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The influence of confinement on the bearing capacity
of strip footings
Jean Salençon

École polytechnique, Laboratoire de mécanique des solides, 91128 Palaiseau cedex, France

Abstract The bearing capacity for a strip footing acting on a soil foundation with rigid boundaries at 
a finite distance is investigated within the framework of the Yield design theory both for a 
purely cohesive soil and for a frictional soil. It is shown that the analysis can be performed 
simply by referring to already existing results concerning the bearing capacity of a strip 
footing on a soil layer with limited thickness. Each bearing capacity factor in Terzaghi 
formula is increased by a factor that increases when the distance of the rigid boundary to 
the edge of the footing decreases. The bearing capacity is proved to be the more sensitive 
to this confining effect as the friction angle of the soil increases. From a physical point of 
view this theoretical analysis would show that, when effective, confinement reduces the 
depth of the soil layer involved in the collapse mechanism. 
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Effet du confinement sur la capacité portante d’une fondation
superficielle

Résumé On étudie la force portante d’une fondation superficielle sur un demi-espace limité 
horizontalement par des parois rigides. On se place dans le cadre de la théorie du calcul à la 
rupture. On montre que l’analyse peut être menée simplement à partir des résultats déjà 
existants au sujet de la portance d’une fondation sur une couche de sol d’épaisseur limitée. 
Chaque coefficient dans la formule de Terzaghi est multiplié par un facteur qui croit quand 
la distance de la paroi rigide au bord de la fondation diminue. Cet effet de confinement est 
d’autant plus sensible que l’angle de frottement du sol est grand. Du point de vue physique 
cette analyse théorique prouverait que le confinement a pour effet de réduire la profondeur 
de la couche de sol impliquée dans le mécanisme de ruine. 

sols / calcul à la rupture / fondation / force portante / Terzaghi

1. The problem under investigation

The paper is concerned with the theoretical determination of the bearing capacity of a rigid strip footing
under axial loading, acting on a homogeneous soil foundation with infinite thickness. The width of the
footing is denoted B = 2b. The soil foundation is assumed to be limited in both horizontal directions at
a distance L from the edge of the footing by rigid walls. The contact between the footing and the soil
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on the one side and between the soil and the rigid walls on the other is assumed to be perfectly rough.
The goal of the paper is to give a method for assessing the correction factor to be applied to the classical
bearing capacity factors to take into account the influence of confinement due to the limited width of the
soil foundation as a function of L/b. The theoretical framework is given by the theory of yield design [1]
or limit analysis with main purpose of obtaining upper bound estimates for the effect of confinement. The
foundation soil is isotropic. It is characterised first by a Tresca strength criterion with cohesion cu, then by
a Coulomb strength criterion with cohesion c and friction angle φ.

2. Strip footing acting on a purely cohesive soil

2.1. The problem under consideration

The axial force acting on the footing is denoted F (more precisely, F is the axial force per unit transversal
length acting on the footing). The problem is classically treated as 2-dimensional.

The bearing capacity is pult = F/B . Dimensional analysis proves that for the problem at hand pult takes
the form:

pult = cuKc

(
L

b

)
Nc with Nc = π + 2 and Kc(∞) = 1 (1)

For an unlimited soil foundation (L/b → ∞) the exact value of the bearing capacity is derived from the
classical velocity field of the Prandtl solution for the kinematic approach [2]. For the static approach the
stress-fields constructed by Bishop [3] or by Shield [4] or by Sayir and Ziegler [5] may be used. Fig. 1
sketches the stress field given by Shield and the velocity field. The length of the uplifted wave AD in the
velocity field is denoted w and we have w/b = Cc = 2.

2.2. Static approach

In the case of a soil foundation bounded by rough rigid walls at a distance L from the edges, a static
approach is obtained, whatever L/b � 0, through considering the restriction of the stress-field in Fig. 1 to
the bulk of soil between the walls. The friction condition at the interface between the walls and the soil is
fulfilled since the normal stress acting on the rough wall is compressive everywhere: whatever L/b � 0 the
wall will intersect the three zones I, II, III in the Shield discontinuous stress-field; in zone I, σyy is constant
and compressive: σyy = −2cu; zone II is a centred fan where both principal stresses are compressive and
therefore σyy is compressive; in zone III, the principal stresses are σxx and σyy which are independent of x

and y respectively and such that σxx − σyy = 2cu; introducing angle α as indicated in Fig. 1, it comes out

Figure 1. Prandtl solution [2] and extension of
Prandtl’s stress-field by Shield [4].
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explicitly that along the wall in zone III we have −2cu � σyy � −2cu(1 +α − sinα), which proves that σyy

is compressive. From this static approach it follows that:

∀ L

b
� 0, Kc

(
L

b

)
� 1 (2)

2.3. L/b � Cc

It also appears that the classical virtual velocity field in Fig. 1 is still valid for a kinematic approach as
long as L/b � Cc = 2. From which it follows that:

∀ L

b
� Cc = 2, Kc

(
L

b

)
= 1 (3)

2.4. 0 � L/b < Cc

Investigating the range 0 � L/b < Cc = 2, we refer to the solution given by Johnson and Kudo [6] and
used by Mandel and Salençon [7] for the determination of the bearing capacity of a surface footing on a
soil layer of limited thickness h, which is presented in Fig. 2. The contact between the soil layer and the
rigid bedrock is assumed to be perfectly rough. The slip-line field starts in the same way as in the Prandtl
solution and is extended under the footing taking into account the perfectly rough contact conditions under
the footing and at the bedrock until it reaches the axis of the footing at an angle of π/4. The geometric ratio
w/h in this slip-line field comes from Prandtl’s characteristic fan at point A and is a constant whatever
B/h:

∀ B

h
,

w

h
= λc = √

2 (4)

This slip-line field provides both a velocity field for the kinematic approach and a stress field for the
static approach from which the exact value of the bearing capacity of the footing was derived as a function
of B/h with tabulated values of the correction factor Fc(B/h):

pult = cuFc

(
B

h

)
Nc = cuFc

(
λc

B

w

)
Nc = cuFc

(
B

√
2

w

)
Nc (5)

In order to obtain an upper bound estimate to the correction factor due to confinement in Eq. (1)
when 0 � L/b < Cc = 2, given L/b, we simply consider the Johnson and Kudo slip-line field for which
w/b = L/b. The same velocity field as in Fig. 2 provides a kinematic approach for the problem under
present investigation (Fig. 3), the whole soil mass beneath SRICD (and sym.) being motionless. (It is worth
noting that, in this case, the slip-line field exhibits envelopes for the characteristic lines within the soil
mass: since the slip-line field is only used for the derivation of a velocity field, there is no objection to this.)
Without any further calculation but referring to the tabulated values of Fc(B/h) an upper bound is obtained
for Kc(L/b) which is presented in Fig. 3:

Kc

(
L

b

)
� Fc

[
2λc

(
L

b

)−1]
= Fc

(
2
√

2
b

L

)
(6)

Figure 2. Strip footing on a purely cohesive
soil layer of limited thickness [7].
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Figure 3. Influence of confinement for a purely cohesive
soil.

As expected this upper bound starts from 1 when L/b = Cc = 2 and increases monotonically to infinity
when L/b → 0. It is worth noting that for 1 � L/b � 2 the increase of the bearing capacity due to
confinement remains below 10%; it exceeds 30% when L/b < 0.56. For comparison sake, in the same
Fig. 3, a dotted curve presents the upper bound obtained easily through a simple slip-circle method in the
form:

Kc

(
L

b

)
� 0.69(2 + L/b)2

[(π + 2)L/b] (7)

which proves significantly poorer than Eq. (6).

3. Strip footing acting on a frictional soil

3.1. Classical results

Figure 4. Lundgren and Mortensen solution [8] and values of Nγ (φ) and Nc(φ) according to [7].

We now address the same problem for an isotropic frictional soil defined through a Coulomb strength
criterion with cohesion c and friction angle φ. The bearing capacity of a strip footing on an unlimited soil
foundation is usually written following Terzaghi’s formula where the theorem of corresponding states is
taken into account:

pult = 1

2
γBNγ (φ) + cNc(φ) + qNq(φ), Nq(φ) = 1 + Nc(φ) tanφ (8)

The networks of characteristic lines for the determination of Nc(φ) are classical Prandtl’s fields for a
weightless frictional material. As regards Nγ (φ) the solution was given by Lundgren and Mortensen [8]: the
characteristic network (Fig. 4) proceeds from the classical solution to the problem of the limit equilibrium of
a wedge at point A, about which some characteristic features must be recalled. It is self-similar with respect
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Figure5. Characteristic
network for the calculation of

Nγ (B/h,φ) [7].

to A, exhibiting no singularity at point A it must be determined through a trial-and-error method starting
from the interface under the footing. For the applications to be made it has been necessary to recalculate
this solution using the initial values for the trial-and-error method available in [7].

As regards Nc(φ) the solution can be interpreted as a static approach: the stress field was extended in the
whole volume of the foundation soil through Shield’s method [9]. It is also a kinematic approach within
the theory of yield design since a relevant velocity field can be obtained from the classical equations for the
velocity along the characteristic lines in the case of a Coulomb strength criterion. Concerning Nγ (φ) the
solution was proved to be a kinematic approach (Bonding [10]). The extension of the stress field may still
be missing. Fig. 4 gives the values of the bearing capacity factors according to [7] for the values of φ that
will be considered later on.

When the foundation is a soil layer of limited thickness the same decomposition applies in Eq. (9) as
in Eq. (8) with the introduction of the corresponding bearing capacity factors, functions of B/h which
were determined in the same way as for the purely cohesive soil [7]: Nγ (B/h,φ) and Nc(B/h,φ).
The characteristic networks are quite similar to Fig. 2 as presented in Fig. 5 for the determination of
Nγ (B/h,φ).




pult = 1

2
γBNγ

(
B

h
,φ

)
+ cNc

(
B

h
,φ

)
+ qNq

(
B

h
,φ

)

Nq

(
B

h
,φ

)
= 1 + Nc

(
B

h
,φ

)
tanφ

(9)

The results are available in the form of tabulated correction factors to be applied to Nγ (φ) and Nc(φ):

Nγ

(
B

h
,φ

)
= Fγ

(
B

h
,φ

)
Nγ (φ), Nc

(
B

h
,φ

)
= Fc

(
B

h
,φ

)
Nc(φ) (10)

3.2. The problem under consideration

The same arguments as above prove that the bearing capacity of a footing on a soil foundation with
unlimited thickness and bounded horizontally by rigid walls at a distance L from the edge of the footing
is estimated in a conservative manner through a Terzaghi formula similar to Eq. (9), where the bearing
capacity factors are functions of L/b and φ:


pult = 1

2
γBNγ

(
L

b
,φ

)
+ cNc

(
L

b
,φ

)
+ qNq

(L

b
,φ

)

Nq

(
L

b
,φ

)
= 1 + Nc

(
L

b
,φ

)
tanφ

(11)

Correction factors Kγ (L/b,φ) and Kc(L/b,φ) are introduced to account for the influence of
confinement:

Nγ

(
L

b
,φ

)
= Kγ

(
L

b
,φ

)
Nγ (φ), Nc

(
L

b
,φ

)
= Kc

(
L

b
,φ

)
Nc(φ) (12)
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Figure 6. Geometric ratios in the Lundgren and Mortensen solution and in the Prandtl solution.

3.3. Influence of confinement on theNγ term: L/b � Cγ (φ)

Examining first the Nγ term, we consider a strip footing acting on a frictional soil foundation with no
cohesion.

The Lundgren and Mortensen solution being characterised with the ratios w/d = λγ (φ) and w/b =
Cγ (φ) that are presented in Fig. 6, it follows, assuming the extension of the stress-field has been achieved
for this solution, that:

∀ L

b
� Cγ (φ), Kγ

(
L

b
,φ

)
= 1 (13)

3.4. Influence of confinement on theNγ term: 0 � L/b < Cγ (φ)

For the range 0 � L/b < Cγ (φ), given L/b, we refer to the solution to the problem of the bearing
capacity on a soil layer of limited thickness for which w/b = L/b (Fig. 7). The corresponding network
of characteristic lines provides a relevant velocity field for the problem under investigation within the
framework of the theory of yield design. The corresponding value of pult is obtained from the first term in
Eq. (9), by referring to the tabulated values of Fγ (B/h,φ) once the correspondence between L/b and B/h

is known. The solution to the wedge problem being self-similar with respect to point A, the geometric ratio
w/h is a constant whatever L/b < Cγ (φ), viz. w/h = λγ (φ). Hence the upper bound for the correction
factor due to confinement is written:

0 � L

b
< Cγ (φ), Kγ

(
L

b
,φ

)
� Fγ

[
2λγ (φ)

(
L

b

)−1

, φ

]
(14)

It is presented in Fig. 7 for some realistic values of φ: 20◦, 30◦, 36◦ and 40◦.

3.5. Confining effect on theNc term: L/b � Cc(φ)

As regards the effect of confinement on the Nc term in Eq. (11), the analysis strictly follows the same path
as above, with the simplification that the characteristic line network being derived from Prandtl’s solution
for the frictional material the geometric ratios w/d = λc(φ) and w/b = Cc(φ) are explicit functions of φ

(Fig. 6):

w

d
= λc(φ) = √

2

[
cos

(
φ

2

)
− sin

(
φ

2

)]
exp

[(
π

4
− φ

2

)
tanφ

]
(15)

w

b
= Cc(φ) = 2

√
(1 + sinφ)/(1 − sinφ) exp

[(
π

2

)
tanφ

]
(16)
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Figure 7. Influence of confinement on the Nγ term.

Again, it comes out easily that:

∀ L

b
� Cc(φ), Kc

(
L

b
,φ

)
= 1 (17)

3.6. Confining effect on theNc term: L/b < Cc(φ)

The assessment of the effect of confinement on the Nc term in Eq. (11) when L/b < Cc(φ) does not need
a long comment. Given L/b, we refer to the solution to the bearing capacity problem for the weightless soil
layer with limited thickness for which the network of characteristic lines fits exactly within the horizontal
bounds of the soil foundation. It provides a relevant velocity field for the problem under consideration and
the upper bound for the correction factor Kc(L/b,φ) is derived from the tabulated values of Fc(B/h,φ):

Kc

(
L

b
,φ

)
� Fc

[
2λc(φ)

(
L

b

)−1

, φ

]
(18)

which is presented in Fig. 8 for the same values of φ: 20◦, 30◦, 36◦ and 40◦ as Kγ (L/b,φ).

Figure 8. Influence of confinement on the Nc

term.

4. Conclusion and comments

The analysis described in the preceding Sections shows that upper bound estimates for the assessment
of the confining effect due to the limited horizontal width of the soil foundation can be conveniently made
by revisiting classical solutions to the problem of the bearing capacity of a surface footing on a soil layer
of limited thickness. From the physical point of view, this means that the presence of the rigid walls, when
they are close enough to the footing, reduces the thickness of the zone where the soil is concerned with
deformation at collapse.

In the case of the purely cohesive material, the increase of the bearing capacity due to this confining
effect remains small for realistic values of L/b.
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For the frictional material the conclusions are somewhat different. It comes out clearly from Fig. 6 that
both Cγ (φ) and Cc(φ) are functions which increase quickly with φ. It follows that the bearing capacity
is the more sensitive to the influence of the rigid walls which bound the soil foundation as φ increases.
Given φ, the correction factors Kc(L/b,φ) and Kγ (L/b,φ) are functions of L/b which start tangentially
to the horizontal axis and increase sharply when L/b decreases to zero. It follows that for realistic values of
L/b the increase of the bearing capacity due to the confining effect becomes more and more significant as φ

increases. From Fig. 6 we see that in any case Cc(φ) is significantly greater than Cγ (φ). Comparing Figs. 7
and 8 shows that given L/b and φ within the range we have been considering (20◦ � φ � 40◦), Kc(L/b,φ)

is, by far, higher than Kγ (L/b,φ). One may also notice that in the same time λc(φ) is but slightly greater
than λγ (φ), which shows that, given L, the thickness of the soil layers involved in the collapse mechanisms
for the Nc term and for the Nγ term respectively would be of the same order of magnitude.

The same method as described in this paper can be applied to the analysis of the effect of confinement
on the bearing capacity of circular footings, referring to the solution to the problem of the bearing capacity
of circular footings on a soil layer with limited thickness, which was given in [11].
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