaction between the se
new estimates and the derivation of rigorous bounds are given and the crucial question of the description of intraphase hetero
emphasized. Viscoelastic coupling and rate-dependent effects are briefly discussed in conclusion.

keywords: Micromechanics; Surveys; Heterogeneity; Material properties.
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Introduction

The problem of the transition from the microscale to the macr
cale in view of the prediction of the macroscopic mechani
constitutive behavior of materials has been the matter of inten
research for several decades. The microscale considered he
fers to the inhomogeneous constitution of the considered ma
als and to the associated inhomogeneity of their mechanical c
acteristics. Whereas preliminary results in this field were obtai
as early as in 1887 for the first ‘‘law of mixtures’’~the well-
known Voigt estimate!and in 1929 for another one~the Reuss
estimate!, the actual foundations of homogenization techniq
are only about forty years old. Two main underlying motivatio
have been active. The first one originated from metal forming
from the will of a few pioneer material scientists to predict t
plastic flow of polycrystals from plastic glide in single crysta
the Sachs model~Sachs 1928!as well as the popular Taylo
model ~1938! actually addressed very difficult problems of no
linear micromechanics, though from what can be apprecia
today as a rather empirical point of view. The preliminary dev
opment of composite materials progressively motivated a n
interest in this field, mainly for linear elasticity, on the firm bas
of continuum mechanics: the basic concepts of ‘‘representa
volume element’’ with adequate boundary conditions and of ‘‘h
mogeneous equivalent medium’’ were defined and powe
variational approaches were achieved from which rigoro
bounds, instead of approximate estimates, were derived. At
same time, the early Voigt, Reuss, and Taylor estimates were

1Laboratoire de Me´canique des Solides, E´ cole Polytechnique, CNRS
91128 Palaiseau Cedex, France.
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assessed as bounds whereas the basic inclusion problem
given a general solution, opening the way to improved estima
In the early 1960s the main basis of the so-called ‘‘continu
micromechanics,’’ according to Hill~1965!, can be considered a
founded.

New results in the field of linear elasticity have been contin
ously derived from that period, with special mention of refin
bounding associated with an improved morphological descrip
and of thorough theories for the special case of media wit
periodic microstructure~see, e.g., Bensoussan et al. 197
Sanchez-Palencia 1980; Suquet 1987!. Nevertheless, it ca
considered that the main novel developments during the las
years have been concerned with nonlinear continuum micro
chanics. A striking feature of this period lies in the fruitful inte
action which has developed between two different points of vi
attached to the derivation of bounds and estimates, respecti
while they have been going forward independently for more th
two decades, it has been possible at some stage to make com
sons between them in specific situations. Consequently, s
unanimously adopted estimates were shown to violate rigor
bounds whereas variational procedures were used to obtain
estimates. Despite significant advances in this field, many p
lems still remain open today, especially for constitutive behav
which does not derive from one single potential. Another imp
tant new~or renewed!current field of research, especially pro
moted by the increasing facilities of numerical treatment and
associated ‘‘multiscale’’ approaches, is concerned with situati
where the basic concept of ‘‘representative volume element
failing and where internal length scales must be taken into
count.

In this brief survey of continuum micromechanics, the stres
deliberately laid on the basic foundations and on the more cla
cal and simpler case of linear elasticity, including the vario
situations for which eigenstrains or eigenstresses are present
main questions and approaches concerning nonlinear micro
chanics are only reported shortly and qualitatively while the lim
of the considered theories are briefly discussed in conclusion
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Foundations of Continuum Micromechanics

Scale Separation

Classical homogenization techniques aim at replacing an ac
inhomogeneous complex body by a fictitious homogeneous
which behaves globally in the same way. Continuum microm
chanics is mainly concerned with statistically homogeneous
terials for which it is possible to define a ‘‘representative volum
element’’ ~RVE! and an ‘‘equivalent homogeneous medium
~EHM! which are equivalent to each other from a mechani
point of view. This means that their overall responses to
mechanical loading have to be the same. In other words, the E
must be such that the stress and strain fieldsS(XI ) and E(XI )
derived at the macroscale by solving the boundary value prob
of a homogeneous body constituted by this fictitious homo
neous material are the average values, over any RVE center
XI , of the local stress and strain fieldss(xI ), and «(xI ) which
would have been derived at the microscale if the considered
crostructural inhomogeneities could have been accounted fo
such a calculation.

This requires at least that, for the mechanical behavior un
investigation, the characteristic length, sayd, of the considered
inhomogeneities and deformation mechanisms to be much sm
than the size, sayl, of the studied volume element, so that th
element could be considered as representative of the studied
terial whatever its location in the macroscopically~or statistically!
homogeneous body. Moreover,l must be sufficiently smaller than
the characteristic dimensionsL of the whole body and than th
fluctuation lengthl of its prescribed mechanical loading so as
make possible the use of the classical integral and differen
tools of structural analysis. In addition, the smallest character
lengthd has to be compatible with the use of the basic conce
~strain and stress tensors, etc.!of continuum mechanics. To sum
up, we must have

d0!d! l !L, l !l (1)

whered05lower length bound under which continuum mechan
is no more valid. Formula~1! gives only necessary scale sepa
tion conditions for such a problem not to be meaningless: th
conditions may be not sufficient when percolation phenomen
long-range correlation effects are prominent.

Homogenization Methodology

Once the scales have been defined, the RVE’sdescription, for
both its geometrical and mechanical characteristics, has first t
achieved. A basic difference must be emphasized at this p
between two kinds of situations. The first one is concerned w
materials whose microstructure can be completely described;
is especially the case for media with a periodic microstructu
For such materials, deterministic approaches, which are not b
cally different from those used to solve classical boundary-va
problems of continuum mechanics, have been developed with
rigorous mathematical framework; approximate numerical tre
ments, resorting to the popular ‘‘unit-cell’’ method, have al
been finalized. This case is not considered in the sequel an
tention is focused on heterogeneous materials with a random
crostructure. For such materials, a statistical~or stochastic!ap-
proach is necessary.

This needs first the specification of the considered mechan
‘‘phases’’ and the determinationof their geometric and mechan
cal characteristics, and then the statistical description of the
2
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tial distribution~or the ‘‘morphology’’! of the phases: the textur
function and the correlation functions of the lattice orientatio
for a polycrystal, the volume fraction, and the shape and orie
tion distribution of the particles or fibers for a composite mater
etc. The crucial point is that, from a practical point of view, t
spatial distribution of the phases cannot be completely de
mined, even in a statistical sense. Consequently, without ap
priate assumptions or approximations, the constitutive behavio
the EHM cannot be determined unambiguously.

In other words, for a given description of the RVE, thecon-
centration~or ‘‘localization’’! problem, which is concerned with
the mechanical modeling of the interactions between the ph
and the associated derivation of the local fieldss(xI ), «(xI ),...,
within the RVE from the knowledge of the macroscopic quantit
S, E,..., cannot be solved in general. One can then proceed a
two routes: either one makes additional assumptions or appr
mations in order to derive someestimatesfor the overall behavior
or one looks forboundsfor the overall mechanical properties
Such estimates are more or less pertinent according to the
equacy of the underlying assumptions; as for the bounds, they
derived by considering all the EHMs which are consistent w
the limited available information on the phase distribution and
computing the extremal properties which could be reached in
way. This can be done by using variational approaches which
with admissible strain or stress fields, i.e., compatible strain
equilibrated stress fields obeying the displacement or ten
boundary conditions on the RVE, respectively: this needs an
equate definition of these conditions.

As a matter of fact, the original concentration problem is no
‘‘well-posed’’ boundary-value problem since the detailed con
tions on the boundary are not known. So, this problem is fi
transformed into a simpler one by assuming homogeneous bo
ary conditions on the RVE~Hill 1963; 1967; Hashin 1983!. Ac-
cording to thehomogeneous stress boundary conditions, surf
tractionsTI g are supposed to be prescribed at the boundary
given by

TI g5S"nI (2)

where the constant tensorS5known macroscopic stress tens
andnI 5unit outward normal at the boundary. This approximati
is valid far enough from the boundary, i.e., almost everywhere
the RVE as long as conditions~1! are fulfilled. From Eq.~2!, one
proves thatS equals the volume average stress^s& in the RVE,
denoted byV; in fact, for any equilibrated~i.e., divergence free!
stress fields* (xI ) which obeys Eq.~2!, one has

^s* &5~1/V!E
V

s* ~xI !dV5S (3)

Similarly, homogeneous strain boundary conditionsare asso-
ciated to prescribed displacementsuI g at the boundary given by

uI g5E•xI (4)

whereE5macroscopic~constant!strain tensor andxI belongs to
the boundary. This approximation is satisfactory as long ad
! l . One getsE5^«& since, for any compatible~i.e., derived from
a displacement field!strain field«8(xI ) obeying Eq.~4!, one gets

^«8&5~1/V!E
V

«8~xI !dV5E (5)

For the homogeneous boundary conditions~2! or ~4!, it is easy to
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prove, in addition, the Hill lemma which consists in a simil
average equation for the strain energy densitys* :«8(5s i j* « i j8 ),
namely

^s* :«8&5^s* &:^«8&5S:E (6)

wheres* (xI ) is equilibrated;«8(xI ) is compatible; and either the
former or the latter obeys homogeneous boundary condit
~note that this result can also be proved with more general,
cluding periodic, boundary conditions!. In both cases, one g
finally, in view of estimating or bounding the overall propertie
the approximate or trial strain and stress fields, respectively

«8~xI !5A8~E! or s* ~xI !5B* ~S! (7)

where A8 and B*5strain and stress concentration operato
respectively.

The last step consists in thehomogenizationprocedure itself,
by combining the local constitutive equations@says~«! or «~s!#,
the average Eqs.~3! or ~5! and the concentration relations~7!.
This leads, according to the boundary conditions~2! or ~4!, to

E* ~S!5^«* ~s* !&5^«* @B* ~S!#& (8)

or to

S8~E!5^s8~«8!&5^s8@A8~E!#& (9)

While in principle, Eqs.~8! and ~9! are not equivalent, they ten
to be so whend/ l tends to zero~Hill 1967; Mandel 1972!, as
assumed in the sequel, according to Eq.~1!. On the contrary, for
periodic media andd of the order ofl, Eqs.~8! and~9! would lead
to substantial differences~Suquet 1987!.

Linear Elasticity

In this section, a natural initial state is considered, i.e., no eig
strains or eigenstresses are present. Due to the linearity o
constitutive equations and to the unicity of the solution, Eqs.~7!
must be linear and homogeneous with respect toE or S. This
means that the strain or stress concentration operatorsA8 and
B* reduce to simple fourth-order tensors fieldsA8(xI ) and
B* (xI ), respectively

«8~xI !5A8~xI !:E or s* ~xI !5B* ~xI !:S (10)

with, because of Eqs.~3! and ~5!, ^A8&5^B* &5I ~I is the fourth-
order symmetric unit tensor!. With the local constitutive equatio

s5cr :« or «5sr :s (11)

where the elastic modulicr and compliancessr are known and
uniform in every phase~r!, Eqs. ~8! and ~9! become

E* 5^«* &5^s:s* &5^s:B* &:S5S* :S (12)

S85^s8&5^c:«8&5^c:A8&:E5C8:E (13)

whereS* andC8 can be viewed either as estimates or as bou
~through the use of the minimum principles of linear elastic
i.e., the theorems of potential and complementary energy! for the
overall effectivecompliances and moduliSeff and Ceff, respec-
tively. Thanks to Hill’s lemma, the energetic definition of the
tensors, namely

^s:s:s&5S:Seff:S (14)

^«:c:«&5E:Ceff:E (15)

can be proved to be equivalent to the direct one

E5^«&5^s:s&5Seff:S (16)
3

e

S5^s&5^c:«&5Ceff:E (17)

Estimates for Effective Moduli and Compliances

Estimates forCeff or Seff can be obtained wheneverA8 or B* are
estimated. The simple choiceA85I or B*5I leads to the popular
direct or inverse ‘‘laws of mixtures,’’ i.e., either toCLM5^c& or to
SLM5^s&. Various other estimates have been derived by use
Eshelby’s solution of the inhomogeneity problem~Eshelby 1957!.
Consider an ellipsoidal inhomogeneity~H! with the modulicH ,
perfectly bonded to an infinite homogeneous elastic matrix~the
‘‘reference medium’’!with the moduli C0 ~or compliancesS0!
subjected to the homogeneous strainE or stressS at infinity. The
stress and strain fieldssH and«H in ~H! are found to be uniform
and given by

«H5@ I1 PH
0 :~cH2C0!#21:E, sH5cH :«H (18)

PHi jkl
0 52S E

H
Gik

0 ~xI 2xI 8!dV8D
l j ~ i j !~kl !

xI PH

where (i j )(kl)5symmetrization with respect to (i j ) and (kl) and
G0(xI 2xI 8)5Green tensor for the infinite medium with moduliC0

~i.e., the tensor which correlates the displacement atxI to the unit
point force applied atxI 8!. The tensorP0 is closely related to the
Eshelby tensorS0 Esh ~namely,SH

0 Esh5PH
0 :C0!. For a sphere and

isotropic elasticity, one has

SSph
0 Esh5a0J1b0K I 5J1K Ji jkl 5~1/3!d i j dkl (19)

a05
3k0

3k014m0 b05
6~k012m0!

5~3k014m0!

with m0 andk05shear and bulk moduli of the reference mediu
respectively.

Inclusion-based estimates for the overall moduli can be
fined from this solution by estimating the average mechan
state in each phase~r! of the RVE subjected to the macroscop
strain E as that of an ellipsoidal inhomogeneity (Hr) with the
same modulicr , embedded in an infinite matrix with arbitrar
moduli C0 subjected to some adequate uniform strain at infin
E0. The shape and orientation of (Hr) can be specified from wha
is known about the geometry of phase~r! whereasE0 is deter-
mined by the average equation^«&5E. This results in the follow-
ing set of equations:

«r5@ I1 Pr
0:~cr2C0!#21:E0

E5^«&5^@ I1 P0:~c2C0!#21&:E0 (20)

C0
est5^c:@ I1 P0:~c2C0!#21&:^@ I1 P0:~c2C0!#21&21

As for the moduliC0, they can be chosen at will in order t
express at best the specific morphology of the considered m
rial. Several classical estimates correspond to special choice
C0 or S0: the law of mixtures is recovered with vanishing valu
for C0 or S0; the Mori-Tanaka model~Mori and Tanaka 1973;
Benveniste 1987!, which is devoted to particle reinforced co
posites for small volume fractions of particles, is associated to
choiceC05Cmat, i.e., the elastic moduli of the matrix phase, e
pressing the fact that the continuous matrix plays a promin
morphological role; the self-consistent estimate~Hershey 1954;
Kröner 1958!corresponds to the choiceC05CSC, with CSC the
searched overall moduli, which is adequate for materials, suc
polycrystals, whose phases are dispersed in the RVE so that
of them plays any specific morphological role. In the latter ca
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Eqs. ~20! for CSC become integral equations, sinceP05PSC and
C05CSC are not known in advance.

Bounds for Effective Moduli and Compliances

Bounds forCeff or Seff can be derived with use of the minimum
principle for elastic media. For homogeneous boundary co
tions, they read

^s* :s:s* &>^s:s:s& (21)

^«8:c:«&>^«:c:«& (22)

so that, by combining Eqs.~10!, ~14! and~15!, ~21! and~22!, we
get

S:~^TB* :s:B* &2Seff!:S>0 ;S (23)

E:~^TA8:c:A8&2Ceff!:E>0 ;E (24)

where the tensorTA is transposed fromA (TAi jkl 5Akli j ).
Bounds can be derived from Eqs.~23! and~24! whenever ad-

missible strain or stress fields,«8(xI ) or s* (xI ), are found which
make this derivation possible from the known statistical desc
tion only. When the phase moduli and volume fractions
known, uniform fields can be chosen, namely,s*5S ~so that
B*5I! or «85E, ~A85I!, which leads to the well-known Reus
and Voigt bounds

S:~^s&2Seff!:S>0 ;S ~Reuss! (25)

E:~^c&2Ceff!:E>0 ;E ~Voigt! (26)

If nothing more is known about the space distribution of t
phases,Seff and Ceff are arbitrarily anisotropic, so that Eqs.~25!
and~26! lead to a rather loose bounding of the 21 correspond
elastic constants. On the other hand, if the symmetry of the glo
anisotropy is known in advance, the Reuss and Voigt bounds
more efficient, but they are certainly not optimal. If the inhom
geneous material is known to be isotropic at the micro and
macro scales, the overall shear and bulk modulimeff andkeff are
bounded by

^m21&21<meff<^m& and ^k21&21<keff<^k& (27)

Note that the laws of mixtures, which estimate any overall para
eter as the mean value of the corresponding local ones, are
valid here as bounding properties. This is no more the case
other elastic constants, such as the Young modulus or the Po
ratio, and it is completely wrong for anisotropic elasticity.

In addition, when the spatial distribution of the phases
known to be isotropic, the Voigt-Reuss bounding can be
proved, as shown by Hashin and Shtrikman~1963!. The corre-
sponding derivation is based on an optimization procedure w
respect to an infinite set of admissible trial strain fields obtain
as the solution of the following problem: an infinite elastic bo
with uniform moduliC0 is subjected to an arbitrary distribution o
fictitious body forcesfI (xI ) derived from apolarization stress field
p(xI ) by fI5div p. The associated strain field can be found
using the same Green techniques as those mentioned abov
the solution of the inhomogeneity problem; for polarization str
fields which are piecewise constant per phase,pr , the property of
an isotropic distribution of the phases can be used to derive
plicit bounds which have still to be optimized through an a
equate choice ofp(xI ) and C0. The corresponding bounding fo
local and global isotropy reads as follows:
4
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^m~m21b2dm2!21&•^~m21b2dm2!21&21<meff

<^m~m11b1dm1!21&•^~m11b1dm1!21&21 (28)

^k~k21a2dk2!21&•^~k21a2dk2!21&21<keff

<^k~k11a1dk1!21&•^~k11a1dk1!21&21 (29)

where m25 inf(m); k25 inf(k); m15sup(m); k15sup(k);
dm65m2m6; dk65k2k6; and b6 and a6 are defined from
Eq. ~19!. Whenk andm are ‘‘well ordered’’ i.e.,m2 andk2 refer
to the same ‘‘softest’’ phase andm1 andk1 to the same ‘‘stiffest’’
phase!, the Hashin-Shtrikman bounds belong to the set of
mates defined by Eq.~20!. This result is an illustration of the
strong connection which exists between heterogeneity and p
ization stressesp(xI ), which can be viewed as eigenstresses~as-
sociated with eigenstrains«T throughp(xO)52C0:«T(xI )), as well
as between Eshelby’s problems of the heterogeneity and of
inclusion ~see hereafter!.

‘‘Point’’ Versus ‘‘Pattern’’ Approaches

The Hashin-Shtrikman bounds have been derived for more g
eral cases, especially when the phase distribution is no more
tropic but has an ellipsoidal symmetry~Willis 1977!. They can
also be integrated in the so-called ‘‘systematic theory’’ develop
by Kröner ~1977! for elastic random materials. This theory
based on the solution of the general equation for inhomogene
elasticity by use of Green techniques and on the description
random media by correlation functions of their elastic modu
The effective moduli~or compliances!can be written as forma
infinite series whose general term of ordern is associated with the
n-point correlation functions of the elastic moduli. By truncati
of the series at any rank, bounds for the effective moduli~or
compliances!are derived: they are closer and closer when
rank of truncation increases. In the case of ‘‘graded disorder
materials, which satisfy some property of the correlation fu
tions up to a given rankn, the Voigt-Reuss bounds are recover
for n51, the Hashin-Shtrikman bounds forn52, and the self-
consistent estimate forn→`, which corresponds to ‘‘perfectly
disordered’’ materials~Kröner 1978!.

This theory is essential for a thorough understanding of
elasticity of random media, but it is of limited practical hel
Besides some mathematical difficulties in the effective compu
tion of bounds, the use of~point! correlation functions happen
not to be very convenient in many cases: their experimental id
tification can be performed only up to limited orders while som
major primary morphological characteristics, such as the ph
connectedness or disconnectedness, need quite high orders
accounted for efficiently. Fifteen years before Kro¨ner’s theory,
this crucial point of the geometrical description of ‘‘matrix
inclusion’’-type morphologies had been given a quite attract
tentative solution by Hashin~1962! according to a completely
different point of view: the ‘‘composite spheres~or cylinders!
assemblage’’~CSA, say, or CCA!is made of spherical particle
~or cylindrical parallel fibers!surrounded by a concentric matri
layer whose thickness is such that the phase volume fractio
each composite element equals the prescribed volume fraction
the composite; these similar composite elements have a var
size going to zero so as to fill up the whole space and to main
the connectedness of the matrix; they are distributed in an iso
pic ~or transversely isotropic!manner according to the case~par-
ticles or fibers!.
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Unfortunately, the mechanical treatment of such assembla
proved to be disappointing: Hashin’s bounds for the CSA@or
Hashin-Rosen’s bounds~1964! for the CCA# for the shear~or
transverse shear!modulus could be very distant from each oth
even more than the Hashin-Shtrikman’s ones which considerany
isotropic ~or transversely isotropic!distribution instead of the
very specific ones expressed by the CSA~or the CCA!. Later, this
approach was resumed by Christensen and Lo~1979! in view of
estimating the overall shear modulus: by transferring to this c
the basic idea of the self-consistent procedure, they propo
after Kerner~1956!, to consider one composite sphere~or cylin-
der! embedded in an infinite matrix with the effective~unknown!
moduli and to determine these effective moduli through a s
consistent energy condition. The results, as compared with th
derived from several micromechanics models of the same c
~Christensen 1990!, were more satisfying; but the morpholog
meaning of this ‘‘three-phase model’’~or ‘‘generalized self-
consistent scheme’’!was less clear than the initial one.

Going back to Hashin’s initial approach, one can save
basic idea of finite composite elements and improve the geom
cal description of their spatial distribution. This leads to comb
a deterministic description of small, but finite, well-chosen ‘‘com
posite patterns’’ and a statistical representation of their distri
tion: in many cases, essential morphological features can be
pressed in this way much more directly and easily than by us
point correlation functions. According to this ‘‘pattern approac
~Stolz and Zaoui 1991!, a given multiphase material is deco
posed, after some morphological analysis, intoN patterns or
‘‘morphological phases’’~l! consisting of identical composite
representative domainsDl l . The general Hashin-Shtrikman pro
cedure is then applied with a polarization stress fieldpl(yI ) which
is no more uniform within the morphological phases~l! but has
identical values at homologous pointsyI of the domains of the
same pattern. With help of adequate definitions of strain
stress averages over homologous points in each pattern and u
the Green techniques, the polarization stress field can be
mized and new Hashin-Shtrikman-type bounds can be obtain
the distribution of the pattern centers is isotropic or ellipsoid
Like for the classical ‘‘point’’ Hashin-Shtrikman bounds, the
bounds can be obtained from the solution ofN elementary
inclusion-matrix problems where each domainDl i is embedded
in an infinite homogeneous matrix with extremal moduli. The
problems can be solved numerically~Bornert et al. 1996!in the
general case. For the CSA and isotropy or for the CCA and tra
verse isotropy, an analytical solution can be derived~Hervéet al.
1991!and extended ton-layered spheres or cylinders according
Hervé and Zaoui~1993, 1995!. They improve significantly o
classical Hashin or Hashin-Shtrikman bounds. Similarly, n
generalized ‘‘pattern-based’’ self-consistent estimates can be
tained~Bornert 1996!.

Linear Elasticity with Eigenstrains
A number of interesting physical situations can be analyzed fr
an extension of the foregoing developments to the case w
eigenstrains«T(xI ) or eigenstressesp(xI ) are present in the initia
state. A typical situation of this kind is concerned with therm
strains «th(xI ), which can derive, for instance, from a unifor
temperature variationDT in a heterogeneous material whose co
stituents~r! have different elastic modulicr and different tensors
of thermal expansionar ~or coefficientsa r in case of local isot-
ropy!. It may be useful to predict the overall thermal strainEth as
well as the effective tensors of thermal expansionaeff ~or coeffi-
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cientsaeff in case of global isotropy!. This cannot be derived
direct averaging of the local quantities since, while the total str
field «(xI )5«el(xI )1«th(xI ) is still compatible, so that the overa
strain tensorE is the volume average of«(xI ), neither the elastic
nor the thermal strain fields are generally compatible; con
quently,Eth andaeff do not reduce tô«th& and ^a&, respectively.

Similar questions arise when electric or magnetic effects
well as various environmental phenomena~moisture, oxidation,
corrosion, etc.!are considered in heterogeneous elastic me
i.e., whenever stress-independent eigenstrains are superimp
on the elastic strains; prestresses or eigenstresses can be
with in the same manner, e.g., when gas~Fen-Chong et al. 1999
or liquid ~Dormieux and Maghous 2000!pressure is present in
porous elastic materials. Though stress dependent, even p
strains can also be considered as long as they are fixed.

The main result which is easily derived from the analysis
such problems by repeated use of Hill’s lemma~6!, is the follow-
ing:

ET5^«T:B&, Eel5^«el:B&
(30)

P5^p:A&, Ceff:E5^«:c:A&

which leads directly to the effective tensors of thermal expans
aeff or to the effective ‘‘tensors of thermal coefficients’’keff ~de-
fined from the local tensors of thermal coefficientsk5c:a!.

aeff5^a:B&, keff5^k:A& (31)

It is noteworthy that this result depends, through the strain
stress concentration tensorsA or B, only on the solution of the
purely elastic problem~i.e., without eigenstrains!—which, by th
way, proves that it is inconsistent to use the direct law of mixtu
~i.e., A85I! for estimatingCeff as ^c& and aeff as ^a& simulta-
neously. For a two-phase material, these concentration tensor
not even needed if the overall elastic moduli or compliances
known ~possibly from direct measurement instead of modellin
according to Levin’s theorem~Levin 1967!

aeff5^a&1~Seff2^s&!:~s22s1!21:~a22a1!
(32)

keff5^k&1~Ceff2^c&!:~c22c1!21:~k22k1!

Associated results can be derived for the average thermal stre
in both phases without additional knowledge of the concentra
tensors.

In the general case, the local mechanical state within
phases can be estimated according to adequate models. Inclu
based models have been developed from the solution of Eshe
inclusion problem which refers to an infinite unloaded homog
neous elastic body with the moduliC0 an ellipsoidal part~I! of
which undergoes the uniform~‘‘stress-free’’! eigenstrain«T ~or
the eigenstresspI52C0:«T!. The resulting strain and stress te
sors in the inclusion are found to be uniform and given by

«I5SI
0Esh:«T52PI

0:pI , sI5C0:~«I2«T! (33)

where the tensorsSI
0Esh andP0 have already been defined in Eq

~19! and ~18! for the solution of Eshelby’s inhomogeneity prob
lem. If the inclusion is inhomogeneous, with the modulic, and if
the matrix undergoes the uniform stress-free strainET and is sub-
jected to the uniform strainE at infinity, the strain and stres
tensors in (IH) are still uniform and given by

«IH5@ I1 PIH
0 :~c2C0!#21:@E1PIH

0 :~c:«T2C0:ET!#
(34)

sIH5c:~«IH2«T!

These results can be used to derive sets of estimates in a
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similar to the one already reported when no eigenstrains
present. For example, for a polycrystal with isotropic~and then
uniform! elasticity and an isotropic distribution of the constituen
~e.g., the grain families~r! with the same lattice orientation!un-
dergoing uniform isochoric eigenstrains« r

T , the concentration
equation associated with a self-consistent scheme will read
cording to Eqs.~19! and ~34!

«r5E1PSph
0 :C0:~«r

T2ET!5E1SSph
0 :~«r

T2ET!

5E1b0~«r
T2ET! (35)

or

sr5S12m0~12b0!~ET2«r
T! (36)

with ET5^«T& ~because of uniform isotropic elasticity,B5I! and
S5^s&.

Outlines of Nonlinear Micromechanics

Rate-Independent Elastoplasticity

Except for pioneering contributions based on simple assumpt
of uniform strain or stress and their variants, such as the Ta
model and its variants, nonlinear micromechanics was first
dressed significantly through the self-consistent prediction of
overall elastoplastic response of polycrystals by Kro¨ner~1961!on
the basis of Eshelby’s solution of the inclusion problem. He p
posed to consider the plastic strain«p as a ‘‘stress-free strain’’ in
the sense of Eshelby and to model the mechanical interac
between one phaser ~i.e., one set of grains with the same latti
orientation!and all the other phases as the one between an e
soidal inclusion with the uniform plastic strain«r

P and the sur-
rounding infinite matrix with the macroscopic~uniform! plastic
strainEP. For isotropic elasticity with the moduli (m,k), spheri-
cal inclusions and isochoric plastic strains, this corresponds to
problem solved by Eqs.~35! and ~36!, namely, to the concentra
tion equation

sr5S12m~12b!~EP2«r
P! (37)

which is the so-called ‘‘Kro¨ner interaction law.’’
This approach is open to the criticism that elastoplastic in

actions cannot reduce to the elastic ones which are conce
with Eshelby’s inclusion problem; actually, plastic flow is stre
dependent and the plastic strain is not a ‘‘stress-free strain’’ w
plastic flow is considered. As a matter of fact, predictions deriv
from Kröner’s model proved to be very close to those deriv
from an assumption of uniform strain, which can be guessed f
Eq. ~37! where the plastic strain deviation is forced to be ve
small because of the high value of the elastic shear modulum.
This means that the mechanical interactions between the ph
are overestimated by this model which yields too ‘‘stiff’’ est
mates. Four years later, Hill~1965!proposed an alternative use o
Eshelby’s solution: by linearization of the constitutive equatio
of elastoplasticity and use of the tangent~multibranch!local and
global instantaneous moduli, denoted aslr andLSC, respectively,
the solution of the inhomogeneity~instead of the inclusion!prob-
lem can be integrated in the linear self-consistent concentra
equation, as derived from Eq.~20!, namely

«̇r5@ I1 Pr
SC:~ lr2LSC!#21:Ė0

Ė5^«̇&5^@ I1 PSC:~ l2 LSC!#21&:Ė0 (38)

LSC5^ l: @ I1 PSC:~ l2 LSC!#21&:^@ I1 PSC:~ l2 LSC!#21&21
6

-

s

-

d

s

For similar and aligned ellipsoids, the concentration equation
be put in the more convenient form

ṡ5Ṡ2L* :~ «̇2Ė! (39)

where Hill’s ‘‘constraint tensor’’L* is given by

L* 5~PSC!212LSC5LSC:@~SEshSC!212I # (40)

The fundamental interest of Hill’s approach lies in the fact th
it defines and applies the basic concept oflinearization of the
constitutive equations in view ofnonlinearhomogenization; con-
sequently, the elastoplastic nature of the intergranular accom
dation, which was reduced to an elastic one by Kro¨ner’s treat-
ment, is restored and expressed through an increme
formulation of the concentration equation, in adequation with
flow theory of plasticity. Hill’s incremental formulation makes th
recourse to Eshelby’s elastic problem of the inhomogeneity p
sible, whereas Kro¨ner’s assimilation of the plastic strains t
eigenstrains of the inclusion problem constrains the solution
the concentration problem within an elastic framework. A num
of applications of Hill’s model to metal forming, initiated b
Hutchinson~1970!and extended at finite strain by Iwakuma an
Nemat-Nasser~1984! or Lipinski et al. ~1990! have shown this
model to be a significant improvement with respect to Kro¨ner’s
model. The reason for that can be illustrated by the simplifi
isotropic version of Hill’s model proposed by Berveiller an
Zaoui ~1979! within the deformation theory of plasticity, unde
the assumption of local and global proportional loading: for is
tropic elasticity and phase distribution and isochoric plastic str
the corresponding ‘‘secant’’ approach leads to the following co
centration equation:

sr5S12m~12b!aep~EP2«r
P! (41)

which only differs from Kröner’s law by the scalar ‘‘elastoplasti
accommodation factor’’aep. This factor was shown to be equal t
one in the elastic domain and to rapidly decrease by one or
orders of magnitude in the plastic regime, which allows the pl
tic strain deviation to increase significantly and the correspond
overall response to be far ‘‘softer’’ than the Taylor or Kro¨ner one.
That is the reason why Hill’s approach rapidly gained accepta
so as to have been considered for a long time the standard
deriving nonlinear estimates. This is unfortunately no longer t
today, because of the development of new variational approa
for nonlinear elasticity or viscoplasticity.

Nonlinear Elasticity and Viscoplasticity

The case of nonlinear elasticity or of ‘‘nonhereditary’’ viscopla
ticity is considered now. Though the current response does
depend on the loading path, Hill’s incremental formulation w
adopted by Hutchinson~1976! for predicting the overall creep
response of viscoplastic polycrystals: Hill’s method was appl
now to linearized relations between the stress rate tensor and
second time derivative of the strain tensor~instead of relations
between the strain rate and stress rate tensors!. Hutchinson p
in addition that the self-consistent prediction of power-law cre
with the same exponent for all the slip systems can be reduce
a ‘‘total’’ treatment dealing directly with stresses and strain ra
through the use of adequate secant creep compliances. Abou
years later, a different treatment of the same problem was de
oped at finite strain by Molinari et al.~1987!: since an incremen
tal formulation was not necessary for such a nonhereditary be
ior, they proposed to approximate the nonlinear local behavio
each stage by a linear relation between the stress and the s
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rate tensors by making use of the tangent creep compliances
of some adequate prestress or prestrain rate tensor. Initially g
in some approximate isotropic form, this ‘‘tangent model’’ w
fully implemented by Lebensohn and Tome´ ~1993!who observed
this scheme to tend to the Reuss-type lower bound for high n
linearities; it also suffers from several limitations, primary amo
which is the fact that it is restricted to~a specific!self-consistent
type of model and to power-law creep. More recently, a m
general approach based on the same tangent approximation o
nonlinear behavior of the constitutive phases has been prop
by Zaoui and Masson~2000!and extensively discussed by Ma
son et al.~2000!. This ‘‘affine’’ formulation, which deals with the
linearized constitutive equations as thermoelastic ones~see the
section ‘‘Linear Elasticity with Eigenstrains’’!, can be applied to
any type of microstructure and to any form of stress/strain r
relation; it leads to predictions intermediate between the se
and the tangent approaches, without recourse to any appropri
fitted parameter.

In the same field of viscoplasticity or nonlinear elasticity,
very different approach was developed in parallel according
variational point of view; since the pioneering work of Talbot a
Willis ~1985!, several contributions@Ponte Castan˜eda 1991; Su-
quet 1993; Willis 1994; see also Ponte Castan˜eda and Suque
~1998!, for a general review#have provided rigorous Hashin
Shtrikman-type bounds for the effective dissipation potent
which, for the kind of nonlinearities exhibited by viscous mate
als, are upper bounds. It became then possible to compare
new bounds to the above estimates and it has been sh
~Gilormini 1996! that all these approximate schemes, and es
cially the Hill-Hutchinson model which is the stiffest, may viola
the bounds, at least for some particular combination of the par
eters. This has motivated a novel interest in the developmen
‘‘variational estimates’’, which would a priori conform with them
~deBotton and Ponte Castan˜eda 1996; Nebozhyn et al. 2001!and
of new formulations and procedures which would behave be
with respect to these bounds. Let us quote especially the sec
order procedure~Ponte Castan˜eda 1996!which is based on
second-order Taylor expansions of the relevant potentials for
constituent phases; while similar to the affine formulation at
local level, it differs from it for the derivation of the overa
response. The method has the distinctive advantage that it lea
estimates that are exact to second order in the heterogeneity
trast, but has the disadvantage that it exhibits a duality gap. It
recently been applied in the context of two-phase systems as
as polycrystals~Bornert et al. 2001!and the resulting estimate
appear to be more accurate, particularly when compared to ri
ous bounds, than earlier estimates such as those that are bas
the Hill incremental or the Hutchinson total formulations.

The reason for that can be understood more easily by refer
to the notion of the ‘‘linear comparison composite’’~Ponte Cas-
tañeda 1991!. According to this view, the actual nonlinear hete
geneous RVE is associated at any stage with a fictitious comp
which, at each point, obeys the linear behavior derived from
chosen linearization procedure~let it be ‘‘tangent,’’ ‘‘secant,’’
‘‘total,’’ ‘‘affine,’’ or of ‘‘second-order,’’ etc.! of the local consti-
tutive equations; this ‘‘comparison composite’’ is continuous
heterogeneous, so that the homogenization procedure cann
achieved on it without adequate simplification. According
Hill’s formulation, as well as to most of the current ones, th
simplification consists in attributing to each phase, at any gi
stage, a homogeneous behavior referred to the average stre
strain~or strain rate!. Due to the actual nonlinear behavior, wh
causes any inhomogeneity of the strain or stress field to prov
7
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an equivalent inhomogeneity of the local moduli or complianc
this approximation amounts to neglecting the intraphase het
geneity and, for the kind of nonlinearity exhibited by usual elas
or viscous materials, to overestimating the phases stiffness
more or less strong consequences on the overestimation o
overall stiffness, according to the chosen formulation. All curre
and future advances in this field are likely to depend on to w
extent this intraphase heterogeneity of the linear comparison c
posite is accounted for in a better way.

Nonlinear Viscoelasticity and Elastoviscoplasticity

Viscoelasticity, whether it is linear or not, reveals the spec
difficulty of the coupling between elasticity and viscosity which
responsible for a complex ‘‘long-range memory effect’’ which h
to be captured by the micromechanical treatment: delayed p
nomena are associated to the viscoelastic nature of the mecha
interactions between the constituents so that the overall beha
of heterogeneous viscoelastic media is much more complic
than the one of each phase. An illustration of that is given by
fact that a mixture of Maxwellian constituents is no more Ma
wellian: while each phase has only one relaxation time, the s
plest two-phase material exhibits, according to the classical s
consistent scheme, a complex continuous relaxation spec
which is especially intricate if more general morphological situ
tions or the existence of an interphase are taken into acc
~Rougier et al. 1993; Beurthey and Zaoui 2000!. Additionally, t
viscoelastic coupling is responsible for the fact that the concer
behavior cannot be described by one single potential, so tha
variational approach from which bounds could be derived for
arbitrary loading path is available at the time being.

Another specific difficulty attached to nonlinear viscoelastic
or to rate-dependent elastoplasticity is associated with the
that derivatives of different orders occur simultaneously in
constitutive equations, which makes the definition of tang
moduli or compliances problematical: actually, such a definiti
which is straightforward for elasticity, viscosity, viscoplasticity
elastoplasticity, was the key to linearized treatments in what p
cedes. Fortunately, in the case of linear nonaging viscoelasti
the Laplace technique can be used to transform, via the co
spondence principle, a viscoelastic problem into a~symbolic!
elastic one: this trick was already used more than two decades
by Laws and McLaughlin~1978! for the self-consistent schem
but it is of no evident use as soon as nonlinearity is present.

This may be the reason why the development of the microm
chanics of nonlinear viscoelastic~or rate-dependent elastoplasti
heterogeneous materials has been rather late and chaotic~Zaoui
1997!. The first significant attempt in this field was made
Weng~1981!who proposed to adopt the Kro¨ner model by arguing
that, unlike the plastic strain for rate-independent elastopla
materials, the viscoplastic strain would be a true stress-free s
in the sense of Eshelby. Using different approaches, Nem
Nasser and Obata~1986! as well as Harren~1991! adopted the
same Kro¨ner-type framework in the context of finite strain. O
the contrary, Zaoui and Raphanel~1991, 1993!proved that Hill’s
criticism of Kröner’s treatment of rate-independent elastoplas
ity was still valid for this case and a new model Zaoui and Ma
son~1998!was proposed for rate-dependent elastoplasticity, a
ciated first to the linear self-consistent scheme~Rougier et al.
1994! and then, within the ‘‘affine’’ framework, to any linea
transition model~Masson and Zaoui 1999; Pouya and Zao
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1999; Masson et al. 2000!. Unfortunately, no bounds are
available for this kind of behavior: any progress in this fie
would surely stimulate new advances.

Conclusion

As suggested by this paper, continuum micromechanics is no
well-developed scientific area and a number of problems and
terials can be analyzed according to this approach. It is freque
claimed that homogenization techniques are restricted to the
vation of overall properties and are of no use for local analys
This is a reducing statement: as a matter of fact, several mo
micromechanical approaches such as the above-mentioned
tern approach,’’ especially when they are coupled with develop
micromechanical experimental investigations and numer
simulations, allow to tackle better and better local states and l
effects. Nevertheless, many questions are still open and m
fields have not yet been investigated significantly: this is es
cially the case for damage modeling for which, despite valua
advances already achieved~e.g., Kachanov 1992!, importan
progress is likely to occur in the next future.

Note in conclusion that all the above-reported developme
were concerned with problems and materials obeying the b
conditions~1! of ‘‘macro-homogeneity.’’ A number of importan
situations conflict with such conditions, because eitherd is of the
order of d0 ~elasticity of metallic alloys, influence of vacancie
shearing of precipitates, precipitation hardening, etc.!or l is of the
order of L ~thin sheets, long range correlations, percolation
fects, etc.!or of l ~short waves, stress gradients, etc.!. In m
such cases, one additional length scale, at least, would be ne
in order to allow comparison of the standard sized either to a
finite macroscopic length~distance to a free surface, fluctuatio
length of the macroscopic stress field, etc.!or to nonvanishing
microscopic quantities~dislocation dissociation width, adequa
mean free paths, precipitate size, etc.!. This is a matter of cur
intensive research along several directions: multiscale
proaches, second-gradient theories, generalized continua, etc
swers to many open questions which are out of reach of clas
micromechanical treatments are expected from such deve
ments~influence of grain size on the yield stress, width of sh
or persistent slip bands, instability and fracture analysis, etc.
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