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Parameter identification for lined tunnels in a viscoplastic
medium

B. Lecampion, A. Constantinescu and D. Nguyen Minh*,y

Laboratoire de M!eecanique des Solides, CNRS URA 7649, Ecole Polytechnique, 91128 Palaiseau Cedex, France

This paper is dedicated to the identification of constitutive parameters of elasto-viscoplastic constitutive
law from measurements performed on deep underground cavities (typically tunnels). This inverse problem
is solved by the minimization of a cost functional of least-squares type. The exact gradient is computed by
the direct differentiation method and the descent is done using the Levenberg–Marquardt algorithm. The
method is presented for lined or unlined structures and is applied for an elastoviscoplastic constitutive law
of the Perzyna class. Several identification problems are presented in one and two dimensions for different
tunnel geometries. The used measurements have been obtained by a preliminary numerical simulation and
perturbed with a white noise. The identified responses match the measurements. We also discuss the usage
of the sensitivity analysis of the system, provided by the direct differentiation method, for the optimization
of in situ monitoring. The sensitivity distribution in space and time assess the location of the measurements
points as well as the time of observation needed for reliable identification.

KEY WORDS: identification; viscoplasticity; underground structures; tunnel; sensitivity analysis; inverse
problem

1. INTRODUCTION

It is well known that underground structures located in salt, hard marls, etc. present important
time-dependent deformations even dozens of years after the excavation. Several examples of
case histories can be found in the literature: large delayed displacement have been reported in
motorway tunnels [1], or long-term subsidence has been observed over salt caverns [2]. A series
of industrial problems involving deep cavities, like the storage of radioactive waste, depend on
the characterization of such effects in order to assess the safety of the overall project.

These time-dependent observations are generally explained by several phenomena: hydro-
mechanical couplings [3] and/or rate-dependent mechanical behaviour [4,5]. Predictive models
are classically proposed from a series of laboratory tests. Unfortunately, in many cases there is
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still a discrepancy between predictions and measurements when one passes from the laboratory
to the field.

These discrepancies can be justified by a series of factors: scale effects, uncertainties on the
constitutive model itself, on the identified parameters of the chosen constitutive law, etc. It is
obvious that it is preferable to correct the constitutive parameters using the first measurements
already available before any long-term extrapolation of the model.

The problem addressed in this paper is the identification (or correction) of the constitutive
parameters from field measurements. The work presented here is a further attempt to propose a
systematic method to reduce the gap between field observations and computations performed
with the parameters identified from results of laboratory tests.

The problem of parameter identification is an inverse problem [6,7], also known as back-
analysis. In general, the problem is defined as the minimization of a cost functional measuring
the distance between measurements and predictions. A large review of back-analysis methods in
geotechnical engineering is presented in Reference [8].

In this work, we shall only refer to gradient-based minimization; however, it is important to
notice that a large class of evolutionary methods (genetic algorithms, neural networks, etc.) have
been proposed recently in the literature. Our choice of gradient based minimization is justified
on the one hand by the computational burden of the evolutionary methods and on the other
hand by the form of the cost functional in the explored parameter space (see Figure 10).

Most of the results in geotechnics have been obtained in the case of linear material behaviour
[9–11]. This is mainly due to the computational burden and the intrinsic complexity of the
inverse procedure for the non-linear behaviour. A small number of papers deal with an
elastoplastic constitutive law. They generally use an optimization procedure without gradient
[12] due to the difficulties of the differentiation of the elastoplastic inequalities.

When the gradients are provided by the finite difference method, we dispose only of an
approximate value. Moreover, it is well known that this method presents two main drawbacks,
one comes from the difficult choice of the step size in computing the difference and the other one
stems from the large number of non-linear problems which have to be solved.

Recently, a series of papers (for a general introduction see Reference [13]) have shown that
one can solve the identification problems using an exact gradient computation as compared with
finite differences. The exact gradient can be obtained by solving a series of additional problems
using one of the two following methods:

* In the adjoint state method one constructs a single additional problem, the so-called adjoint
problem which is linear, i.e. viscoelastic, and has to be integrated backwards in time. The
solution of the direct problem and of the adjoint problem determines the exact value of the
gradient, independent of the number of parameters in the minimization process.

* An example of a solution for the case of an elastoviscoplastic law can be found in
Reference [14].

* In the direct differentiation method one constructs an additional problem for each
parameter involved in the minimization process, which is linear, i.e. viscoelastic, and has to
be integrated forward in time. This can be done at each load increment after the integration
of the direct problem. The local sensitivities of all fields with respect to all parameters are
obtained and can be used for the optimization.

This method has been previously used in a series of papers by Vidal et al. [15,16], Tsay and
Arora [17], Galarza et al. [18] in order to solve optimization problems.
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In the sequel, we shall present a solution to the identification problem of material parameters
in the case of underground structures using the direct differentiation method. An important step
is the coupling of the sensitivity analysis with the numerical modelling of the tunneling process
including the set up of the lining. As a first approach, we shall neglect the hydromechanical
coupling and focus just on the mechanical behaviour of the rock mass. We refer to B!eerest [4] and
Cristescu [5] for a complete review of the viscoplasticity of rocks.

In the first part, direct differentiation method is derived for elastoviscoplastic constitutive law
of the Perzyna type [19] following the steps of Vidal et al. [15]. In the second part, the method is
tested on a series of examples for a Norton–Hoff material law using simulated measurements.

The results obtained using a Levenberg–Marquardt minimization show that the method is
robust and efficient. However, certain questions about the uniqueness and stability of the
inverse problem also arise. We shortly discuss the usage of the sensitivity analysis of the system
for the optimization of in situ monitoring. The sensitivity distribution of the mechanical fields in
space and time assess the location of the measurements points as well as the time of observation
needed for reliable identification.

2. THE LINED TUNNEL AND THE ASSOCIATED INVERSE PROBLEMS

Let us consider the following time interval T ¼ ½0; tf � during which the tunnel will be excavated,
supported and monitored. The lining will be installed at t ¼ t‘:

The domain of interest O evolves during this period in the following way:

* initially, for t 2 ½�1; 0½; O is the non-excavated domain;
* then, for t 2 ½0; tl� the domain O ¼ OX represents the rock mass with the excavated tunnel

before the installation of the lining;
* finally, for t > tl; the domain O ¼ OX [ O‘ is the excavated rock mass together with the

lining of the tunnel.

The border G ¼ @O of the complete domain O is divided into two sets Gt and Gu on which
tractions and displacements are, respectively, prescribed. The interface between the lining and
the rock mass will be denoted GX ‘ .

Let u; e and r stand for the displacement, the small strain operator and the Cauchy stress
tensor, respectively.

2.1. The direct problem P

Before excavation, at time t ¼ 0; we shall assume that the rock mass is in its natural state given
by the initial statically admissible stress state:

r ¼ r0 ð1Þ

and that all the other mechanical fields are equal to zero. The evolution of the rock mass is
described by the following system of equations, written in rate form as

* Balance equation on O� T and imposed tractions on the boundary on Gt � T :

div ’rrþ ’ff ¼ 0

’rr � n ¼ ’ttd ð2Þ
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* Small strain equations on O� T and displacement boundary conditions on Gu � T :

eð’uuÞ ¼ 1
2
ðr’uuþrT ’uuÞ

’uu ¼ ’uud
ð3Þ

* Elastoviscoplastic constitutive law of Perzyna class [19] for the rock mass on OX � T :

’rr ¼ C : ð’ee� ’eevpÞ

’eevp ¼
@fðrÞ
@r

ð4Þ

where f is a pseudo-potential functional of the stress tensor [19].The expression of f for
the Norton–Hoff law is given by

fðrÞ ¼
K

N þ 1

seq � sY
K

D ENþ1

ð5Þ

where seq is the Von Mises equivalent stress ½ML�1T�2�; sY the yield limit ½ML�1T�2�; N the
viscoplastic exponent ½��; and K the viscosity coefficient ½ML�1T�2þ1=N �.

* Elastic behaviour for the lining on O‘��tl; tf �:

’rr ¼ Cl : ’ee ð6Þ

The constitutive law is fairly simple, but includes several interesting features: a cohesion and a
highly non-linear viscosity. A series of classical characteristics such as plastic dilatancy or
hardening/softening effects are not included. However, this material behaviour reproduces the
shape of the delayed convergence of tunnels excavated in viscoplastic rocks.

Moreover in rock salt mechanics, it is largely accepted that the material behaves like a viscous
fluid. The non-Newtonian Norton or Lemaitre–Menzel–Schreiner constitutive laws are
frequently used in applications [20]. Other viscous rocks such as shales or marls cannot be
considered as viscous fluids and a long-term resistance must be accounted for. In this case, the
larger class of viscoplastic constitutive laws of Perzyna type has been proposed by several
authors [1, 21]. One of these, the Norton–Hoff law used here for illustration permits a direct
extension to include strain hardening (or softening) as well as internal friction.

The numerical integration of the initial boundary value problem is classically done by finite
elements in space and finite difference in time. An extensive presentation of these techniques is
given in Reference [22].

At this point, let us recall the weak formulation of the preceding problem which will be used in
the sequel for the description of the direct differentiation method. On the discretized time interval
½tn; tnþ1�; the weak formulation at time t ¼ tnþ1 can be written using a forward Euler (implicit)
scheme for the time integration and a radial return mapping for the local plastic integration [22]:

Find unþ1 2 U; evpnþ1 and rnþ1 satisfying :Z
O
eðvÞ : rnþ1 dO�

Z
O
vfnþ1 dO�

Z
Gt

vtdnþ1 dG ¼ 0 8m 2 V ð7Þ

rnþ1 ¼ C : ðeðunþ1Þ � evpnþ1Þ þ r0 ð8Þ

evpnþ1 ¼ evpn þ Dtnþ1
@fðrnþ1Þ

@r
ð9Þ
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where all fields X ðtnþ1Þ at time t ¼ tnþ1 are noted Xnþ1 and Dtnþ1 ¼ tnþ1 � tn:

U and V are the classical functional space :

U ¼fu 2 H1ðOÞ j unþ1 ¼ ud ðtnþ1Þ on Gug

V ¼fv 2 H1ðOÞ j v ¼ 0 on Gug ð10Þ

We recall that r0 denotes the in situ stresses field.
Let us now discuss the computational details imposed by the excavation of the tunnel and the

installation of the lining. The finite element computations will be performed on the domain
OX [ O‘ for all time steps. Before the effective installation of the lining, the mechanical influence
of O‘ has to be neglected and therefore Young’s moduli of the lining has been chosen such that
El � Em:

The different steps can now be described in the following way:

* For t 2 ½�1; 0½; the non-excavated domain is at equilibrium with an initial stress state. The
‘finite element’ boundary condition should be: r � njG‘

¼ r0 � n: Due to the negligible
stiffness in O‘ this is practically equivalent with the real condition: r � njGX ‘

¼ r0 � n:
* For t 2 ½0; t‘½: The tunnel is already excavated but the lining is not active. The boundary

GX ‘ of the rock mass is free of traction. Using the same argument as before, we impose:
r � njGX ‘

¼ 0: Due to the negligible stiffness in O‘ this is practically equivalent with the real
condition: r � njGX ‘

¼ 0:
* For t 2 ½t‘; tf �; the elastic lining is set. The boundary condition is now: r � njG‘

¼ 0:
However, at this point the stiffness of the lining is not negligible anymore and therefore the
traction between lining and rock mass expressed by r � njGX ‘

is no more zero.

Here, we supposed that an instantaneous de-confinement is applied at the tunnel wall to
simulate the excavation process. This is justified by the fact that excavation period, typically
some weeks, is negligible with respect to the period of interest, typically 10–50 years. An
extended discussion supporting these assumptions from the geomechanical point of view can be
found in Reference [23].

Taking into account a complicated history of de-confinement does not change fundamentally
our approach, but for the sake of simplicity this problem will not be addressed thereafter.

2.2. The inverse problem P�1

In the inverse problem, we shall consider that the constitutive parameters are unknown. This
drawback will be supplemented with a series of measurements, for example:

* convergence of the tunnel wall;
* displacement measurements, by extensometers, within the rock mass and
* pressure cells, measuring the contact forces between the lining and the rock mass.

A general formulation of this identification problem is

Find c ¼ fE;N ; sY ;Kg from displacements and forces measurements performed during the
time interval T :
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From a mathematical point of view, this problem can be recasted as the minimization of a
cost functional measuring the gap between measurements and the direct estimations.

In order to solve this problem two issues have to be addressed:

* Choice of the cost functional.
* Choice of the minimization algorithm.

In our case, we have chosen to minimize the classical weighted least-squares functional:

JðcÞ ¼
1

2

X
i¼1;k

X
j¼1;p

uðc; ti; xjÞ � umesðti;xjÞ
wuij

� �2

þ
1

2

X
i¼1;k

X
j¼1;p

tðc; ti;xjÞ � tmesðti;xjÞ
wtij

� �2

ð11Þ

where u and t are displacements and tractions computed by direct computations, umes and tmes

are measured quantities, ti;xj are, respectively, the time instants and the location of the
measurements, wt and wu are weights.

The gradient of the preceding cost functional can be written as

@J

@cl
¼

X
i¼1;k

X
j¼1;p

uðc; ti;xjÞ � umesðti; xjÞ
w2
uij

@u

@cl
ðc; ti;xjÞ

þ
X
i¼1;k

X
j¼1;p

tðc; ti;xjÞ � tmesðti;xjÞ
w2
tij

@t

@cl
ðc; ti;xjÞ ð12Þ

In the sequel, we shall use the direct differentiation method to compute the gradient. More
precisely, this method allows to compute exactly not only @J=@c as in the adjoint state method

but also the values of the sensitivities of all mechanical fields @u=@cl; @r=@cl; . . . in each point
and at each instant. This method requires the solution of n additional viscoelastic problems,
where n is the number of parameters. This method will be described in the next section.

3. SENSITIVITY ANALYSIS

We will describe the Direct differentiation method for a general set of parameter c ¼
ðc1; . . . ; ci . . .Þ and consider the particular case of constitutive parameters at the end. The direct
differentiation of the classical initial boundary problem in elasto-viscoplasticity will rise a
somehow similar system of partial differential equations, where the constitutive equation is
always similar to a viscoelastic law. The unknown functions of these problems are dciu and dcir:
They represent, respectively, the gradients @u=@ci and @r=@ci:

The differentiation of the equilibrium and compatibility equations are straightforward since
the divergence and gradient are linear operators. The boundary and initial conditions are also
easily derived. In particular, if the boundary conditions do not depend on the constitutive
parameters ci; the sensitivity problem has homogeneous boundary conditions.
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3.1. Differentiation of the discretized constitutive law

The pseudo-potential is a function of the parameters ci and the stress field also depends on ci:
Therefore, we have fðrðciÞ; ciÞ:

The differentiation of Equations (5) and (4) thus gives:

dcirnþ1 ¼
@C

@ci
: ðeðunþ1Þ � evpnþ1Þ

þ C : ðeðdciunþ1Þ � dcie
vp
nþ1Þ þ

@r0
@ci

ð13Þ

dcie
vp
nþ1 ¼ dcie

vp
n þ Dtnþ1

@2fðrðciÞ; ciÞ
@r@ci

þ Dtnþ1
@2fðrnþ1Þ

@r2
dcirnþ1 ð14Þ

Combining the last equations, we can derive the following constitutive law for the sensitivity
fields (see details in the Appendix):

dcirnþ1 ¼Xnþ1 : eðdciunþ1Þ

þ Xnþ1 : C�1 :
@C

@ci
: ðeðunþ1Þ � evpnþ1Þ

� �

þ Xnþ1 : C�1 :
@r0
@ci

� dcie
vp
n �

@2fðrnþ1ðciÞ; ciÞ
@r@ci

Dtnþ1

� �
ð15Þ

where Nnþ1 is the consistent tangent operator [22, 15] defined by

Nnþ1 ¼ C�1 þ Dtnþ1
@2fðrnþ1Þ

@r2

� ��1

ð16Þ

This constitutive relation is of the visco-elastic type, the response of the stress sensitivity at
time tnþ1 depends linearly on the displacement sensitivity at time tnþ1 and known sensitivities at
tn:

3.2. Weak form of the sensitivity problem Ps

Following a similar method as in the direct problem, the initial boundary value problem on the
sensitivity can be written in the following weak form:

Find dciunþ1 2 W and dcirnþ1 satisfying :

Z
O
eðvÞ : dcirnþ1 dO�

Z
O
v
@fnþ1

@ci
dO�

Z
Gt

v
@tdnþ1

@ci
dG ¼ 0 8v 2 W ð17Þ

and the constitutive law on the sensitivity described by Equation (15) mentioned above; together
with the following initial conditions at time t ¼ 0;

dcir ¼
@r0
@ci

dciu ¼ 0 ð18Þ
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W is the space of admissible displacements defined by

W ¼ dciu 2 H1ðOÞ j dciunþ1 ¼
@udnþ1

@ci
on Gu

� �
ð19Þ

3.3. Incremental form of Ps

To see the structure of the computation which is performed step by step, let us denote

dciunþ1 ¼ dciDuþ dciun ð20Þ

Therefore, the weak incremental formulation is

Find dciDu 2 W ¼ dciDu 2 H�1 j dciDu ¼
@Dud

@ci
on Gu

� �

and dcirnþ1satisfying :Z
O
eðvÞ : Nnþ1 : eðdciDuÞ dO

¼
Z
O
v
@fnþ1

@ci
dOþ

Z
GT

v
@tdnþ1

@ci
dG

þ
Z
O
eðvÞ : Nnþ1 :

@2fðrnþ1ðciÞ; ciÞ
@r@ci

Dtnþ1 dO

�
Z
O
eðvÞ :Nnþ1 : C�1 :

@C

@ci
: eðDuÞ � Dtnþ1

@fðrnþ1Þ
@r

� �
dO

�
Z
O
eðvÞ : Nnþ1 : C�1 : dcirn dO 8v 2 V ð21Þ

with the following constitutive law:

dcirnþ1 ¼Nnþ1 : eðdciDuÞ

þ Nnþ1 : C�1 : dcirn þ C�1 :
@C

@ci
: eðDuÞ � Dtnþ1

@fðrnþ1Þ
@r

� �� �

� Nnþ1 :
@2fðrnþ1ðciÞ; ciÞ

@r@ci
Dtnþ1 ð22Þ

and the initial conditions already mentioned in Equation (18).
In the case where ci is a constitutive parameter, the initial stresses and the imposed boundary

conditions do not depend on ci: Therefore, we have

@r0
@ci

¼ 0;
@fnþ1

@ci
¼ 0

@tdnþ1

@ci
¼ 0;

@udnþ1

@ci
¼ 0

The cost functional J and its gradient rJ are computed from the solutions of the direct
problem P and of the sensitivities problems PS using Equations (11) and (12).
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4. THE FINITE ELEMENT PROGRAMMING

The direct and sensitivity problem have been programmed in the object oriented finite element
code Cast3M [24].

The direct problem has been solved using a radial return mapping for the plastic integration
already implemented in the code (functions ecoulement, pasapas). The sensitivity problem has
been solved including a programmed sequence at the end of each time step (using the perso

facility of the pasapas operator). Therefore, space and time discretization are the same for the
direct and auxiliary problems as specified in Reference [15]. A simple scheme of a time step
computation is displayed in Figure 1.

At the end of each time step, when convergence of the direct problem is achieved, the stiffness
matrix of the direct problem is the consistent tangent operator given in Equation (16). It can
therefore be directly used in solving the sensitivity problems. At this point only the force terms
arising in the sensitivity analysis have to be computed from already known fields (left-hand side
of Equation (21)). If the stiffness matrix is stored in the LU decomposition, computations are
fast. For the four sensitivities corresponding to the four parameters to be identified, the
complete sensitivity analysis represented approximately half of the computational burden of the
direct problem. This performance can still be enhanced provided that less fields are stored
during the computation and that the time steps are optimized. This was however not a main
objective of this work.

Let us now discuss shortly an important detail related to the set-up of the lining. This
procedure introduces a change of the domain as previously explained. The initial assumption is
that one can consider the direct problem on the whole domain: lining + rock mass and neglect
the influence of the lining using a vanishing Young’s modulus before the set-up of the lining.
Theoretically, as all expressions are obtained between time steps on a fixed domain, the set-up of
the support does not influence the deduction of the sensitivity problem.

From a numerical point of view, the numerical value chosen for the vanishing Young’s
modulus did not influence the result of the direct problem. However for the computations of the
sensitivities, we experienced that if the vanishing Young’s modulus is chosen too small, i.e.
Elining � 10�15Erock; important errors are created at the first time step after the set up of the
lining. These propagate in the sequel perturbing the solution. This can be explained by floating
point errors in the algebraic manipulation in the left-hand side of Equation (21).

Figure 1. Scheme of a time step for the direct and sensitivity problem.
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A Levenberg–Marquardt [25] algorithm has been used for the minimization procedure and
programmed using the numerical package Scilab developed at INRIA [26]. It is important to
point out that the use of a singular value decomposition was necessary in the Levenberg–
Marquardt algorithm in order to assure a robust estimate of the minimization step.

The computational time for the direct and sensitivity problem was less than 5 min for 1
iteration of the minimization algorithm (direct computation and direct differentiation problems)
in a problem with 4460 degrees of freedom on a Intel PentiumIII machine with 550 MHz and
256 MB RAM running under Linux.

5. RESULTS AND DISCUSSION

In this section, we shall present a series of identifications based on simulated measurements. The
‘real’ parameters creal; to be identified in the sequel, have been chosen in order to reproduce the
order of magnitude found in situ and to be compatible with available experimental data on deep
argillaceous rocks of Eastern France [27].

The first example presented corresponds to a one-dimensional problem with the following
‘real’ parameters:

E ¼ 4 GPa; n ¼ 0:3; sY ¼ 1 MPa; N ¼ 8; K ¼ 140 MPa s1=N

and an isotropic initial stress state defined by

r0 ¼ �12I MPa

where I denotes the second rank identity tensor.
The second example corresponds to a two-dimensional section of a tunnel, with:

E ¼ 4 GPa; n ¼ 0:3; sY ¼ 3 MPa N ¼ 8; K ¼ 120 MPa s1=N

and an anisotropic initial stress state:

r0 ¼

sHorizontal 0 0

0 sVertical 0

0 0 shorizontal

0
BB@

1
CCA

sVertical ¼ �12 MPa sHorizontal ¼ shorizontal ¼ �9:6 MPa

The lining is supposed to have an elastic behaviour with a Young’s Modulus of 15 GPa and a
Poisson’s ratio of 0:25 corresponding to a reinforced concrete.

In both examples, we consider that displacements and contact forces are available as
measurements at different locations on the lining and in the rock mass (see Figure 9).

For the identification problem, we have considered a cost functional J as defined in (11). The
gradient rJ has been computed using (12). The weights wuij and wtij were considered equal for
all measurements locations and were just adjusted to obtain a similar weight between the error
in displacement and the error in force. The minimization procedure was performed using a
preconditioning as explained in Reference [25]. As a consequence jjrJjj represents the euclidian
norm of the preconditioned gradient of the cost functional.
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5.1. One-dimensional example

Let us consider the simple case of a circular tunnel of radius R in an infinite medium with
isotropic initial stresses conducting to a one-dimensional problem, in the lined and in the
unlined case.

As mentioned before, the time of excavation is supposed to be negligible compared with the
time of interest: the excavation is completed at t ¼ 0þ: The lining, in the case of the supported
cavity, is supposed to be set up approximately 20 days after the end of the excavation.

The measurements for the unlined tunnel are radial displacements at three different points in
the rock mass: at the tunnel wall R; at 2R and, respectively, at 3R from the tunnel wall.

The measurements for the lined tunnel are convergence (radial displacements at the tunnel
wall) and the contact force at the interface between the lining and the rock mass.

In all cases the optimal value of parameters (creal) has been recovered after 10–20 iterations
with an almost vanishing cost functional. This means that the final simulated results match the
measurements as illustrated in Figure 3 where 10% noise has been added to measurements.

A series of identified values for different starting points as well as the decrease of the value of
the cost functional and of its gradient are represented in Tables I, II and III.

The number of measurement locations involved in the identification was not very important,
similar results have been obtained with 1 or 3 sets of displacement data.

The representation of the radial distribution of the sensitivities (see Figures 2 and 5) can be
linked to the ‘information content’ of the mechanical fields with respect to the considered

Table I. Results of the identification in the one-dimensional unlined case with no added noise.

E ðGPaÞ sY ðMPaÞ N K ðMPa s�1=N Þ J jjrJjj Iterations

Initial 1 1 9 100 0.129 0.199
Final 4.132 1.439 7.926 130.0 2:3� 10�6 1� 10�5 10
Initial 5 1 7 200 1:7� 10�4 3:7� 10�3

Final 4.12 1.982 7.245 157.8 1� 10�7 8:9� 10�6 12
Intel 4 0.5 7.5 100 0.250 0.348
Final 3.97 1.048 8.032 135.5 2:9� 10�6 6:4� 10�5 15
Initial 4.50 1 7.5 160 2:3� 10�5 2:1� 10�4

Final 4.127 1.665 7.64 140 2:1� 10�6 7:0� 10�6 12

Real 4 1 8 140

Table II. Results of the identification in the one-dimensional lined case with no added noise.

E ðGPaÞ sY ðMPaÞ N K ðMPa s�1=N Þ J jjrJjj Iterations

Initial 1 1 9 100 790.13 635.6
Final 4.014 0.908 8.129 135.5 3:5� 10�5 1� 10�2 14
Initial 1 1 7 200 714.22 399.3
Final 4.00 1.060 7.947 142.0 1:4� 10�5 9� 10�3 12
Initial 4 0.5 7.5 100 250.9 183.1
Final 4.0 1.02 7.98 140.7 2:7� 10�6 4:7� 10�3 15
Initial 4.50 1 7.5 160 0.685 0.78
Final 4.00 1.05 7.95 141.7 1:06� 10�5 7:6� 10�3 13

Real 4 1 8 140
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parameter. Thus it permits to decide the best-measurement locations and observation periods
for the identification.

Figure 2 shows that the strongest sensitivities on the displacements are contained in a region
within 3R which corresponds to the viscoplastic zone. The sensitivity on the radial stress (see
Figure 5) is also concentrated in the viscoplastic zone, but the sensitivity maximum is located
this time near the viscoplastic border in the rock mass.

The sensitivities are time increasing. However, for the lined tunnel (Figure 4), the sensitivities
reach an almost constant value with time. The time evolution of the sensitivities show that the

Table III. Results of the identification in the one-dimensional lined case with additional 10% noise.

E ðGPaÞ sY ðMPaÞ N K ðMPa s�1=N Þ J jjrJjj Iterations

Initial 1 1 9 100 792.6562 649.4
Final 4.213 2.144 7.30 151.1 0.7914 7:0892� 10�3 10
Initial 5 1 7 200 4.057 6.05
Final 4.199 2.21 7.21 156.0 0.7912 4:1716� 10�3 9
Initial 4 0.5 7.5 100 254.86 180.4
Final 4.176 2.339 7.045 165.5 0.7913 5:96� 10�3 11
Initial 4.50 1 7.5 160 1.822 1.157
Final 4.184 2.293 7.10 162.1 0.7910446 3:2713� 10�3 11

Real 4 1 8 140
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Figure 2. Sensitivity on radial displacement dNur=R; unlined tunnel (one-dimensional).
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lined and unlined problems have different characteristic times. This can be explained by the
presence of a relatively stiff lining when compared with the rock mass (Erock=Elining � 0:25) and
has already been interpreted from a geotechnical point of view by B!eerest and Nguyen Minh [28].

The increase of the length of the observation period enhances, as expected, the accuracy of the
identified parameters (see Table IV).

Results for lined tunnels are generally more accurate (see Table II). In this case the
observation period is long enough for the structure to reach the steady state (Figure 4) and
contains therefore all the possible information. For unlined tunnels, the observation period is
not long enough and this can explain the poor recovery of the optimum parameters in this case
(see Table I).

As a final remark, let us notice that the global shape of the sensitivity is similar for all
constitutive parameters.

Distance from the tunnel wall
(normalized by its radius) 

Radial stresses

Radial stresses sensitivities 

Location of Viscoplastic radius

1 2 3 4 5 6 7 8 9 10

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

t=10 years
t=3 years
t=1 year

Figure 5. Evolution of srr=s0 and dNsrr=s0 function of r in the one-dimensional unlined tunnel case.

Table IV. Influence of the observation period on the identification, one-dimensional case, unlined tunnel.
Same initial guess (E ¼ 1 GPa; sY ¼ 1 MPa; N ¼ 7; K ¼ 200 MPa s1=N ).

tstart tf E ðGPaÞ sY ðMPaÞ N K ðMPa s�1=N Þ

0 10 years 4.004 1.06 7.947 142.0
0 3 year 4.003 1.94 7.201 170.1
0 1 year 3.99 2.16 7.09 189.5
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5.2. Two-dimensional case

In the two-dimensional case, the geometry of the tunnel and the corresponding finite element
mesh as well as the location of the measurement are represented in Figure 9.

In this case an anisotropic initial stress with K0 ¼ 0:8 has been considered. The excavation
and lining sequence is the same as in the one-dimensional case.

Like in the one-dimensional case, the values have been recovered after a small number of
iterations with an almost vanishing cost functional (see Tables V and VI). A convergence
example of the parameters towards their ‘real value’ is displayed in Figure 6 in the case where
the data were perturbed by a white noise of 10%:

The maximum spatial distribution of the sensitivity is located as in the one-dimensional case,
near the tunnel wall in the viscoplastic region (see Figure 8). The sensitivity of radial stresses on
the upper-vertical and horizontal radius (see Figures 7 and 8) show profiles which are similar to
the ones obtained for the one dimensional case (see Figure 5).

The exact distribution of other components of the stresses will depend on the tunnel geometry
and on the initial stress state. The distribution of the Von Mises stress as well as the Von Mises
norm of the sensitivity stress tensor are displayed in Figure 8. One can remark a concentration
around the diagonal directions which should be related with the ratio between the initial vertical

Table VI. Results of the identification in the two-dimensional case. No measurements inside the rock mass.

E ðGPaÞ sY ðMPaÞ N K ðMPa s�1=N Þ J jjrJjj Iterations

Initial 1 2.0 7 200 1604.80 800.7
Final 4.0 3.00 7.999 120.00 51� 10�7 5:9� 10�4 12
Initial 6 2 9 50 85.04 424.32
Final 4.00 2.997 8.001 120.00 51� 10�7 5:6� 10�3 12
Initial 6 4 7 200 46.7 71.69
Final 4.00 3.01 7.98 120.5 1:13� 10�5 7:1� 10�3 15
Initial 1 2 9 200 1006.2 840.42
Final 4.00 3.001 7.999 120.1 51� 10�7 5:11� 10�3 11

Real 4 3 8 120

Table V. Results of the identification in the two-dimensional case.

E ðGPaÞ sY ðMPaÞ N K ðMPa s�1=N Þ J jjrJjj Iterations

Initial 1 2.0 7 200 1713.2 855.3
Final 4.00 2.995 8.00 119.8 1� 10�7 1:12� 10�3 12
Initial 6 2 9 50 90.48 427.3
Final 3.998 3.126 7.84 124.7 4:06� 10�5 2:03� 10�3 15
Initial 6 4 7 200 49.63 80.14
Final 3.999 3.04 7.94 121.5 2:27� 10�5 8:9� 10�2 15
Initial 1 2 9 200 1083.2 908.2
Final 4.00 3.0 7.998 120.1 1� 10�7 6:0� 10�3 11

Real 4.00 3.0 8 120
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and horizontal stresses. The sensitivity distributions permit to identify the optimal locations for
installing the pressure cells, measuring the contact force, and the extensometers.

In the presented computations we have not observed an influence of the number of
measurement locations on final results of the optimization. This might astonish, but one has to
recall that in the presented computation, sensitivity histories are similar in all locations. In the
real case the dispersion of the data comes on the one hand from the noisy measurements and on
the other hand from the inhomogeneity of the medium.

5.3. Uniqueness discussion

The present results showed that in one- and two-dimensional configurations the parameters of
the constitutive law could be reconstructed from contact forces and displacement measurements
in the lining or in the rock mass. In all cases, measurements were matched almost perfectly, even
if the estimated parameters were still at a certain distance from the real values. The
question arising in such a case is that of the uniqueness of this inverse identification
problem.

From a practical view, we have been plotting the variation of the cost functional in different
planes. The shapes of the functional presented generally long flat valleys surrounding the
optimum (see Figure 10) in both lined and unlined cases showing that the optimum is always

Iterations
1 3 5 7 9 11 13 15
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1.4

1.5

E/Ereal

Sy/Sy real

N/Nreal

K/Kreal

Figure 6. Evolution of the different parameters (scaled by the optimal value) during the Levenberg–
Marquardt algorithm.
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unique. In Figure 10, we have displayed the shape of the cost functional in the plane N–K: The
representation in the sY –E plane is similar.

The variations of the cost functional in this area are generally small and interfere with
numerical noise. Similar behaviour has already been reported in Reference [14].

Distance from the tunnel wall
(normalized by its radius)

Radial stresses

Radial stresses sensitivities

Vertical axe

Horizontal axe

1 5 9 13 17 21 25 29

−1.1

−0.9

−0.7

−0.5

−0.3

−0.1

0.1

Figure 7. Profile of srr=s0 and dNsrr=s0 in the two-dimensional case (K0 ¼ 0:8).

Figure 8. Von Mises of r (Yield Limit 3 MPa) and dNr:
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The uniqueness observation could be related to a series of uniqueness proofs recently
obtained in viscoelasticity [29, 30] for simple configurations. These mathematical results are
obtained using an integrodifferential representation of the viscoelastic constitutive law and
further work is needed to extend these results to the exact form of elastoviscoplasticity used
here. The flat valley is to be related to a bad stability of the cost functional. Therefore, one
should probably investigate other forms of cost functionals providing a better sensitivity with
respect to the parameters.

6. CONCLUSION

The present paper discussed the identification of constitutive parameters for an elastovisco-
plastic law. The identification is based on a minimization algorithm using a gradient computed
by direct differentiation. The constitutive parameters of the rock mass around an underground
lined or unlined tunnel were obtained from simulated measurements, without using any a priori

information or regularization technique.
The results show that the direct differentiation method can be successfully applied in the

particular case of tunneling. The sudden change of configuration given by the installation of the
lining and the subsequent modelling has not posed important difficulties.

The obtained sensitivities also permit the optimization of the location of instrumentation in
the rock mass as well as of the observation period. This is of particular interest in the context of
in situ monitoring of underground structures.

The probabilistic character of measurements data and of rock mass parameters can be
included in the present method by adding covariance matrices in the optimization process as
explained in Reference [7].

Further studies should include a larger range of constitutive equations and data coming from
field measurements. Some preliminary results are reported in Reference [31].

Figure 9. Close view of the finite element mesh. Location of measurements points.
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APPENDIX: DERIVATION OF THE SENSITIVITIES CONSTITUTIVE LAW

After eliminating dcie
vp
nþ1 in Equation (13) using (14), we obtain

dcirnþ1 ¼C : eðdciunþ1Þ � Dtnþ1
@2fðrnþ1Þ

@r2
dcirnþ1

� �

2 1/N
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Figure 10. Three-dimensional plot of the cost function in the plane N–K for the one-dimensional lined and
unlined cases.
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� C : dcie
vp
n þ Dtnþ1

@2fðrðciÞ; ciÞ
@r@ci

� �

þ
@C

@ci
: ðeðunþ1Þ � evpnþ1Þ þ

@r0
@ci

Expressing dcirnþ1 as in functions of eðdciunþ1Þ; we get

C�1 þ Dtnþ1
@2fðrnþ1Þ

@r2
dci

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

N�1
nþ1

: dcirnþ1 ¼ eðdciunþ1Þ

� dcie
vp
n þ Dtnþ1

@2fðrðciÞ; ciÞ
@r@ci

þ C�1 :
@C

@ci
: ðeðunþ1Þ � evpnþ1Þ

þ C�1 :
@r0
@ci

Using the definition of the Consistent Tangent Moduli Nnþ1 (16), we easily get Equation (15).
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