N

N

Grain-size-sensitive flow and shear-stress enhancement
at the brittle-ductile transition of the continental crust

Frédéric Gueydan, Yves Leroy, Laurent Jolivet

» To cite this version:

Frédéric Gueydan, Yves Leroy, Laurent Jolivet. Grain-size-sensitive low and shear-stress enhancement
at the brittle-ductile transition of the continental crust. International Journal of Earth Sciences, 2001,
90 (1), pp.181-196. 10.1007/s005310000160 . hal-00111342

HAL Id: hal-00111342
https://hal.science/hal-00111342v1
Submitted on 3 May 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00111342v1
https://hal.archives-ouvertes.fr

Frédéric Gueydan - Yves M. Leroy - Laurent Jolivet

Grain-size-sensitive flow and shear-stress enhancement
at the brittle-ductile transition of the continental crust

Abstract Localized shear zones along low-angle nor-
mal faults have been identified in regions of extension
at the brittle-ductile transition of the continental
crust. The possibility of the strain localizing at a depth
of 10 km is interpreted here as a consequence of an
increase in the equivalent shear stress applied to the
flow of the lower crust. This enhancement of the flow
stress is seen as a prerequisite for the triggering of
brittle deformation mechanisms leading to strain local-
ization. The lower crust rheology used to examine this
stress increase is strain-rate, temperature and grain-
size dependent, due to the coupling of dislocation and
diffusion creep. The model structure proposed consists
of a top layer, the upper crust, gliding rigidly above a
bottom layer, the lower crust, which deforms in simple
shear. During a short time interval (1400 years), the
equivalent shear stress is found to increase by a factor
of up to 3 (67 MPa for anorthite and 17 MPa for
quartz). For anorthite, this stress could explain the
activation of a Mohr-Coulomb failure with a friction
coefficient of 0.2, which is reasonable at the depth of
10 km. Dislocation creep is activated during a rapid
change in the prescribed velocity, whereas diffusion
creep dominates if the velocity is held constant, high-
lighting the importance of grain-size sensitivity for
lower crustal rheology.
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Introduction

Shear zones that develop at the brittle-ductile transi-
tion of the continental crust must require a sufficiently
large equivalent shear stress to activate the brittle
deformation mechanisms which are thought to be
responsible for causing the strain to localize. This
shear stress enhancement has to remain compatible
with the flow of the lower crust material. To examine
this increase during an extension of the crust we focus
our attention on the thermo-mechanical response of a
1-D model of the lower crust using the finite-element
method.

Wernicke (1985) suggested that normal faults in
the upper crust extend into shear zones in the lower
crust as well as into the lithospheric mantle. These
shear zones should be seen as the precursor of detach-
ment faults which are part of the mechanism responsi-
ble for exhumation of metamorphic core complexes
(Lister and Davis 1989). The stress state necessary for
the onset of a detachment fault at the brittle—ductile
transition should be explained to a first-order approx-
imation by a Mohr-Coulomb failure criterion. A fault
is generated if the equivalent shear stress is of the
same magnitude as the normal stress, assumed to be
of the order of the lithostatic pressure, multiplied by a
friction coefficient, which typically has values between
0.6 and 1.0 (Byerlee 1978). The objective of this paper
is to estimate whether the ductile flow within the
lower crust could permit an increase in the equivalent
shear stress to the magnitude necessary for brittle
mechanisms to be activated, leading to localized shear
zones and ultimately to the detachment plane.

This question of the stress state at the brittle—duc-
tile transition was not addressed in earlier works on
the existence of a low-angle normal fault. Melosh



(1990), for example, aimed to capture the orientation
of the low-angle normal fault extending from the
upper crust to the lower crust but no criterion for fault
initiation was examined. A viscous rheology for the
lower crust was assumed and the principal stress direc-
tion of the evolving flow defined the path of the fault
extension. To improve on these results and to capture
the position of the fault at its onset, one should postu-
late some conditions for the activation of the brittle
mechanisms responsible for faulting. As a first step in
this direction, this paper asks whether the equivalent
shear stress could increase sufficiently to trigger brittle
deformation mechanisms, using a simple model struc-
ture in which an overall simple shear mode of defor-
mation (Couette flow) is considered.

The study of the shear Couette flow for strain-rate
and temperature-sensitive materials under steady-state
conditions has received the attention of various
research communities (see the review in Leroy and
Molinari 1992). For example, the existence of a maxi-
mum shear stress at a critical velocity applied at the
boundary had already been reported by Haag (1944),
based on his experimental results on lubricating films.
The stress—velocity relation is, for sufficiently small
velocities, an increasing function due to the strain-rate
sensitivity of the material. The temperature depend-
ence leads to an apparent softening which is responsi-
ble for a maximum in the stress—velocity relation
being reached at a certain critical velocity. The impli-
cations for the stability of the steady flow, which could
be inferred from the theoretical work of Joseph
(1964), are summarized as follows. The steady states
with a boundary velocity smaller than the critical
velocity are always stable and are called subcritical.
The steady states with a velocity at the boundary
greater than the critical value are only stable in a
velocity-controlled set-up and are called supercritical.
For geological conditions relevant to the astheno-
sphere, thermal instabilities can therefore occur in the
supercritical domain if the relevant boundary con-
dition is stress control (Yuen and Schubert 1977; Schu-
bert and Yuen 1978; see also the review by Brun and
Cobbold 1980). The relevant boundary conditions for
the mantle are likely to be neither a velocity nor a
stress control (Yuen and Schubert 1977). This idea led
Melosh (1976) to propose a mixed boundary condition
defined as a linear combination between stress and
velocity for the stability analysis of the steady states.
For the lower crust, the temperature conditions are of
course completely different from those in the astheno-
sphere, so the thermal runaway due to shear heating
which could result from an instability of the steady
flow is not relevant. Thermal softening is only
expected to dominate at the temperatures necessary
for phase transformation or dehydration reactions in
minerals (Poirier 1980). However, the structure of the
stress—velocity relation described above remains appli-
cable to our problem and the question addressed is
whether transient effects resulting from a rapid vari-

ation in the velocity at the boundary could lead to an
increase in the magnitude of the equivalent shear
stress far above the maximum value predicted by the
steady states. This maximum is strongly dependent on
the details of the constitutive model adopted and on
the softening deformation mechanisms which are now
discussed.

Kirby (1985) identified a number of physical mech-
anisms which could be responsible for ductile faulting
in the lower crust, including dynamic recrystallization.
He also emphasized the role of ductile strain local-
ization in metamorphic rocks. Rutter and Brodie
(1995) argued that these shear zones are characterized
by an intense reduction in grain size. Hopper and
Buck (1993) documented the role of diffusion creep
(grain-size sensitive rheology) in the upper mantle in
the initiation of rifting. The competing effects between
grain growth, which inhibits the development of shear
zones in the mantle, and grain-size reduction, associ-
ated with viscous heating and dynamic recrystalliza-
tion, were illustrated in a 1-D numerical analysis by
Kameyama et al. (1997) and also by Braun et al.
(1999).

It is proposed here to test the importance of grain-
size sensitivity in the lower crust rheology in defining
the magnitude of the equivalent shear stress during a
rapid change in extension rate of the upper crust. A
simple structural model of a continental crust in exten-
sion is proposed, motivated by a review of the tecton-
ics of metamorphic core complexes. The model con-
sists of two layers of horizontal infinite extent,
representing the upper crust and the lower crust. Due
to the activation of conjugate normal faults, the upper
crust is assumed to glide rigidly over the lower crust,
the two layers having the same velocity on their plane
of contact. The rheology adopted for the lower crust
is strain-rate, temperature and grain-size sensitive.
Two data sets are considered, the first for quartz and
the second for anorthite.

In this paper the next section pertains to a review
of the tectonics of core complexes to explain the
geometry and loading of our model structure. The
constitutive relations adopted for the lower crust
material form the core of the section on ‘The model
problem’. The association in series of the two defor-
mation mechanisms, dislocation and diffusion creep,
leads to shear stress enhancement by at least a factor
of 3 when the velocity at the brittle-ductile transition
is changed by a factor of 10. This enhancement leads
to values for shear stress compatible with a Mohr-
Coulomb failure criterion with a friction coefficient
set to the low value of 0.2. These results are doc-
umented in the section on ‘Numerical results’.

Model structure of the continental crust in extension

The objective of this section is to review our common
understanding of metamorphic core complexes to jus-



tify the simple model of the continental crust in exten-
sion, studied in the next section.

Detachment faults in metamorphic core complex
regions

In Basin and Range metamorphic core complexes
(USA), Wernicke (1981) highlights the possibility of a
large-scale simple shearing of the lithosphere, leading
to the formation of a low-dipping detachment fault.
This fault (Wernicke and Burchfiel 1982) downcuts
the whole lithosphere and thus partitions it into two
regions with a narrow transition zone. This decoupling
could explain the prevalence of a simple shear mode
of deformation along large-scale ductile shear zones,
at a depth close to 10 km (Davis 1983). These shear
zones, characterized by fine-grained microbreccia,
evolve towards a decollement plane in the upper lay-
ers. This model of large-scale simple shear has also
been used to explain geological observations in the
Aegean sea (Greece, Lister et al. 1984). During exten-
sion, high pressure-low temperature (HP-LT) meta-
morphic rocks were first non-coaxially deformed along
these ductile shear bands and then dragged out brit-
tlely along the detachment fault. We depart slightly
from this partition of ductile versus brittle defor-
mations in this paper since we evoke brittle defor-
mation mechanisms at a very early stage of the shear-
ing process in the lower crust to explain the tendency
for the detachment plane generation.

According to Lister and Davis (1989) the brittle—
ductile transition plays a key role, due to the introduc-
tion of a maximum strength, in detachment faulting.
Below this transition, a flat ductile shear zone decoup-
les the upper crust from the deep lower crust where
detachment normal faults are rooted. Lister and Davis
(1989) thus rejected pure shear as the only mode of
deformation for the continental crust in extension and
advocated the existence of simple shear at mid-crustal
level and pure shear in the deep lower crust. For
example, the Snake Range detachment fault (Basin
and Range province, USA, Miller et al. 1983) rep-
resents a subhorizontal decoupling between the brittle
upper crust, deforming by normal faulting, and the
uniformly stretched lower crust (see the synthesis pro-
posed by Wernicke 1992). These explanations are con-
firmed by the observation of a flat-lying Moho in
regions of intracontinental extension, and are however
in contradiction with the idea of large-scale detach-
ment dowcutting the whole crust (Wernicke and
Burchfiel 1982).

Low-angle normal faulting occurring at the brittle—
ductile transition is also suggested by microseismic
studies made in regions of active extension. Below the
Gulf of Corinth, Greece, microseismic clusters (mag-
nitude between 0.1 and 0.3) are observed at a depth
between 6 and 11 km (Rigo et al. 1996). The focal
mechanisms correspond to the activation of E-W nor-

mal faults. Most earthquakes are aligned along a low-
dipping plane and nodal planes are dipping 10-25° to
the north, leading to the recognition of a deep detach-
ment fault in which high angle normal faults of the
upper crust are rooted. A similar pattern is observed
towards the north, in the North Aegean Trough and
Thermaikos basin (Greece, Laigle et al. 2000).

The island of Tinos, located in the north-western
Cyclades archipelago, Greece, shows a typical
exhumed detachment of Late Oligocene-Early Mio-
cene age (Avigad and Garfunkel 1989; Gautier and
Brun 1994b) which is now discussed to illustrate the
stratification of the deformation mode advocated
above. Early Miocene greenschist facies retrogression
was accompanied by an intense deformation charac-
terized by a top-to-the-north-east shear, which is pref-
erentially localized within a NE-dipping shear zone in
the north of the island. This exhumed detachment
fault separates the retrograded blueschist facies unit
from an upper unit devoid of high-pressure parage-
neses (Gautier and Brun 1994a; Patriat and Jolivet
1998; Jolivet and Patriat 1999). A similar pattern of
deformation has been active in the region of the Gulf
of Corinth, from the Early Miocene to the present,
with extension controlled by north or north-east-dip-
ping shear zones (Le Pichon et al. 1994; Armijo et al.
1996). Therefore, it is believed that the exhumed
detachment fault, observable at the surface in the
northern part of Tinos, corresponds to the same struc-
ture studied below the Gulf of Corinth at a depth
close to 10 km. Then, the description of the time evo-
lution of the deformation regimes on Tinos, during
progressive unroofing of HP-LT rocks, informs us of
the stratification of the crust in term of deformation
modes. Coaxial stretching is the dominant mode of
deformation for greenschist facies rocks in the south
of the island, whereas in the north an increase in shear
strain is marked by the formation of shear bands
below the detachment, suggestive of simple shear
deformation. The detachment zone, characterized by a
progressive evolution from ductile to brittle behaviour,
the presence of fluids and a decrease in the grain size
(mylonitization), corresponds to the brittle stage of
the strain localization process within the ductile lower
crust (Patriat and Jolivet 1998).

In conclusion, the stratification proposed by Jolivet
and Patriat (1999) is adopted: normal faulting in the
upper crust, shear bands at the brittle-ductile transi-
tion (inducing microseismicity) and coaxial stretching
in the deeper lower crust (Fig. 1).

Model of the continental crust in extension

The above discussion on the structure of metamorphic
core complexes justifies the introduction of the model
of an extending continental crust presented in Fig. 1.
The presence in the upper crust of conjugate normal
faults provides, with the formation of a graben, a
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Fig. 1 Structural model of the continental crust in extension

mechanism for an easy extension of the upper crust.
The upper crustal material away from these normal
faults is then not deforming and is assumed to glide
rigidly over the lower crust. Therefore, at a large dis-
tance from the graben, as in section AA’ of Fig. 1, the
kinematics is a simple shear of the lower crust induced
by the rigid gliding of the upper crust. Our model
problem consists then of two layers of infinite horizon-
tal extent, defined by the upper and lower crust. The
top layer does not deform; it conducts heat and
applies to the lower crust a velocity which varies sud-
denly with time due to the formation of the graben
(Fig. 2). The objective of this study is to analyse the
increase in the magnitude of the shear stress in the
lower crust in response to the change in the upper
crust velocity with time.

Rigid Block

10 km

Non-newtonien viscous fluid

Heat equation-—~"
Mechanical equilibrium

20 km

T=cte

Simple Shear

) Heat flux from the mantle

Fig. 2 1-D structural model motivated by section AA’ of Fig. 1

The model problem

This section starts with a description of the layered
structure proposed for studying the shear stress
enhancement at the brittle—ductile transition. The sec-
ond part deals with the constitutive relations adopted
for the material in the lower crust. The third part is
devoted to dimensional analysis prior to the presenta-
tion of the numerical results in the next section.

The layered structure

The two layers which compose our structural model
are the upper crust and the lower crust, both of infin-
ite lateral extent and of thickness 1, (10 km) and ],
(20 km), respectively (Fig. 2). This simple model was
referred to in the previous section and corresponds to
section AA’ in Fig. 1. The rigid translation of the
upper crust has to be kinematically compatible with
the lower crust, which is then assumed to sustain an
overall simple shear mode of deformation. The
stretching of the lower crust, which should be super-
posed on the shear mode of deformation, is assumed
to take place at a much lower rate than the rate of
translation of the upper crust and is disregarded in
this analysis.

The mechanical equilibrium in the lower crust, for
this Couette shear flow, reads
ot
=0 M
where 7 and y are the shear stress and the vertical
coordinate, with origin at the Moho, respectively. The
magnitude of the shear stress 7, constant over the
whole domain according to Eq. (1), is what we wish to
determine in this study. Note that in Eq. (1) as well as
in the rest of this paper a superposed bar indicates
that the variable or the scalar highlighted has a physi-
cal dimension. For the mechanical boundary con-
dition, the observer is positioned at the interface with
the lithospheric mantle, justifying our choice of a zero
velocity at that depth (v(y = 0) = 0). All velocities dis-
cussed in what follows should thus be understood as
relative to the lithospheric mantle. At the upper crust
contact, the velocity V is prescribed and varies with
time.

The temperature distribution over the whole crust
is governed by the heat equation:

- T .
paCT—kaa—yz:fa-ﬁ-f;, (2)
in which T,%,p,,C, k, and 7, are the temperature, the
shear strain rate, the material density, the heat capaci-
ty, the conductivity and the radiogenic heat produc-
tion rate, respectively, in either the lower (a=/) or the
upper crust (a=u). A superposed dot in Eq. (2) stands



for the partial differentiation with respect to time so
that 7 is understood as the spatial gradient of the
velocity field v(y) : = 9v/0y. The second term in the
right-hand side of Eq. (2) is the amount of work due
to deformation converted into heat. This shear heating
vanishes in the upper crust since the rigid body trans-
lation there leads to a zero strain rate. The known
heat flux forms the lithospheric mantle g; and the
fixed temperature of the surface, Ty, provide the nec-
essary boundary conditions to solve Eq. (2)

Constitutive relations for the lower crust

We now turn our attention to the rheological model
adopted for the continental crust material. Since the
upper crust is considered to be rigid, the rheology has
to be defined in the lower crust only. At the depth of
interest (between 10 and 30 km) two micro-mech-
anisms of deformation are potentially concurrently
activated in a given representative elementary volume
(REV), namely, dislocation creep and diffusion creep.
Note that only the irreversible part of the deformation
is accounted for and the elastic deformation is thus
disregarded.

Dislocation creep is an intracrystalline deformation
mechanism resulting in a temperature and strain-rate
dependent creep law

o (G ®

where 7, is the strain rate for dislocation creep over
the REV. The scalars j,,, 8,, T, and %,, in Eq. (3) are
the characteristic strain rate for dislocation creep, the
Arrhenius constant, the characteristic temperature for
the lower crust, and the characteristic shear stress for
dislocation creep, respectively.

The second deformation mechanism activated in
the REV is diffusion creep, which is an intercrystalline
deformation mechanism. It is temperature and strain-
rate dependent but also grain-size sensitive, resulting
in the following rheological law:

N R LS

where the variables introduced have the same def-
initions as the ones provided after Eq. (3). The only
difference between Egs. (4) and (3), apart from the
grain-size sensitivity, is that the subscript d stands for
diffusion creep and replaces the subscript » found in
Eq. (3) and attached to the recovery or dislocation
creep mechanism. In Eq. (4), the scalar d,(T) intro-
duced remains to be defined and is the characteristic
grain size. This scalar is a function of temperature to
account for static grain growth or annealing, which
occurs in time and in the absence of any deformation.
Disregarding the time dependency of annealing com-

pared to the characteristic time of our problem (de-
fined in ‘Dimensional analysis’ and taking the value
14 My), we assume that the time-independent value of
d, is controlled only by temperature and is approx-
imated in the lower crust by the relation

d,(T) = dyexp (%(T TT>> 5)

where d; and k are the characteristic grain size at 7,
and the activation energy for annealing, respectively.
The scalar d is estimated in ‘Dimensional analysis’. It
appears that there is no constraint from laboratory
findings on the activation energy k . However, there is
general agreement on the evolution of the character-
istic grain size within the lower crust: the grain-size of
greenschist rocks (brittle-ductile transition) is smaller
than the grain-size for granulite (Moho conditions).
To account for this geological evidence, the activation
energy for annealing is set to k=10, leading to a rea-
sonable variation in grain size by a factor of 10
between the upper part and lower part of the lower
crust, as will be seen in ‘Numerical results’.

Having defined the two deformation mechanisms
active in the REV, we turn our attention to their con-
tribution to the total deformation rate. For a given
mineral, quartz or anorthite, it is assumed that the
same shear stress controls the two deformation mech-
anisms. Therefore, dislocation creep and diffusion
creep are activated in series and the total strain rate 7
is the sum of the strain rate due to dislocation creep
7, and the strain rate due to diffusion creep y,:

The rest of this subsection is devoted to the grain-
size evolution law and steady state values. The key
issue is the definition of the steady-state grain size,
also called the mean grain size in the literature, which
acts as an attractor during transient evolutions. This
steady-state value is not the value deduced from pie-
zometric measurements and adopted by Kameyama et
al. (1997) and Braun et al. (1999). In that case, the
recrystallized grain size-stress relationship is indepen-
dent of the boundary between dislocation creep and
diffusion creep domains in a deformation map (Derby
and Ashby 1987; Shimizu 1998). Handy (1989) showed
that the transition from dislocation creep to diffusion
creep fields occurs without a grain-size evolution
towards the equilibrium values. Jin and Karato (1998)
demonstrated further that for crustal conditions the
differences between the piezometric values and the
transient grain size leads to major rheological weak-
ening. However, dynamic recrystallization of crustal
material seems to correspond to a balance between
grain-size reduction and grain growth occurring at the
boundary between dislocation and diffusion creep
domains (Derby and Ashby 1987). This hypothesis led
de Bresser et al. (1998) to propose that the steady-
state mean grain size represents a balance between




grain-size sensitive and grain-size insensitive flow.
Steady-state conditions on the boundary between the
two domains require the two deformation rates to be
identical:

()

The mean grain size, denoted D, is then deter-
mined by combining Egs. (3) and (4) and reads

?r ::id'

D(x,T) = Do (T) exp {% (T7 - 1)] (TL>_ ®)

with

.ol
AN
Do(T) = d,(T) <M>
TodY or

A justification of the model advocated by de Bresser
et al. (1998) can be gained from analysis of the defor-
mation map, for example of quartz (Fig.3). Four
curves are presented defining the stress as a function of
grain size at a constant strain rate. The definition of
the steady-state grain size (Eq. 8) with the steady-state
condition (Eq. 7) implies that the representative curve
for D in Fig. 3 corresponds to the transition between
the dislocation creep and diffusion creep regimes. This
transition zone contains within the limits of experimen-
tal error the piezometric lines based on the measure-
ments of Twiss (1977), Mercier et al. (1977) and Chris-
tie et al. (1980). These measurements were conducted
for conditions close to steady states and justify the
assumption made by de Bresser et al. (1998).

The evolution of the grain size d(f) now needs to
be described to complement our rheological model.

Fig. 3 Deformation mech-
anism map at 7 =800 K for
quartz and a coupling in series
of dislocation creep and diffu-
sion creep. The shear stress is
regarded as a function of grain
size and strain rate. The solid
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We propose here that the steady-state value of the
grain size,D, acts as an attractor and that the grain
size evolves according to

9)

The rate of change of the grain size due to either
mechanism has its sign determined by the difference
between the current value of the grain size and the
attractor value. The magnitude of this rate is deter-
mined by this difference multiplied by the amount of
strain rate and a scalar denoted a,. Note that the evolu-
tion ceases if either the steady state is reached (d = D)
or the deformation mechanism is not activated. Other
evolution laws for grain size are found in the literature,
especially for olivine (Derby and Ashby 1987; Kamey-
ama et al. 1997; Braun et al. 1999). Equation (9) is sim-
pler than the ones referred above in the sense that it
combines the evolution law for grain-size reduction and
grain growth in a single expression. Laboratory results
are lacking that would justify the introduction of further
complexity in the evolution law for lower-crustal materi-
al. Equation (9) predicts grain-size evolution as follows:
in the dislocation creep regime (o=r), the current grain
size is larger than the steady-state grain size (d > D),
leading to grain-size reduction. In diffusion creep field
(x=d), the grain size is smaller than the equilibrium
grain size (d < D), inducing grain growth (see Fig. 3).

It is further assumed that dislocation creep and dif-
fusion creep occur concurrently, modifying the grain
size, which rate of evolution is therefore defined by
the sum:

dy = —ap,(d—D) (x=rd).

10705

curves are computed with a
constant strain rate. The
dashed curves correspond to
the piezometric relation
between the shear stress and
the grain size found in the
literature (Mercier et al. 1977;
Twiss 1977; Christie et al.
1980). The rheological data
used to construct this map are
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d=d, +ds = a7, + asiy (d— D). (10)

The complete rheological model is summarized by
Egs. (3) to (10) and is thus temperature, strain-rate
and grain-size dependent. Grain-size reduction and
growth during transient evolution and static annealing
are accounted for. We now turn our attention to the
scaling of the governing equations and the constitutive
relations.

Before doing so, it should be stressed that the stea-
dy-state conditions defining the grain size attractor D
are not the same as the steady-state conditions for the
shear flow over the whole crust controlled by conduc-
tion. This difference is important for understanding
the evolution in time of the grain-size distribution
through the lower crust discussed in ‘Numerical
results’.

Dimensional analysis

Any physical variable a will be associated to the
dimensionless variable a, multiplied by its reference
value. For example, dimensionless length, temper-
ature, shear stress, time, strain rate and grain size are
defined by

y:

<N

(11)

in which 7., To, 70, 7, and d,(T) are the characteristic
time of conduction in the lower crust (7, = EICI? / ki),
the average temperature of the lower crust (set to
To = 800K), the characteristic shear stress (see below
for its value), the characteristic strain rate (defined by
%0 = 1/1.) and the characteristic grain size (defined by
Eq. (5) and estimated below), respectively. Dimen-
sionless variables or constants are thus always without
a superposed bar. The data required to define the
characteristic values are now discussed.

Experimental data for the flow laws in the lower crust

The most common minerals in the lower crust are
quartz and feldspar. Among all feldspars, anorthite
has received the most attention in the literature and is
selected here. Experimental data for dislocation creep,
either for quartz and anorthite, are often presented in
the form:

Aexp{ (12)

Qr]_n
RT
where Q,, n and A are the activation energy for dis-
location creep, the stress exponent, and a pre-expo-
nential constant, respectively. Comparison of Eq. (12)
with Eq. (3) provides the link between the constants
A, O, and n with the constant used in our rheological
model:

ﬂr = R]{, (13)

1
and 7,, = [V"’ejﬁ]".
The characteristic strain rate for dislocation creep,
7., » is set to the characteristic strain rate of our prob-
lem 7,. The values of the constants introduced in
Eq. (13) are determined from the experimental flow
law for dislocation creep found in Koch et al. (1989)
for quartz and in Shelton (1981) for anorthite and are
presented in Table 2 .

For diffusion creep, few experimental data are
available for lower crustal rocks, except for the data
at high temperature for anorthite (Wang et al. 1996).
In the absence of any constraint from laboratory
experiments the activation energy for diffusion creep
Qg is assumed to be proportional to the activation
energy for dislocation creep Q,. Putting Q, ~ 0.6 O,
(Frost and Ashby 1982; Evans and Kohlstedt 1995)
permits us to define the dimensionless Arrhenius con-
stant for diffusion creep:

== 14
Bi= 27 (14)
The most common steady-state grain-size relation
to stress and temperature (Derby and Ashby 1987; de

Bresser et al. 1998) has the following form:

4~ 0.6 p,.

D = Kexp {Q' Qd} T (15)
pRT

where p and K are the grain size exponent and a pre-

exponential constant. Comparison of Eq. (15) with

Eq. (8) provides the characteristic grain size at the ref-

erence temperature 7y, missing so far from our model:

dy = K (Toq) 7 exp (ﬁ' 5 ﬂd)

The characteristic shear stress for diffusion creep
Toq4 18 set to the characteristic shear stress for disloca-
tion creep 7,, and the characteristic strain rate for dis-
location creep 7,4 to 7,. In the absence of any other
data, the value of the pre-exponential constant K is
set to the one found for a crustal rock analogue Mag-
nox (Drury et al. 1985; de Bresser et al. 1998). Chang-
ing this value results in a scaling of the exact grain
size but does not change the rest of the results.

Finally, the characteristic shear stress and grain size
for our 1-D problem is selected as the minimum value
of 7,, and d;, found for quartz and anorthite. These
scalars are given in Table 1. The dimensionless values
are summarized in Table 2.

(16)

Dimensionless governing equations

We are now in a position to rewrite the governing
Egs. (1) to (10) with a set of dimensionless variables.
The equilibrium Eq. (1) stipulates that a constant
shear stress t prevails over the whole lower crust.



Table 1 Reference values for

physical parameters and Physical quantity Definition Values Unit
dimensionless numbers used in .
our numerical computation Characteristic values
I Reference length 20 km
Vo Reference strain rate 22105 st
I Reference time: conduct time in lower crust 14 My
t. Reference shear stress 24 MPa
dy Reference grain size 265 um
T, Reference temperature 800 K
Model parameters
I Lower crust thickness 20 km
Ly Upper crust thickness 10 km
Pu Upper crust destiny 2650 Kg/m?
P Lower crust destiny 2800 kg/m
q Heat flux from the mantle 30 mW/m?
Tu Radiogenic heat production (upper crust) 1.5 uW/m?
7 Radiogenic heat production (lower crust) 0.2 uW/m
ku Heat conductivity (upper crust) 2.1 W/m K
ki Heat conductivity (lower crust) 2.5 W/m K
C Heat capacity 1000 J/(kg K)
Dimensionless numbers
&y Heat capacity (upper crust) 1.12
4 Heat capacity (lower crust) 1.0
L Shear heating (upper crust) 0.0
A Shear heating (lower crust) 0.004
Table 2 Material properties
for quartz and anorl’rthirie, for Definition Quartz Anorthite
dislocation creep and diffusion Dislocati il
creep deformation mech- islocation creep flow parameters
anisms. For dislocation creep, P Arrhenius constant 20.1 358
data are from Koch et al. n Stress exponent 2.9 32
(1989) for quartz and Shelton Yor Characteristic strain rate 1 1
(1981) for anorthite. For diffu- Tor Characteristic shear stress 1 9.6
sion creep, the parameters are  Diffusion creep flow parameters
computed using Egs. (14) and  fy4 Arrhenius constant 12.1 21.5
(16) and the steady-state grain  p Grain size exponent 2 2
size distribution (Eq, 15) for Vod Characteristic strain rate 1 1
the rock analogue Magnox Tod Characteristic shear stress 1 9.6
(de Bresser et al. 1998) d, Characteristic grain size 1 1.5
k Annealing temperature activation 10 10
a, Rate of grain size reduction 1 1
ay Rate of grain growth 1 1
i w A2 7
The heat equation for the whole crust now takes g =1, 1= klliT, A= p,gf,, ' (19)

the form:

6aT _%ZTZ =Ty + AgT)

(o =u,l), (17)
in which, again, the subscript o is either u or / for the
upper and lower crust, respectively. The dimensionless
numbers introduced in Eq. (17) are, for the upper

crust:

|
~

_ Puki _ N
&, =Lt Iy =+
SU /’[u’ u kuO’

(18)

;m = 07

and are referred to as the dimensionless capacity, the
radiogenic heat production and the shear heating coef-
ficient, respectively. In the upper crust, Eq. (17)
reduces to the classical heat diffusion equation with
no coupling to the mechanical part of the problem
(A = 0).

For the lower crust, the dimensionless numbers
introduced in Eq. (17) are:

The values of these dimensionless numbers are
given in Table 1 and were estimated from the data
found in Turcotte and Schubert (1982).

The complete dimensionless rheological model for
the lower crust is now summarized by the set of equa-
tions:

V=0tV (20)
[
O B
d = —[a$, +asig)(d - D) (23)



Note again that in steady-state conditions there is
no grain-size evolution and the variation of the grain
size with depth is defined by the equilibrium condition
v, = 74 and reads

1
d=D =dsexp(k(T — 1)) (W)p
TodYor

l—n

oft () (2)

The governing equations are completed by the
mechanical and thermal boundary conditions, which
read

or  _ =
I i 2 Ty=10) =T, 25)
viy=0)=0 and v(y=I[)=V,

where V is the imposed velocity of the upper crust.

Numerical results

The numerical calculations presented in this section
are intended to quantify the increase in equivalent
shear stress from the steady-state values during a
rapid change in extension rate of the upper crust.
Steady-state solutions are first presented. As discussed
earlier in this paper (see ‘Constitutive relations for the
lower crust’), they correspond to an equilibrium
between the dislocation creep and diffusion creep
deformation mechanism (Eq.7) and are thus fully
defined by the dislocation creep flow law (Eq. 21)
which is only strain-rate and temperature dependent.
The grain-size sensitivity comes into play only during
transient evolution, which will be presented in the sec-
ond part of this section.

Before proceeding, a word on the numerical
method employed, discussed in detail in Gueydan
(2001), is in order. The discretization of space is based
on the finite-element method and the discretization in
time on a finite-difference scheme. The whole crust is
partitioned into 150 elements (50 for the upper crust
and 100 for the lower crust) and the representative
elementary length is thus of the order of 200 m.

Steady states in the lower crust

A typical steady-state velocity profile through the
whole crust is plotted in Fig. 4a. This velocity is con-
stant in the upper crust, assumed to be rigid, and
varies linearly in the lower crust if a Newtonian rheol-
ogy is considered for anorthite. However, adoption of
the temperature and strain-rate sensitive rheology
described in the previous section leads to a rather con-
stant velocity in the upper part of the lower crust and
a rapid variation to zero as the Moho is approached.
This zero value marks the fact that the observer is
attached to the Moho (see boundary conditions in

Eq. 25). The velocity profile implies a tendency for
shear localization at the Moho transition which is
more pronounced for anorthite than for quartz. This
trend is due to the lower activation energy for quartz
than for anorthite (see values of Arrhenius constants
for dislocation creep law in Table 2). This tendency
for the deformation to localize at the Moho contact is
now further justified by the analysis of the temper-
ature profile through the whole crust presented in
Fig. 4b.

The temperature varies approximately linearly with
depth in the lower crust as a result of conduction,
with a small contribution to the heat flux of the
mechanical work converted into heat and of the radio-
genic source (see Eq. 17 and Table 1 for the cor-
responding values of dimensionless numbers for the
lower crust). The two temperature profiles obtained
for the non-linear rheologies reveal a larger temper-
ature for anorthite than for quartz. This difference
must be due to the larger amount of shear heating
[term 77 of Eq. 17)] for anorthite. A first explanation
would be to invoke the larger strain rate 7 close to the
Moho for this mineral (Fig. 4a). However, the highest
temperature is obtained for the linear velocity profile
and thus occurs in the absence of any trend towards
localization. Therefore, the difference in temperature
at the Moho must be explained by a difference in
shear stress t for the three rheologies discussed.
Indeed, an inspection of Fig. 5, which presents the
steady-state solutions in terms of stress versus velocity
at the contact of the upper crust, reveals that for the
velocity of 5 selected for drawing Fig. 4a the shear
stress is 3.5 and 7 times greater for anorthite and for
the linear rheology than for quartz.

The final observation on Fig. 4b is that the temper-
ature is twice as high, approximately, at the Moho as
at the contact with the upper crust. This difference in
temperature implies there is a greater apparent viscos-
ity close to the upper crust and explains the tendency
for the deformation to localize at the Moho, seen in
Fig. 4a for temperature-dependent rheologies.

The steady-state grain-size distribution through the
lower crust is presented in Fig. 4c using Eq. (24) and
the stationary velocity and temperature profiles of
Fig. 4a, b. This distribution is plotted for quartz and
anorthite, accounting or not for static annealing. The
large strain rate at the contact of the Moho is respon-
sible for a grain-size reduction in that region com-
pared to the upper part of the lower crust. Such a dis-
tribution, obtained in the absence of annealing, is not
in line with field evidence. Therefore, the static grain-
growth law described by Eq. (5) as a function of tem-
perature is accounted for in the rest of this section:
the grain size increases with depth, as seen in Fig. 4c.
Note that the grain size with static annealing for anor-
thite is then twice as large as for quartz at the Moho
contact. This is partly due to the characteristic grain
size ds, provided in Table 2 , which enters Eq. (24).
Another reason is the larger difference in the Arrhe-
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Fig. 4 Steady-state velocity (a), temperature (b) and grain size
(¢) profiles. Note that the top and the bottom of the diagrams
correspond to the surface and to the Moho, respectively. The
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and lower crust. In a and b, the velocity and temperature pro-
files for quartz are the dashed curve, for anorthite the solid
curve and for a linear rheology the dotted line. In ¢, the grain
size distribution in the lower crust is compared with and without
static grain growth for quartz (dashed curve) and anorthite (solid
curve)

nius constants for anorthite than for quartz (Table 2
and Eq. 24, again). This difference also explains why
the stationary grain size increases slightly in the region
close to the upper crust for anorthite.

The comparison between the two non-linear rheol-
ogies is continued with the analysis of the stress-veloc-
ity relations in Fig. 5. For every velocity prescribed at
the upper crust contact there is a unique value of the
shear stress, which is constant over the whole lower
crust to enforce mechanical equilibrium (Eq.1). To
the contrary, for a given value of the shear stress there
are 2, 1 or 0 possible values of the gliding velocity of
the upper crust, depending on the magnitude of the
shear stress (Fig. 5). The stress is a multi-valued func-
tion of the velocity because of the presence of a maxi-
mum in stress tmax, associated to a critical velocity
Ve, which partitions the steady-state curve into two
parts: the subcritical branch and the supercritical
branch. The increasing section of the stress—velocity
curve prior to the critical velocity is dominated by the
strain-rate sensitivity of the constitutive law and the
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decreasing part of the stress—velocity curve is due to
the increasing dominance of temperature effects. Fol-
lowing Joseph (1964), we assume without further
proof that the subcritical steady-state branch is stable
and the supercritical branch unstable for a stress-con-
trolled shear flow. However, all steady-state solutions
are stable for velocity control. We thus cannot invoke
an instability or a trend for localization at the contact
of the upper crust to explain the desired increase in
shear stress. This partitioning of the steady-state solu-
tions does not exist for the linear stress—velocity rela-
tion obtained with the Newtonian law for anorthite. It
is clear from Fig. 5 that this simplified rheology is not
appropriate for determining the equivalent shear stress
under steady-state conditions and it will not be used
to examine the rapid change in the upper crust exten-
sion rate studied next. Indeed, the shear stress value
predicted with a linear viscous rheology, for a gliding
velocity of 10 cm year™, is 340 MPa, overestimating
the strength of the lower crust. Comparing now the
two non-Newtonian viscous materials, one observes
that the maximum value of the dimensionless equiv-
alent shear stress, tmax, is larger for anorthite (13.6)
than for quartz (2.8). This difference, which indicates
that anorthite, as expected, provides more strength to
the lower crust than quartz, is due to the larger value
of the stress exponent n in Eq. 21 which controls the
strain-rate sensitivity. Note, however, that the dimen-
sionless critical gliding velocity Vc is larger for quartz
(14) than for anorthite (1.5). This is due to the smaller

Dimensionless gliding velocity ofrrrtrhcr—upp'érrx crust
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value of the Arrhenius constant fr for the temper-
ature dependence of quartz (see Table 2).

The last point of discussion in this subsection con-
cerns the physical relevance of these steady states for
our continental crust model. The typical values of the
dimensionless gliding velocities for the upper crust
range from 0 to 50, corresponding to a velocity of up
to 7 cm-year™'. Comparing Vc to this maximum, quartz
is expected to be either in its subcritical or supercriti-
cal regime, whereas anorthite should be in a supercrit-
ical steady flow. Anorthite appears to be the most
interesting material for studying transient flow and the
variation of the shear stress for reasonable shearing
velocity (1.5 cm year™! in the Gulf of Corinth, Greece,
for example) but the two minerals compared so far
will also be studied next.

Having described the stationary solutions, we now
turn our attention to the transient regime resulting
from a rapid change in extension rate of the upper
crust.

Transient regime

The time evolution of the velocity and stress are pre-
sented in Fig. 6. The initial conditions of the calcula-
tions are always a steady state found on the equilib-
rium curves of Fig. 5 and also presented in Fig. 6. The
imposed velocity at the upper crust contact is first
increased linearly in time from its initial value and



then held constant once the selected value is attained.
The time lapse for this velocity change ranges from
1,400 years (1.4 ka) to 1.4 million years (1400 ka).
These two extremes must bound the period during
which the velocity changed drastically in the Gulf of
Corinth, Greece, for example. The final velocity is
always set to a dimensionless value of 50, correspond-
ing to 7 cm-year .

Fig. 6 Equivalent shear stress

For quartz (Fig. 6a) the initial steady state is sub-
critical (V'=5) and the velocity is thus increased by an
order of magnitude. The final shear stress (t=7.1, cor-
responding to 17 MPa) found once the velocity has
reached its new value is 2.5 times larger than the max-
imum value of all steady states. It is also the largest
for the fastest rate of change of the velocity. Note the
small difference in shear stress increase between 1.4
and 14 ka which could indicate the existence of an

enhancement due to the rapid
change in velocity at the boun-
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upper bound in shear stress for a given change in
velocity. This maximum stress increase appears to be
well approximated as soon as the loading time is less
than 0.1% of the characteristic time of our problem
(14 My, Table 1 ). Consequently, the upper bound for
the shear stress change must be controlled by the
strain-rate sensitivity of the flow. Also plotted in
Fig. 6a is the stress increase obtained for quartz with
dislocation creep as the only deformation mechanism.
The shear stress enhancement is then 15% lower than
the result obtained with the two mechanisms, justify-
ing the introduction of diffusion creep in the rheology
of the lower crust material advocated here.

The initial steady state selected for anorthite is on
the supercritical branch, point A of Fig. 6b. The
increase in imposed velocity of the upper crust by an
order of magnitude leads to an increase in the equiv-
alent shear stress by factor of up to 2.5, point B (7=28,
corresponding to 67 MPa). Again, this factor is found
to attain a maximum value as soon as the loading
time becomes negligible compared to the character-
istic time of the problem dictated by heat conduction.
Note that with a loading time of 1,400 ka, which is
one tenth of the characteristic conduction time, a
shear stress softening occurs during the velocity
increase, due to temperature effects (see point F). It is
then the steady-state solution at point D which acts as
a stable attractor. The transient stress—velocity curve
would be the portion of the steady-state curve
between points A and D if the velocity change occurs
during a time lapse of the same order as or larger
than the characteristic time for conduction. The role
of the grain size during this transient period will be
discussed at a later stage.

To confirm our interpretation of the stability of the
steady states, a stress-controlled and a velocity-con-
trolled test were performed once point B was reached.
For stress control, the velocity increases at a fast rate,
which is typical of a runaway instability. For a con-
stant velocity, the shear stress drops towards the stea-
dy-state value at point D and reaches point C after
only 1.4 ka. This result illustrates the stability of the
equilibrium in a velocity-controlled setup.

Another series of calculations is performed during
which the imposed velocity is reduced in 1.4 or
1,400 ka down to its original value once point B has
been reached. For a loading time of less than 0.1% of
the conduction time, the unloading path (B to A) is
close to the loading path (A to B) in the absence of
any softening effect (no temperature softening or
grain size evolution, as will be shown next). However,
for a slow unloading time (points B to E), a drastic
shear stress softening occurs: the final shear stress at
point E is 45% smaller than the shear stress at A.
This result is difficult to explain without presenting
the evolution in grain-size distribution and is thus clar-
ified next.

The grain-size distributions at the final stage of the
computations discussed above are presented in Fig. 7a,
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b for quartz and anorthite, respectively. The first
observation for the two minerals of interest is the
absence of any change in grain size in the top 40% of
the lower crust. This is due to the negligible strain
rate and the low temperature at these depths, as seen
in Fig. 4a, b.

For quartz, the fastest rate of change in velocity
shown in Fig. 6a does not modify the grain size dis-
tribution: the curve in Fig. 7a obtained for 1.4 ka is
close to the initial steady-state distribution (V=5). The
grain size is found to decrease, especially close to the
Moho, for longer time lapses of velocity change. This
result is counter-intuitive if one compares the steady-
state value of the grain size for V=5 and V=50. The
difference in grain size (d-D), during the evolution
from V=5 to V=50, is then first negative and, accord-
ing to Eq. 23, the rate of change of the grain size
should be positive. On the contrary, this rate is neg-
ative, leading to the grain-size reduction. To under-
stand this apparent discrepancy, the exact definition of
the grain-size attractor should be recalled (see ‘Di-
mensional analysis’). The grain size which acts as an
attractor is defined by the equality between the
amount of the strain rate due to dislocation creep and
diffusion creep and thus does not account for the
long-term time evolution of the strain rate and tem-
perature. The exact value of this grain size for a veloc-
ity of 50 and the corresponding stress of 7.1 found in
Fig. 6a is also plotted in Fig. 7a. The grain-size distri-
bution thus predicted reveals that the term (d-D) of
Eq. (24) is first positive, explaining the initial negative
value of d. If the velocity is held constant once a
velocity of 50 is reached the D values evolve towards
the steady value for that velocity, changing the sign of
the term (d-D). The factor d will thus change sign and
the grain size will evolve towards the steady-state
value V=50.

This second stage of the grain size evolution is
clearly seen in Fig. 7b, corresponding to anorthite, and
to the time evolution described above from Fig. 6b.
For example, curve 5 in Fig. 7b, obtained for a veloc-
ity held constant once point B of Fig. 6b is reached,
shows how the grain-size distribution has evolved
towards the steady-state solution for V=50 after
1.4 ka. The only curve of Fig. 7b where the grain size
decreases is the one obtained for a stress control test
started from point B (curve 6). In that instance, no
steady-state solution acts as an attractor. Also, the fast
loading from point A to B does not affect the grain
size (curve 1). Similarly, the fast unloading from B to
A does not change the grain size, explaining the
absence of any hysteresis on these curves in Fig. 6b
(curve 3). If the rate of unloading is lower, the final
stress state is at point E and the difference in stress
can now be explained as follows. During the first part
of the unloading, the grain size (curve 4) has time to
increase towards the steady-state value defined by the
steady solution for V=50 (point D). Once point E is
reached, the steady grain size of point A will act as an
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attractor but time must be spent to let the grain size
evolve towards this new steady state. The above dis-
cussion reveals the history dependence of the grain-
size distribution. As a final illustration, one should
compare curves 5 and 2 of Fig. 7b, corresponding to
points C and F. Points C and F are close in the stress—
velocity space but the grain-size distributions are very
different. The main reason for this is that the stress
was much larger in the path A-B-C than along A to
F. The grain-size attractor, D, given by Eq. (24), is a
function of the stress and thus was different during
the two histories.

To summarize this discussion on the evolution of
grain size, it should be stressed that the fact that the
grain size decreases during a phase of increase in the
velocity of the upper-crust proves that the defor-
mation mechanism dislocation creep is definitely acti-
vated during that period in the lower crust. However,
during the phase when the velocity is constant in time
it is the deformation mechanism diffusion creep which
dominates. This partition between the activation of
the two mechanisms in the lower crust appears to
have been unnoticed so far in the literature.

Now that we have an idea of the increase in mag-
nitude of the equivalent shear stress to be expected
during a rapid change in extension rate of the upper
crust, we can use this information to assess whether
brittle deformation mechanisms could be activated at
the brittle—ductile transition. For this purpose, the
shear stress attained during transient flow is plotted in
a normal stress—shear stress diagram (Fig. 8) typical
for a Mohr-Coulomb criterion, for the lower crust.
Various values of the friction coefficient between 0.1
and 1 (Brace and Kohlstedt 1980) have been selected
and the normal stress is defined by the overburden
weight. The classical range used for the friction coeffi-
cient (between 0.6 and 1) is much too large for our
shear stress enhancement to be sufficient for shear
failure to occur according to a Mohr-Coulomb crite-
rion. Failure could only take place for anorthite if the
friction coefficient was much lower, of the order of
0.2. Such a value may end up being realistic if pore
fluid effects are accounted for (Brace and Kohlstedt
1980). This interpretation remains to be confirmed by
laboratory tests. For a friction coefficient of 0.2, fail-
ure of anorthite takes place only in the first 3 km of
the lower crust, just below the brittle—ductile transi-
tion. This result confirms that the strain localization
observed at the brittle-ductile transition could result
from brittle deformation mechanisms which are acti-
vated at that depth. Note that for quartz failure never
occurs, even with a friction coefficient as low as 0.1.

Conclusions

Field evidence suggests the existence at the brittle—
ductile transition of ductile shear zones leading to
detachment planes associated with brittle deformation.
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diagram as vertical lines

The activation of these brittle deformation mech-
anisms requires an equivalent shear stress of the same
order as the mean stress. To document the possibility
of the equivalent shear stress increasing to such a level
while remaining compatible with the viscous flow of
the lower crust, a simple 1D model of the crust has
been proposed. This model corresponds to a vertical
section through the continental crust in extension and
thus consists of an upper crust gliding rigidly over the
lower crust, deforming in an overall simple shear
mode. A non-Newtonian rheology is adopted for the
material flow in the lower crust, adding to the classical
strain-rate and temperature sensitivity a dependence
on the grain size. The rheological law results from the
coupling in series of dislocation creep and diffusion
creep. The solution to the initial and boundary value
problem was obtained by applying the finite-element
method to the thermo-mechanical flow for both steady
and transient conditions.

The numerical results are summarized as follows.
During a rapid increase in the velocity at the contact
of the upper crust from a steady-state value, the defor-
mation mechanism dislocation creep is activated and
leads to a decrease in grain size. If this velocity is
then held constant or is reduced, diffusion creep domi-
nates and leads to grain growth. During a cycle, the
rate at which the velocity is changed has a drastic
influence on both the stress and the grain size. A
rapid cycle is conducive to a sharp increase in stress
which in turn controls the level of activity of the grain
size change. The current grain size distribution thus
has a strong history dependence. This result is
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obtained with a simple evolution law which has the
merit of introducing a second characteristic time into
the problem.

It should also be mentioned that there is a maxi-
mum change in stress for a given velocity change
which is well approximated as soon as the time lapse
of this change is less than 1% of the characteristic
conduction time over the whole crust. This change in
stress is thus controlled by the strain-rate sensitivity of
the material. The maximum magnitudes of the equiv-
alent shear stress for anorthite and quartz are found
to reach 67 and 17 MPa, respectively. For anorthite,
this magnitude is sufficient to activate brittle defor-
mation mechanisms if their onset is controlled by a
Mohr-Coulomb criterion with a friction coefficient of
0.2. This low value of the friction coefficient appears
to be justified at the depth of 10 km if fluid effects
are invoked (Brace and Kohlstedt 1980).

The main conclusion of this paper on the activation
of brittle deformation mechanisms is reached in a two-
step argument. First, a rheology typical of ductile
materials is invoked to compute a stress change and,
secondly, the new stress is applied to a Mohr-Coulomb
criterion. To improve on this reasoning, one should
propose a rheological model which combines the duc-
tile and the brittle deformation mechanisms. The solu-
tion of a boundary value problem similar to the one
studied here would then provide information on the
activation of the brittle mechanisms. Furthermore, if
these brittle mechanisms have destabilizing effects, the
final solution should exhibit the tendency for strain
localization which marks the onset of a shear zone at
the brittle-ductile transition. The results presented in
this paper give us a certain confidence that such a
research direction deserves further attention.

Acknowledgements The motivation to account for the desta-
bilizing influence of grain-size reduction during recrystallization
came from a discussion with Professor C.J. Spiers and Dr. H. de
Bresser, both at the University of Utrecht, The Netherlands. We
wish to thank J. Braun and M.R. Drury for providing consid-
erable help in improving the manuscript.

References

Armijo R, Meyer B, King GCP, Rigo A, Papanastassiou D
(1996) Quaternary evolution of the Corinth Rift and its
implications for the Late Cenozoic evolution of the Aegean.
Geophys J Int 126:11-53

Avigad D, Garfunkel Z (1989) Low-angle faults above and
below a blueschist belt: Tinos Island, Cyclades, Greece.
Terra Nova 1:182-187

Braun J, Chéry J, Poliakov A, Mainprice D, Vauchez A,
Tomassi A, Daignieres M (1999) A simple parametrization
of strain localization in the ductile regime due to grain size
reduction: A case study for olivine. J Geophys Res
104(B11):25, 167-25, 181

Brace WF, Kohlstedt DL (1980) Limits on lithospheric stress
imposed by laboratory experiments. J Geophys Res 85
(B11):6248-6252



Brun JP, Cobbold PR (1980) Shear heating and thermal soften-
ing in continental shear zones: a review. J Struct Geol
2:149-158

Byerlee JD (1978) Friction of rocks. Pure Appl Geophys
116:615-626

Christie JM, Ord A, Koch PS (1980) Relationship between
recrystallized grain size and flow stress in experimentally
deformed quartzite. EOS Trans AGU 61:377

Davis GH (1983) Shear-zone model for the origin of metamor-
phic core complexes. Geology 11:342-347

de Bresser JHP, Peach CJ, Reijs JPJ, Spiers CJ (1998) On
dynamic recrystallization during solid state flow: effects of
stress and temperature. Geophys Res Lett 25 (18):3457-3460

Derby B, Ashby MF (1987) On dynamic recrystallization.
Scripta Met 21:879-884

Drury MR, Humphreys FJ, White SH (1985) Large strain defor-
mation studies using polycrystalline magnesium as a rock
analogue. Part II: dynamic recrystallisation mechanisms at
high temperatures. Phys Earth Plan Int 40:208-222

Evans B, Kohlstedt DL (1995) Rheology of rocks. In: Ahrens TJ
(ed) Handbook of physical constants part 3. Rock physics
and phase relations. AGU, Washington, DC, pp 148-165

Frost HJ, Ashby MF (1982) Deformation mechanism maps. Per-
gamon Press, Oxford, 166 pp

Gautier P, Brun JP (1994a) Crustal-scale geometry and kinemat-
ics of late-orogenic extension in the central Aegean (Cycla-
des and Evvia island). Tectonophysics 238:399-424

Gautier P, Brun JP (1994b) Ductile crust exhumation and exten-
sional detachments in the central Aegean (Cyclades and
Evvia islands). Geodin Acta 7 (2):57-85

Gueydan F (2001) Etude de la localisation de la déformation a
la transition fragile-ductile de la crofite continentale soumise
a une extension. Thesis, Université Pierre et Marie Curie,
Paris

Haag AC (1944) Heat effects in lubricating films. J Appl Mech
A:72-76

Handy MR (1989) Deformation regimes and the rheological
evolution of fault zones in the lithosphere: the effects of
pressure, temperature, grain size and time. Tectonophysics
163:119-152

Hopper JR, Buck WR (1993) The initiation of rifting at constant
tectonic force: role of diffusion creep. J Geophys Res
98(B9):16,213-16,221

Jin D, Karato S-I (1998) Mechanisms of shear localization in the
continental lithosphere: inference from the deformation
microstructures of peridotites from the Ivrea zone, north-
western Italy. J Struct Geol 20:195-209

Jolivet L, Patriat M (1999) Ductile extension and the formation
of the Aegean Sea. In: Durand B, Jolivet L, Horvath L, Sér-
anne M (eds) The Mediterranean basins: Tertiary extension
within the Alpine orogen. Geol Soc Spec Publ, pp 427-456

Joseph DD (1964) Variable viscosity effects on the flow and sta-
bility of flow in channels and pipes. Phys Fluids 7:1761-1771

Kameyama M, Yuen DA, Fujimoto H (1997) The interaction of
viscous heating with grain-size dependent rheology in the
formation of localized slip zones. Geophys Res Lett
24:2523-2526

Kirby SH (1985) Rock mechanics observations pertinent to the
rheology of the continental lithosphere and the localization
of strain along shear zones. Tectonophysics 119:1-27

Koch PS, Christie JC, Ord A, George RPJ (1989) Effect of
water on the rheology of experimentally deformed quartzite.
J Geophys Res 94(B10):13975-13996

Laigle M, Hirn A, Sachpazi M, Roussos N (2000) North Aegean
crustal deformation: an active fault imaged to 10 km depth
by reflection seismic data. Geology 28:71-74

16

Le Pichon X, Chamot-Rooke N, Lallemant SL, Noomen R, Veis
G (1994) Geodetic determination of the kinematics of central
Greece with respect to Europe: implications for eastern Med-
iterranean tectonics. J Geophys Res B 100:12,675-12,690

Leroy YM, Molinari A (1992) Stability of steady states in shear
zones. J Mech Phys Solids 40:181-212

Lister GS, Davis GA (1989) The origin of metamorphic core
complexes and detachment faults formed during Tertiary
continental extension in the northern Colorado River region,
U.S.A. J Struct Geol 11:65-94

Lister GS, Banga G, Feenstra A (1984) Metamorphic core com-
plexes of cordilleran type in the Cyclades, Aegean Sea,
Greece. Geology 12:221-225

Melosh HJ (1976) Plate motion and thermal instability in the
asthenosphere. Tectonophysics 35:363-390

Melosh HJ (1990) Mechanical basis for low-angle normal fault-
ing in the Basin and Range province. Nature 343:331-335

Mercier JC, Anderson DA, Carter NL (1977) Stress in the litho-
sphere: inference from the steady state flow of rocks. Pure
Appl Geophys 115:199-226

Miller EL, Gans PB, Garing J (1983) The snake range decolle-
ment: an exhumed mid-tertiary ductile-brittle transition. Tec-
tonics 2:239-263

Patriat M, Jolivet L (1998) Post-orogenic extension and shallow-
dipping shear zones, study of a brecciated decollement hori-
zon in Tinos (Cyclades, Greece). C R Acad Sci Paris Earth
Planet Sci 326:355-362

Poirier JP (1980) Shear localization and shear instability in
materials in the ductile field. J Struct Geol 2:135-142

Rigo A, Lyon-Caen H, Armijo R, Deschamps A, Hatzfeld D,
Makropoulos K, Papadimitriou P, Kassaras I (1996) A micro-
seismicity study in the western part of the Gulf of Corinth
(Greece): implications for large-scale normal faulting mech-
anisms. Geophys J Int 126:663-688

Rutter EH, Brodie KH (1995) Mechanistic interactions between
deformation and metamorphism. Geol J 30:227-240

Schubert G, Yuen DA (1978) Shear heating instability in the
Earth’s upper mantle. Tectonophysics 50:197-205

Shelton G (1981) Experimental flow laws for crustal rocks. EOS
62(17):396

Shimizu I (1998) Stress and temperature dependance of recrys-
tallized grain size: A subgrain misorientation model. Geo-
phys Res Lett 25:4237-4240

Turcotte DL, Schubert G (1982) Geodynamics. Applications of
continuum physics to geological problems. Wiley, New York,
450 pp

Twiss RJ (1977) Theory and applicability of a recrystallized
grain size paleopiezometer. Pure Appl Geophys 115:227-244

Wang Z, Dresen G, Wirth R (1996) Diffusion creep of fine-
grained polycrystalline anorthite at high temperature. Geo-
phys Res Lett 23 (22):3111-3114

Wernicke B (1981) Low-angle normal faults in the Basin and
Range province: nappe tectonics in an extending orogen.
Nature 291:645-648

Wernicke B (1985) Uniform-sense normal simple shear of the
continental lithosphere. Can J Earth Sci 22:108-125

Wernicke B (1992) Cenozoic extensional tectonics of the U.S.
cordillera. In: Burchfiel BC, Lipman PW, Zoback ML (eds)
The Cordilleran Orogen: Conterminous U.S. Geological
Society of America, Boulder, pp 553-581

Wernicke B, Burchfiel BC (1982) Modes of extensional tecton-
ics. J Struct Geol 4:105-115

Yuen DA, Schubert G (1977) Asthenospheric shear flow: ther-
mally stable or unstable? Geophys Res Lett 4:503-506



