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Continuum Micromechanics: Survey

André Zaouit

Abstract: The foundations of classical homogenization techniques, which aim at predicting the overall behavior of heterogeneous
materials from that of their constituents, are reviewed. After introductory definitions and a methodological preamble, attention is focused
on linear elasticity, for which the basic principles of estimating and bounding the overall properties are introduced and illustrated. In this
context, special recourse is made for that to the solution of the inclusion and inhomogeneity problems as reported by Eshelby in 1957
Approaches proposed recently to account in a better way for the structural morphology of the considered materials are briefly mentionec
The case of linear elasticity with eigenstrains is then discussed: several applications, including heterogeneous thermoelasticity, can &
investigated within this framework. Finally, outlines of nonlinear micromechanics are briefly reported from a historical point of view:
from rate-independent elastoplasticity to nonlinear elasticity and viscoplasticity, examples of a fruitful interaction between the search for
new estimates and the derivation of rigorous bounds are given and the crucial question of the description of intraphase heterogeneity |
emphasized. Viscoelastic coupling and rate-dependent effects are briefly discussed in conclusion.

keywords: MicromechanicsSurveys;HeterogeneityMaterial properties.

Introduction assessed as bounds whereas the basic inclusion problem was
. . given a general solution, opening the way to improved estimates.
The problem of the transition from the microscale to the macros- |,y early 1960s the main basis of the so-called “continuum
cale in view of the prediction of the macroscopic mechanical _ . o . . .
L X X . - micromechanics,” according to Hill1965), can be considered as

constitutive behavior of materials has been the matter of |nten3|vefounded
research for several decades. The microscale considered here re- ' . ' . - .
fers to the inhomogeneous constitution of the considered materi- New re_sults in the field OT "”ea.r elast|C|_ty have _been continu-
als and to the associated inhomogeneity of their mechanical char0usly derived from that period, with special mention of refined
acteristics. Whereas preliminary results in this field were obtained bounding associated W,'th an improved morphologlcal dgscnpﬂon
as early as in 1887 for the first “law of mixturegithe well- and_ of_ thorpugh theories for the special case of media with a
known Voigt estimatelnd in 1929 for another onghe Reuss periodic mmrostructure(see, e.g., Bensoussan et aI._ 1978;
estimate), the actual foundations of homogenization techniquesSanchez-Palencia 1980; Suquet 1987). Nevertheless, it can be
are only about forty years old. Two main underlying motivations considered that the main novel developments during the last 30
have been active. The first one originated from metal forming and Years have been concerned with nonlinear continuum microme-
from the will of a few pioneer material scientists to predict the chanics. A striking feature of this period lies in the fruitful inter-
plastic flow of polycrystals from plastic glide in single crystals: action which has developed between two different points of view,
the Sachs mode{Sachs 1928)as well as the popular Taylor attached to the derivation of bounds and estimates, respectively:
model (1938) actually addressed very difficult problems of non- While they have been going forward independently for more than
linear micromechanics, though from what can be appreciatedtwo decades, it has been possible at some stage to make compari-
today as a rather empirical point of view. The preliminary devel- sons between them in specific situations. Consequently, some
opment of composite materials progressively motivated a new unanimously adopted estimates were shown to violate rigorous
interest in this field, mainly for linear elasticity, on the firm basis bounds whereas variational procedures were used to obtain new
of continuum mechanics: the basic concepts of “representative estimates. Despite significant advances in this field, many prob-
volume element” with adequate boundary conditions and of “ho- lems still remain open today, especially for constitutive behavior
mogeneous equivalent medium” were defined and powerful which does not derive from one single potential. Another impor-
variational approaches were achieved from which rigorous tant new(or renewed)current field of research, especially pro-
bounds, instead of approximate estimates, were derived. At themoted by the increasing facilities of numerical treatment and the
same time, the early Voigt, Reuss, and Taylor estimates were re-associated “multiscale” approaches, is concerned with situations
where the basic concept of “representative volume element” is

I aboratoire de Meanique des SolidescBle Polytechnique, CNRS,  failing and where internal length scales must be taken into ac-
91128 Palaiseau Cedex, France. count.

In this brief survey of continuum micromechanics, the stress is
deliberately laid on the basic foundations and on the more classi-
cal and simpler case of linear elasticity, including the various
situations for which eigenstrains or eigenstresses are present. The
main questions and approaches concerning nonlinear microme-
chanics are only reported shortly and qualitatively while the limits
of the considered theories are briefly discussed in conclusion.




Foundations of Continuum Micromechanics tial distribution (or the “morphology”) of the phases: the texture
function and the correlation functions of the lattice orientations
for a polycrystal, the volume fraction, and the shape and orienta-
tion distribution of the particles or fibers for a composite material,
Classical homogenization techniques aim at replacing an actualetc. The crucial point is that, from a practical point of view, the
inhomogeneous complex body by a fictitious homogeneous onespatial distribution of the phases cannot be completely deter-
which behaves globally in the same way. Continuum microme- mined, even in a statistical sense. Consequently, without appro-
chanics is mainly concerned with statistically homogeneous ma- priate assumptions or approximations, the constitutive behavior of
terials for which it is possible to define a “representative volume the EHM cannot be determined unambiguously.

element” (RVE) and an “equivalent homogeneous medium” In other words, for a given description of the RVE, tben-
(EHM) which are equivalent to each other from a mechanical centration(or “localization”) problem, which is concerned with
point of view. This means that their overall responses to any the mechanical modeling of the interactions between the phases
mechanical loading have to be the same. In other words, the EHMand the associated derivation of the local fielel), €(x), ...,

must be such that the stress and strain fidlgX) and E(X) within the RVE from the knowledge of the macroscopic quantities
derived at the macroscale by solving the boundary value problems, E .. cannot be solved in general. One can then proceed along
of a homogeneous body constituted by this fictitious homoge- two routes: either one makes additional assumptions or approxi-
neous material are the average values, over any RVE centered aations in order to derive sonestimatesor the overall behavior

X, of the local stress and strain fieldg(x), and&(x) which or one looks forboundsfor the overall mechanical properties.
would have been derived at the microscale if the considered mi- g,ch estimates are more or less pertinent according to the ad-
crostructural inhomogeneities could have been accounted for inequacy of the underlying assumptions; as for the bounds, they are
such a calculation. _ _ derived by considering all the EHMs which are consistent with

_ This requires at least that, for the mechanical behavior under yhe |imited available information on the phase distribution and by
investigation, the characteristic length, sdyof the considered  computing the extremal properties which could be reached in this
mhomoger)eltles and deformat!on mechanisms to be much smgllerway_ This can be done by using variational approaches which deal
than the size, say of the studied volume element, so that this it admissible strain or stress fields, i.e., compatible strain or
element could be considered as representative of the studied magqyilibrated stress fields obeying the displacement or tension
terial whatever its location in the macroscopically statistically) boundary conditions on the RVE, respectively: this needs an ad-
homogeneous body. Moreovémust be sufficiently smaller than equate definition of these conditions.

the characteristic dimensionisof the whole body and than the As a matter of fact, the original concentration problem is not a
fluctuation lengthn of its prescribed mechanical loading so as to “well-posed” boundary-value problem since the detailed condi-
make possible the use of the classical integral and differential ;o< on the boundary are not known. So, this problem is first
tools of structural analysis. In addition, the smallest characteristic ., nsformed into a simpler one by assuming homogeneous bound-
Iengt.hd has to be compatible with the use of the pasic concepts ary conditions on the RVEHill 1963: 1967; Hashin 1983). Ac-
(strain and stress tensors, etef)continuum mechanics. To sum o 4ing to thehomogeneous stress boundary conditions, surface
up, we must have tractionsT¢ are supposed to be prescribed at the boundary and

do<<d<l<L, I<\ (1) given by

wheredy=Ilower length bound under which continuum mechanics T9=3-n (2

is no more valid. Formul#&l) gives only necessary scale separa-

tion conditions for such a problem not to be meaningless: thesewhere the constant tens@=known macroscopic stress tensor
conditions may be not sufficient when percolation phenomena orandn=unit outward normal at the boundary. This approximation
long-range correlation effects are prominent. is valid far enough from the boundary, i.e., almost everywhere in
the RVE as long as conditior{4) are fulfilled. From Eq(2), one
proves thafs, equals the volume average strées in the RVE,
denoted byV; in fact, for any equilibratedi.e., divergence free)

Once the scales have been defined, the R\&scription, for stress fieldo™ (x) which obeys Eq(2), one has
both its geometrical and mechanical characteristics, has first to be
achieved. A basic difference must be emphasized at this point <0*>:(1/V)f o* (x)dvV=3 )
between two kinds of situations. The first one is concerned with v
materials whose microstructure can be completely described; this
is especially the case for media with a periodic microstructure.
For such materials, deterministic approaches, which are not basi
cally different from those used to solve classical boundary-value UI=E.x (4)
problems of continuum mechanics, have been developed within a B -
rigorous mathematical framework; approximate numerical treat- where E=macroscopidconstant)strain tensor ang belongs to
ments, resorting to the popular “unit-cell” method, have also the boundary. This approximation is satisfactory as longdas
been finalized. This case is not considered in the sequel and at<|. One get€E=(z) since, for any compatiblé.e., derived from
tention is focused on heterogeneous materials with a random mi-g displacement fieldstrain fielde’ (x) obeying Eq.(4), one gets
crostructure. For such materials, a statistigal stochastic)ap-

roach is necessary. N , _
P This needs first t);]e specification of the considered mechanical (e")=(1V) Ls (0dv=E ®)
“phases” and the determinatioof their geometric and mechani-
cal characteristics, and then the statistical description of the spa-For the homogeneous boundary conditi¢2sor (4), it is easy to

Scale Separation

Homogenization Methodology

Similarly, homogeneous strain boundary conditicer® asso-
ciated to prescribed displacementsat the boundary given by



prove, in addition, the Hill lemma which consists in a similar 3=(o)=(c:e)=C*ME a7)
average equation for the strain energy densitye’(=ae;),

namely . . . .
Estimates for Effective Moduli and Compliances

(o*:e"y={a*):(e')=3E (6) . . . .
h , o ibrated:e’ (x) | tible: and either th Estimates foiC®" or S*" can be obtained wheneveér or B* are
wheree™ (x) is equilibratedie’(x) is compatible; and either '€ estimated. The simple choi@e =I or B*=1 leads to the popular
former or the latter obeys homogeneous boundary condltlonsdirect or inverse “laws of mixtures,” i.e., either ©-¥=(c) o to

(note that this result can also be proved with more general, in- SM=(s). Various other estimates have been derived by use of

qluding_ pe.“"dic’ boqnda_ry conditions_). In both cases, one_gets Eshelby’s solution of the inhomogeneity problégshelby 1957).
finally, in View of estllmatlng'or bounding the overall prqpertles, Consider an ellipsoidal inhomogeneity) with the modulic, ,
the approximate or trial strain and stress fields, respectively perfectly bonded to an infinite homogeneous elastic mattie
e’ (X)=.¢'(E) or o*(X)=.*(2) (7 “reference medium”)with the moduli C°® (or compliancess?)
subjected to the homogeneous straior stress, at infinity. The

v 7 — H H ; ) N .
where. ¢’ and.7%™ =strain and stress concentration operators, stress and strain fields,, ande,, in (H) are found to be uniform

respectively. .
The last step consists in ti®mogenizatioprocedure itself, and given by

by combining the local constitutive equatidisay o(e) or €(o)], eq=[1+P%:(cy—CO] " LE, ony=cy:eq

the average Eqg3) or (5) and the concentration relatiors). (18)

This leads, according to the boundaryrcondltlt(m)sor (4), to Pﬂum _ _( J’ Giok(>_<—>_<’)dV’ xeH
E*(E):<8*(U*)>:<8*['%k(2)]> (8) H Ij(ij)(kl)

or to where {j)(kl)=symmetrization with respect tej() and kl) and

Ofa iy L X .

E/(E):<O',(8/)>:<0'/[.,7{§,(E)]> (9) G ()_( X ) Green tensor for the infinite medium with modaf®?

(i.e., the tensor which correlates the displacement tatthe unit

While in principle, Eqs(8) and(9) are not equivalent, they tend  point force applied ak’). The tensoiP? is closely related to the
to be so wherd/l tends to zeraHill 1967; Mandel 1972), as Eshelby tenso&® & (namely,ﬁES“: p&:co). For a sphere and

assumed in the sequel, according to Eg. On the contrary, for  jsotropic elasticity, one has
periodic media and of the order ofl, Egs.(8) and(9) would lead Esh_ o 0
to substantial differenceSuquet 1987). Sr = ald+BOK  1=3+K  Jjjq=(1/3)8;;3y (19)

3k° 6(kO+2u0)
R 80:7
3K+ 4.0 5(3k0+4uY)

with n% andk®=shear and bulk moduli of the reference medium,
In this section, a natural initial state is considered, i.e., no eigen-respectively.

strains or eigenstresses are present. Due to the linearity of the Inclusion-based estimates for the overall moduli can be de-
constitutive equations and to the unicity of the solution, E@s. fined from this solution by estimating the average mechanical

0

Linear Elasticity

must be linear and homogeneous with respecEtor . This state in each phage) of the RVE subjected to the macroscopic
means that the strain or stress concentration operatéfsand strain E as that of an ellipsoidal inhomogeneitd) with the
/7 reduce to simple fourth-order tensors fields(x) and same modulic,, embedded in an infinite matrix with arbitrary
B*(X), respectively moduli C° subjected to some adequate uniform strain at infinity
0 . . e
e (X)=A’(x):E or o*(x)=B*(x):3 (10) E®. The shape and orientation dfi() can be specified from what

. . is known about the geometry of phagg whereasE® is deter-
with, because of Eqg¢3) and(5), (A")=(B*)=I (I is the fourth- mined by the average equati¢e)=E. This results in the follow-
order symmetric unit tensor). With the local constitutive equations ing set of equations:

0=C € Of €=§ 0 (11) g,=[1+P%(c—C%] LE®
where the elastic moduli, and compliances, are known and E=(ge)=([1+ P (c—CO%1-1}:EO 20
uniform in every phasér), Egs.(8) and(9) become (&)= H(e=COI: (20)
est_ /. 0. (~— 011\ 0.-(~_C0)1—1\—1
E*=(g*)=(si0*)=(sB*):3=5":3 (12) Coo=(c:[1+ P%(c—=CO ]~ H([I+ P%(c—-C%]™1)
.0 -
3 =(a")=(cie’)=(C:A"):E=C":E (13) As for the moduliC®, they can be chosen at will in order to

express at best the specific morphology of the considered mate-
whereS* andC’ can be viewed either as estimates or as bounds rial. Several classical estimates correspond to special choices for
(through the use of the minimum principles of linear elasticity, C° or S¥: the law of mixtures is recovered with vanishing values
i.e., the theorems of potential and complementary endagythe for C° or S°; the Mori-Tanaka mode{Mori and Tanaka 1973;

overall effectivecompliances and modu®™ and C®, respec- Benveniste 1987), which is devoted to particle reinforced com-
tively. Thanks to Hill's lemma, the energetic definition of these posites for small volume fractions of particles, is associated to the
tensors, namely choiceC®=C™ j.e., the elastic moduli of the matrix phase, ex-
e 5 - ceffe pressing the fact that the continuous matrix plays a prominent
(o:5:0) =252 (14) morphological role; the self-consistent estimétéershey 1954,
(e:cie)=E:C°™E (15) Kroner 1958)corresponds to the choigg@’=CSC, with CSC the

searched overall moduli, which is adequate for materials, such as
polycrystals, whose phases are dispersed in the RVE so that none
E=(e)=(sio)=5M"3 (16) of them plays any specific morphological role. In the latter case,

can be proved to be equivalent to the direct one



Egs. (20) for C=¢ become integral equations, sinB&= P3¢ and (W™ +B 3 ) D ((p +p dp ) By Lspef

C%=CSC are not known in advance.
<(u(pt+papt) - ((pr+BTopnt)"H Tt (28)

Bounds for Effective Moduli and Compliances (k(k™+a " 8k™) ™ N (k™ +a 8k™) "1y~ I<keff
Bounds forC®" or S*" can be derived with use of the minimum <(k(k"+a*8k") 1. ((k"+at8kT) "1 (29)
principle for elastic media. For homogeneous boundary condi-
tions, they read where p.~=inf(p); k™ =inf(k); w*=sup(); k*=supk);
dpu =p—p=; dk*=k—k*; andp* anda™ are defined from
(o*:si0*)=(0:s0) (21) Eq. (19). Whenk and . are “well ordered” i.e.,n.~ andk™ refer

o . to the same “softest” phase and™ andk™ to the same “stiffest”
(e':cie)=(e:cie) (22) phase), the Hashin-Shtrikman bounds belong to the set of esti-

so that, by combining Eqg10), (14) and(15), (21) and (22), we mates defined by Eq20). This result is an illustration of the

get strong connection which exists between heterogeneity and polar-
ization stressep(x), which can be viewed as eigenstresées
3:((TB*:s:B*)—SoM:3=0 V3 (23) sociated with eigenstrairs throughp(x) = —C%&"(x)), as well
T A offs. as between Eshelby’s problems of the heterogeneity and of the
E:(("A":c:A")—C¥):E=0 VE (24) inclusion (see hereafter).

where the tensofA is transposed from (TA;j =Ay;)-
Bounds can be derived from Eq23) and (24) whenever ad-
missible strain or stress fields; (x) or ¢*(x), are found which
make this derivation possible from the known statistical descrip- The Hashin-Shtrikman bounds have been derived for more gen-
tion only. When the phase moduli and volume fractions are eral cases, especially when the phase distribution is no more iso-
known, uniform fields can be chosen, namal,=% (so that tropic but has an ellipsoidal symmetfWillis 1977). They can
B*=I) or ¢'=E, (A=), which leads to the well-known Reuss  also be integrated in the so-called “systematic theory” developed

“Point” Versus “Pattern” Approaches

and Voigt bounds by Kroner (1977) for elastic random materials. This theory is
. . based on the solution of the general equation for inhomogeneous
_ ceff
2:((9=59):2=0 VX (Reus} (25) elasticity by use of Green techniques and on the description of
E:((c)—C®™:E=0 VE (Voigt) (26) random media by correlation functions of their elastic moduli.

The effective modulilor compliancestan be written as formal
If nothing more is known about the space distribution of the infinite series whose general term of oras associated with the
phasesS™" and C*" are arbitrarily anisotropic, so that Eq®5) n-point correlation functions of the elastic moduli. By truncation
and(26) lead to a rather loose bounding of the 21 corresponding of the series at any rank, bounds for the effective modaili
elastic constants. On the other hand, if the symmetry of the global compliances)are derived: they are closer and closer when the
anisotropy is known in advance, the Reuss and Voigt bounds arerank of truncation increases. In the case of “graded disordered”
more efficient, but they are certainly not optimal. If the inhomo- materials, which satisfy some property of the correlation func-
geneous material is known to be isotropic at the micro and the tions up to a given rank, the Voigt-Reuss bounds are recovered
macro scales, the overall shear and bulk mogiff and k™ are for n=1, the Hashin-Shtrikman bounds far=2, and the self-
bounded by consistent estimate fan—, which corresponds to “perfectly
CN1_  eff 1 eff disordered” material§Kroner 1978).
(w79 =p=(u)  and (k™) <kT<(k) (27) This theory is essential for a thorough understanding of the
Note that the laws of mixtures, which estimate any overall param- €lasticity of random media, but it is of limited practical help.
eter as the mean value of the corresponding local ones, are onlyBesides some mathematical difficulties in the effective computa-
valid here as bounding properties. This is no more the case fortion of bounds, the use dpoint) correlation functions happens
other elastic constants, such as the Young modulus or the Poissomot to be very convenient in many cases: their experimental iden-
ratio, and it is completely wrong for anisotropic elasticity. tification can be performed only up to limited orders while some
In addition, when the spatial distribution of the phases is major primary morphological characteristics, such as the phase
known to be isotropic, the Voigt-Reuss bounding can be im- connectedness or disconnectedness, need quite high orders to be
proved, as shown by Hashin and Shtrikm@m®63). The corre- accounted for efficiently. Fifteen years before Keo's theory,
sponding derivation is based on an optimization procedure with this crucial point of the geometrical description of “matrix/
respect to an infinite set of admissible trial strain fields obtained inclusion”-type morphologies had been given a quite attractive
as the solution of the following problem: an infinite elastic body tentative solution by Hashit1962) according to a completely
with uniform moduliC® is subjected to an arbitrary distribution of ~ different point of view: the “composite spherdsr cylinders)
fictitious body forced (x) derived from gpolarization stress field assemblage’(CSA, say, or CCA)is made of spherical particles
p(x) by f=divp. The associated strain field can be found by (or cylindrical parallel fiberssurrounded by a concentric matrix
using the same Green techniques as those mentioned above fdayer whose thickness is such that the phase volume fraction of
the solution of the inhomogeneity problem; for polarization stress each composite element equals the prescribed volume fractions of
fields which are piecewise constant per phase the property of the composite; these similar composite elements have a variable
an isotropic distribution of the phases can be used to derive ex-Size going to zero so as to fill up the whole space and to maintain
plicit bounds which have still to be optimized through an ad- the connectedness of the matrix; they are distributed in an isotro-
equate choice op(x) and C°. The corresponding bounding for  pic (or transversely isotropiananner according to the cagear-
local and global isotropy reads as follows: ticles or fibers).



Unfortunately, the mechanical treatment of such assemblagescientsa®" in case of global isotropy). This cannot be derived by
proved to be disappointing: Hashin's bounds for the Cf®A  direct averaging of the local quantities since, while the total strain
Hashin-Rosen’s boundél964) for the CCA]for the shear(or field £(x) =e®(x) + £"(x) is still compatible, so that the overall
transverse sheamodulus could be very distant from each other, strain tensoE is the volume average af(x), neither the elastic
even more than the Hashin-Shtrikman's ones which considgr  nor the thermal strain fields are generally compatible; conse-
isotropic (or transversely isotropiclistribution instead of the  quently, E™ and«®" do not reduce tde™) and{a), respectively.
very specific ones expressed by the G®Athe CCA). Later, this Similar questions arise when electric or magnetic effects as
approach was resumed by Christensen and1979)in view of well as various environmental phenome(maoisture, oxidation,
estimating the overall shear modulus: by transferring to this casecorrosion, etc.)are considered in heterogeneous elastic media,
the basic idea of the self-consistent procedure, they proposedj.e., whenever stress-independent eigenstrains are superimposed
after Kerner(1956), to consider one composite sphéecylin- on the elastic strains; prestresses or eigenstresses can be dealt
der) embedded in an infinite matrix with the effectiienknown) with in the same manner, e.g., when gien-Chong et al. 1999)
moduli and to determine these effective moduli through a self- or liquid (Dormieux and Maghous zooq_)ressure is present in
consistent energy condition. The results, as compared with thoseporous elastic materials. Though stress dependent, even plastic
derived from several micromechanics models of the same classstrains can also be considered as long as they are fixed.
(Christensen 1990), were more satisfying; but the morphological ~ The main result which is easily derived from the analysis of
meaning of this “three-phase model(or “generalized self-  such problems by repeated use of Hill's lem(6# is the follow-
consistent scheme'was less clear than the initial one. ing:

Going back to Hashin’s initial approach, one can save the T ol el
basic idea of finite composite elements and improve the geometri- E'=(e"B), E®=(e%B)
cal description of their spatial distribution. This leads to combine P=(p:A), CeME=(e:c:A)
a deterministic description of small, but finite, well-chosen “com-
posite patterns” and a statistical representation of their distribu- Which leads directly to the effective tensors of thermal expansion
tion: in many cases, essential morphological features can be ex«°" or to the effective “tensors of thermal coefficientg®" (de-
pressed in this way much more directly and easily than by using fined from the local tensors of thermal coefficierts c:a).
point correlation functions. According to this “pattern approach” o®=(a:B), k°f=(k:A) (31)

(Stolz and Zaoui 1991), a given multiphase material is decom-

posed, after some morph0|ogica| ana|ysis’ imOpatterns or It is nOteWOI’thy that this result depends, thrOUgh the strain or
“morphological phases”(\) consisting of identical composite ~ Stress concentration tensoksor B, only on the solution of the
representative domairi3,,. The general Hashin-Shtrikman pro- ~Purely elastic problenti.e., without eigenstrains)—which, by the
cedure is then applied with a polarization stress figléy) which way, proves that it is inconsistent to use the direct law of mixtures
is no more uniform within the morphological phag@$ but has (ie., A'=l) for estimatingC*" as (c) and «*" as (@) simulta-
identical values at homologous poingsof the domains of the ~ Neously. For a two-phase material, these concentration tensors are
same pattern. With help of adequate definitions of strain and Not even negded if the_overall elastic mod_ull or compllance_s are
stress averages over homologous points in each pattern and use ¢f0Wn (possibly from direct measurement instead of modelling),
the Green techniques, the polarization stress field can be opti-2ccording to Levin's theorertLevin 1967)

(30)

mized and new Hashin-Shtrikman-type bounds can be obtained if o= (@) + (S (9):(5— 51) i (ep—ay)
the distribution of the pattern centers is isotropic or ellipsoidal. (32)
Like for the classical “point” Hashin-Shtrikman bounds, these K= (1) + (CM—(C)): (ca— ¢1) (Ko~ 1ep)

bounds can be obtained from the solution Nfelementary  agsociated results can be derived for the average thermal stresses

inclusion-matrix problems where each domaly; is embedded j, hoth phases without additional knowledge of the concentration
in an infinite homogeneous matrix with extremal moduli. These {onsors.

problems can be solved numericallornert et al. 1996jn the In the general case, the local mechanical state within the
general case. For the CSA and isotropy or for the CCA and trans- ppases can be estimated according to adequate models. Inclusion-
verse isotropy, an analytical solution can be deritigerveet al. based models have been developed from the solution of Eshelby’s

1991)and extended to-layered spheres or cylinders according to incjysjon problem which refers to an infinite unloaded homoge-
Herve and Zaoui(1993, 1995). They improve significantly on  aous elastic body with the moduli® an ellipsoidal partl) of

classicgl Hashin or Hashin-Shtrikmgn bound;. Similarly, new \\hich undergoes the uniforrtistress-free”) eigenstraine” (or
generalized “pattern-based” self-consistent estimates can be ob-,o eigenstresp' = — C%¢T). The resulting strain and stress ten-

tained (Bornert 1996). sors in the inclusion are found to be uniform and given by
8|:§E5h:ET:_PP:pI1 U':COZ(Sl_ET) (33)

Linear Elasticity with Eigenstrains where the tensoS"ESh andP° have already been defined in Egs.
A number of interesting physical situations can be analyzed from (19) and (18) for the solution of Eshelby’s inhomogeneity prob-
an extension of the foregoing developments to the case whereiem. If the inclusion is inhomogeneous, with the modyland if
eigenstraing'(x) or eigenstresses(x) are present in the initial  the matrix undergoes the uniform stress-free stedimnd is sub-

state. A typical situation of this kind is concerned with thermal jected to the uniform straifE at infinity, the strain and stress
strainse™(x), which can derive, for instance, from a uniform tensors in [H) are still uniform and given by

temperature variatioA T in a heterogeneous material whose con-

stituents(r) have different elastic modut, and different tensors eM=[1+P};:(c—C%] :[E+P,:(cie™=C%:ET)] (34)
of thermal expansiom, (or coefficientsa, in case of local isot- IH_ mrdH LT

ropy). It may be useful to predict the overall thermal stiaihas or=c(el~e)
well as the effective tensors of thermal expansiSh (or coeffi- These results can be used to derive sets of estimates in a way



similar to the one already reported when no eigenstrains areFor similar and aligned ellipsoids, the concentration equation can
present. For example, for a polycrystal with isotrofénd then be put in the more convenient form
uniform) elasticity and an isotropic distribution of the constituents L .
- . ; : . . ) o=X—L*:(e—E) (39)
(e.g., the grain familie¢r) with the same lattice orientationin
dergoing uniform isochoric eigenstraing , the concentration  where Hill's “constraint tensor’L* is given by
ion i with If-consistent scheme will r -
equation associated with a self-consistent scheme ead, ac L* = (PSO)~1— | SC— | SC[(SEShSG—1_ ]

cording to Eqs(19) and (34)
0 . ~0. T T The fundamental interest of Hill's approach lies in the fact that
&= E+Pg;C% (e/ —ET) =E+Sgy; (8] —E") it defines and applies the basic conceptlinéarization of the
=E+p%e/—ET) (35) constitutive equations in view afonlinearhomogenization; con-
sequently, the elastoplastic nature of the intergranular accommo-
or dation, which was reduced to an elastic one by rics treat-
Ur:2+2M0(1—BO)(ET—8rT) (36) ment, i_s restored and e>_<pressed_ thr_ough an _incre_mental
formulation of the concentration equation, in adequation with the
with E"=(e") (because of uniform isotropic elastici=1) and flow theory of plasticity. Hill's incremental formulation makes the
2 =(o). recourse to Eshelby’s elastic problem of the inhomogeneity pos-
sible, whereas Kneer's assimilation of the plastic strains to
Outlines of Nonlinear Micromechanics eigenstrains of the inclusion problem constrains the solution of
the concentration problem within an elastic framework. A number
of applications of Hill's model to metal forming, initiated by
Hutchinson(1970)and extended at finite strain by Iwakuma and
Except for pioneering contributions based on simple assumptionsNemat-Nasse(1984) or Lipinski et al. (1990) have shown this
of uniform strain or stress and their variants, such as the Taylor model to be a significant improvement with respect to s
model and its variants, nonlinear micromechanics was first ad- model. The reason for that can be illustrated by the simplified
dressed significantly through the self-consistent prediction of the isotropic version of Hill's model proposed by Berveiller and
overall elastoplastic response of polycrystals bynéd1961)on Zaoui (1979) within the deformation theory of plasticity, under
the basis of Eshelby’s solution of the inclusion problem. He pro- the assumption of local and global proportional loading: for iso-
posed to consider the plastic straif as a “stress-free strain” in tropic elasticity and phase distribution and isochoric plastic strain,
the sense of Eshelby and to model the mechanical interactionthe corresponding “secant” approach leads to the following con-
between one phage(i.e., one set of grains with the same lattice centration equation:
orientation)and all the other phases as the one between an ellip- _ _ ey =P P
soidal inclusion with the uniform plastic strakf and the sur- or=2H20(1-B)aHE"~er) (41)
rounding infinite matrix with the macroscopicniform) plastic which only differs from Kraer’s law by the scalar “elastoplastic
strainEP. For isotropic elasticity with the modulip(,k), spheri- accommodation factor& ®P. This factor was shown to be equal to
cal inclusions and isochoric plastic strains, this corresponds to theone in the elastic domain and to rapidly decrease by one or two
problem solved by Eq¥35) and (36), namely, to the concentra-  orders of magnitude in the plastic regime, which allows the plas-
tion equation tic strain deviation to increase significantly and the corresponding
B b P overall response to be far “softer” than the Taylor or iKeo one.
or=%+2p(1-B)(E"—¢) (37) That is the reason why Hill's approach rapidly gained acceptance
which is the so-called “Kfoer interaction law.” so as to have been considered for a long time the standard for

This approach is open to the criticism that elastoplastic inter- deriving nonlinear estimates. This is unfortunately no longer true
actions cannot reduce to the elastic ones which are concernedoday, because of the development of new variational approaches
with Eshelby’s inclusion problem; actually, plastic flow is stress for nonlinear elasticity or viscoplasticity.
dependent and the plastic strain is not a “stress-free strain” when
plastic flow is considered. As a matter of fact, predictions derived
from Kroner's model proved to be very close to those derived
from an assumption of uniform strain, which can be guessed from The case of nonlinear elasticity or of “nonhereditary” viscoplas-
Eq. (37) where the plastic strain deviation is forced to be very ticity is considered now. Though the current response does not
small because of the high value of the elastic shear modulus  depend on the loading path, Hill's incremental formulation was
This means that the mechanical interactions between the phaseadopted by Hutchinsoi1976) for predicting the overall creep
are overestimated by this model which yields too “stiff” esti- response of viscoplastic polycrystals: Hill's method was applied
mates. Four years later, H{lLl965)proposed an alternative use of now to linearized relations between the stress rate tensor and the
Eshelby’s solution: by linearization of the constitutive equations second time derivative of the strain tengorstead of relations
of elastoplasticity and use of the tangémtultibranch)local and between the strain rate and stress rate tensors). Hutchinson proved

(40)

Rate-Independent Elastoplasticity

Nonlinear Elasticity and Viscoplasticity

global instantaneous moduli, denotedlaandLSC, respectively, in addition that the self-consistent prediction of power-law creep
the solution of the inhomogeneitinstead of the inclusiorprob- with the same exponent for all the slip systems can be reduced to
lem can be integrated in the linear self-consistent concentrationa “total” treatment dealing directly with stresses and strain rates
equation, as derived from EQO0), namely through the use of adequate secant creep compliances. About ten

years later, a different treatment of the same problem was devel-

Lo SC.(| _| SC\1-1.-F0
e=[1+Pri(l—L 91 -E oped at finite strain by Molinari et a{1987): since an incremen-

E=<é>=([l+ PSC,(|— LSO ]~ 1): EO (38) f[al formulation was not necessary for such a nonhereditary b_ehav-
ior, they proposed to approximate the nonlinear local behavior at
LSC=(I:[1+ PSC(I— LSO~ 1y ([14+ PSC(I- LSO~ 1)1 each stage by a linear relation between the stress and the strain



rate tensors by making use of the tangent creep compliances an@n equivalent inhomogeneity of the local moduli or compliances,
of some adequate prestress or prestrain rate tensor. Initially giverthis approximation amounts to neglecting the intraphase hetero-
in some approximate isotropic form, this “tangent model” was geneity and, for the kind of nonlinearity exhibited by usual elastic
fully implemented by Lebensohn and Tor(k993)who observed or viscous materials, to overestimating the phases stiffness with
this scheme to tend to the Reuss-type lower bound for high non-more or less strong consequences on the overestimation of the
linearities; it also suffers from several limitations, primary among overall stiffness, according to the chosen formulation. All current
which is the fact that it is restricted @ specific)self-consistent and future advances in this field are likely to depend on to what

type of model and to power-law creep. More recently, a more extent this intraphase heterogeneity of the linear comparison com-
general approach based on the same tangent approximation of thgosite is accounted for in a better way.

nonlinear behavior of the constitutive phases has been proposed

by Zaoui and Massof2000) and extensively discussed by Mas-

son et al(2000). This “affine” formulation, which deals with the  Nonlinear Viscoelasticity and Elastoviscoplasticity

linearized constitutive equations as thermoelastic dseg the o o N

section “Linear Elasticity with Eigenstraing can be applied to Viscoelasticity, whether it is linear or not, reveals the specific
any type of microstructure and to any form of stress/strain rate difficulty of the coupling between elasticity and viscosity which is
relation; it leads to predictions intermediate between the secant'esponsible for a complex “long-range memory effect” which has

and the tangent approaches, without recourse to any appropriately0 be captured by the micromechanical treatment: delayed phe-
fitted parameter. nomena are associated to the viscoelastic nature of the mechanical

In the same field of viscoplasticity or nonlinear elasticity, a interactions between the constituents so that the overall behavior
very different approach was developed in parallel according to a of heterogeneous viscoelastic media is much more complicated
variational point of view; since the pioneering work of Talbot and than the one of each phase. An illustration of that is given by the
Willis (1985), several contributiongonte Castaeda 1991; Su- fact that a mixture of Maxwellian constituents is no more Max-
quet 1993; Willis 1994; see also Ponte Castém and Suquet  wellian: while each phase has only one relaxation time, the sim-
(1998), for a general reviewfhave provided rigorous Hashin-  plest two-phase material exhibits, according to the classical self-
Shtrikman-type bounds for the effective dissipation potential, consistent scheme, a complex continuous relaxation spectrum
which, for the kind of nonlinearities exhibited by viscous materi- which is especially intricate if more general morphological situa-
als, are upper bounds. It became then possible to compare thesgéions or the existence of an interphase are taken into account
new bounds to the above estimates and it has been shownRougier et al. 1993; Beurthey and Zaoui 2000). Additionally, the
(Gilormini 1996) that all these approximate schemes, and espe- viscoelastic coupling is responsible for the fact that the concerned
cially the Hill-Hutchinson model which is the stiffest, may violate pehavior cannot be described by one single potential, so that no
the bounds, at least for some particular combination of the param-yariational approach from which bounds could be derived for an
eters. This has motivated a novel interest in the development Ofarbitrary loading path is available at the time being.

“variational estimates”, which would a priori conform with them Another specific difficulty attached to nonlinear viscoelasticity
(deBotton and Ponte Castaia 1996; Nebozhyn et al. 200and or to rate-dependent elastoplasticity is associated with the fact
of new formulations and procedures which would behave better ha; derivatives of different orders occur simultaneously in the
with respect to these bounds. Let us quote especially the secondggnsiitutive equations, which makes the definition of tangent
order procedure(Ponte Castagda 1996)which is based on o4y or compliances problematical: actually, such a definition,
second-order Taylor expansions of the rele_vant potent|_als for thewhich is straightforward for elasticity, viscosity, viscoplasticity or
constituent phases; while similar to the affine formulation at the elastoplasticity, was the key to linearized treatments in what pre-

local level, it differs from it for_ the qlenvatlon of the oyerall cedes. Fortunately, in the case of linear nonaging viscoelasticity,
response. The method has the distinctive advantage that it leads he Laplace technique can be used to transform, via the corre-

estimates that are exact to second order in the heterogeneity con- - . . . ;
trast, but has the disadvantage that it exhibits a duality gap. It hasspon.dence. prllnu.ple, a viscoelastic problem intqsgmbolic)
o elastic one: this trick was already used more than two decades ago
recently been applied in the context of two-phase systems as well - .
. . by Laws and McLaughlin1978) for the self-consistent scheme

as polycrystalgdBornert et al. 2001and the resulting estimates S X . o
appear to be more accurate, particularly when compared to rigor_but it is of no evident use as soon as nonlinearity is presgnt.
ous bounds, than earlier estimates such as those that are based on Th,'s may be.the reason why the development of the microme-
the Hill incremental or the Hutchinson total formulations. chanics of nonlinear \{lscoelastﬁor rate-dependent elastoplggtlc)

The reason for that can be understood more easily by referring€t€rogeneous materials has been rather late and cliZaoai
to the notion of the “linear comparison compositéPonte Cas- 1997). The first significant attempt in Fhls field was mac_ie by
tareda 1991). According to this view, the actual nonlinear hetero- Weng(1981)who proposed to adopt the Krer model by arguing
geneous RVE is associated at any stage with a fictitious compositethat, unlike the plastic strain for rate-independent elastoplastic
which, at each point, obeys the linear behavior derived from the materials, the viscoplastic strain would be a true stress-free strain
chosen linearization proceduréet it be “tangent,” “secant,” in the sense of Eshelby. Using different approaches, Nemat-
“total,” “affine,” or of “second-order,” etc.) of the local consti- ~ Nasser and Obat€l986) as well as Harrer{1991) adopted the
tutive equations; this “comparison composite” is continuously same Kraer-type framework in the context of finite strain. On
heterogeneous, so that the homogenization procedure cannot bée contrary, Zaoui and Raphar@b91, 1993)proved that Hill's
achieved on it without adequate simplification. According to criticism of Kroner's treatment of rate-independent elastoplastic-
Hill's formulation, as well as to most of the current ones, this ity was still valid for this case and a new model Zaoui and Mas-
simplification consists in attributing to each phase, at any given son(1998)was proposed for rate-dependent elastoplasticity, asso-
stage, a homogeneous behavior referred to the average stress miated first to the linear self-consistent schef®ougier et al.
strain(or strain rate). Due to the actual nonlinear behavior, which 1994) and then, within the “affine” framework, to any linear
causes any inhomogeneity of the strain or stress field to provoketransition model(Masson and Zaoui 1999; Pouya and Zaoui



1999; Masson et al. 2000). Unfortunately, no bounds are still
available for this kind of behavior: any progress in this field
would surely stimulate new advances.

Conclusion

As suggested by this paper, continuum micromechanics is now a
well-developed scientific area and a number of problems and ma-

Christensen, R. M., and Lo, K. H1979). “Solutions for effective shear
properties in three phase sphere and cylinder modélsViech. Phys.
Solids,27, 315-330.

deBotton, G., and Ponte Caséata, P(1995). “Variational estimates for
the creep behavior of polycrystalPtoc. R. Soc. London, Ser. 448,
121-142.

Dormieux, L., and Maghous, $2000). “Evolution des propriés das-
tiques en poroplasticitéinie.” C. R. Acad. Sci., Ser. 11828, 593—
600.

terials can be analyzed according to this approach. It is frequently Eshelby, J. D(1957). “The determination of the elastic field of an ellip-

claimed that homogenization techniques are restricted to the deri-

vation of overall properties and are of no use for local analyses.

soidal inclusion and related problem$toc. R. Soc. London, Ser. A,
241, 376—-396.

This is a reducing statement: as a matter of fact, several moderrFen-Chong, T., HerveE., and Zaoui, A(1999). “Micromechanical mod-

micromechanical approaches such as the above-mentioned “pat-

tern approach,” especially when they are coupled with developing
micromechanical experimental investigations and numerical

simulations, allow to tackle better and better local states and local
effects. Nevertheless, many questions are still open and many

fields have not yet been investigated significantly: this is espe-
cially the case for damage modeling for which, despite valuable
advances already achieve@.g., Kachanov 1992), important
progress is likely to occur in the next future.

Note in conclusion that all the above-reported developments

were concerned with problems and materials obeying the basic

conditions(1) of “macro-homogeneity.” A number of important
situations conflict with such conditions, because either of the
order ofd, (elasticity of metallic alloys, influence of vacancies,
shearing of precipitates, precipitation hardening, etcl)is of the
order of L (thin sheets, long range correlations, percolation ef-
fects, etc.)or of N (short waves, stress gradients, etc.). In most

elling of intracellular pressure-induced deformation of foams; appli-

cation to expanded polystyreneEur. J. Mech. A/Solidg,8, 201-218.

Gilormini, P. (1996). “A critical evaluation for various nonlinear exten-

sions of the self-consistent modeMicromechanics of plasticity and

damage of multiphase materials, A. Pineau and A. Zaoui, eds, Kluwer

Academic, Dordrecht, The Netherlands, 67—74.

Harren, S. V(1991). “The finite deformation of rate-dependent polycrys-
tals.” J. Mech. Phys. Solid89, 345—-383.

Hashin, Z.(1962). “The elastic moduli of heterogeneous materials.”
Appl. Mech.,29, 143-150.

Hashin, Z.(1983). “Analysis of composite materials: a survey.”Appl.
Mech.,50, 481-505.

Hashin, Z., and Rosen, B. W1964). “The elastic moduli of fiber-
reinforced materials.J. Appl. Mech.31, 223-232.

Hashin, Z., and Shtrikman, $1963). “A variational approach to the
theory of the elastic behavior of multiphase materials.Mech. Phys.
Solids,11, 127-140.

Hershey, A. V.(1954). “The elasticity of an isotropic aggregate of aniso-

such cases, one additional length scale, at least, would be needed tropic cubic crystals."ASME J. Appl. Mech21, 236-240.

in order to allow comparison of the standard sieither to a
finite macroscopic lengtlidistance to a free surface, fluctuation
length of the macroscopic stress field, etor)to nonvanishing
microscopic quantitiegdislocation dissociation width, adequate

mean free paths, precipitate size, etc.). This is a matter of current

Herveg E., Stolz, C., and Zaoui, A1991). “A propos de I'assemblage de
sphees composites de HashinC. R. Acad. Sci., Ser. 1B13, 857—
862.

Herve E., and Zaoui, A(1993). “n-layered inclusion-based microme-
chanical modelling.”Int. J. Eng. Sci.31, 1-10.

intensive research along several directions: multiscale ap-Herve E., and Zaoui, A(1995). “Elastic behavior of multiply coated
proaches, second-gradient theories, generalized continua, etc. An- _fibre-reinforced composites/ht. J. Eng. Sci.33, 1419-1433.
swers to many open questions which are out of reach of classicalHill R. (1963). “Elastic properties of reinforced solids: some theoretical

micromechanical treatments are expected from such develop-

ments(influence of grain size on the yield stress, width of shear
or persistent slip bands, instability and fracture analysis, etc.).
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