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Abstract

Although genetic programming has often successfully been applied to non-parametric modeling, it is frequently impaired

by the huge size of the search space explored. Domain knowledge is a powerful way to trim out the size of the space,

by restricting the search to a priori relevant models. A most natural domain knowledge in scientific modeling is known as

dimensional analysis, stipulating that the models must be consistent with regards to the variable measurement units.

In this paper, it is shown that dimensional analysis can automatically be expressed as a context free grammar. Dimensionally-

aware GP is thus achieved by employing the dimensional grammar within the grammar-guided GP framework first investigated

by Gruau [On using syntactic constraints with genetic programming, in: P. Angeline, K.E. Kinnear Jr. (Eds.), Advances in

Genetic Programming II, MIT Press, Cambridge, MA, 1996, pp. 377–394.].

However, grammar-guided genetic programming encounters severe difficulties when it involves a complex grammar, which

might explain why this approach has not been widely used so far. The drawback is blamed on the initialization step, which hardly

constructs a sufficiently diversified initial population, thus hindering the success of evolution. This limitation is addressed by

a new CFG compliant initialization procedure.

The approach is validated on two problems related to the identification of mechanical properties of materials. 

Keywords: Genetic programming; Context-free grammar; Grammatical evolution; Domain knowledge; Constrained genetic programming;

Dimensional analysis; Machine discovery; Inverse problems; Identification in mechanics

1. Introduction

Scientific discovery consists of modeling a physical

(mechanical, chemical, biological, etc.) phenomenon

from the available observations and current theories.

∗ Corresponding author. Tel.: +33-86-71-5000;

fax: +33-86-71-5001.

E-mail addresses: alain.ratle isat@u-bourgogne.fr (A. Ratle),

michele.sebag@polytechnique.fr (M. Sebag).

This paper is concerned with the automatic discov-

ery of such empirical laws, referred to as machine

discovery (MD). Machine discovery has primarily

been investigated in the machine learning framework

[1–5]. The machine learning approach used to make

restrictive assumptions on the available data [1,2];

it still heavily requires the domain expert or the

MDer’s support, tuning a wide range of declarative

heuristics [3–5]. This might make it questionable for

machine discovery to scale up to high dimensional
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problems, or achieve exploratory analysis in ill-known

domains.

The discovery of empirical laws has also been

tackled by a number of modeling (or identification)

techniques, ranging from data analysis [6] to support

vector machines [7]. Modeling techniques can be di-

vided into parametric and non-parametric approaches.

Parametric modeling is concerned with finding a

fixed number of coefficients, whose interpretation

is governed by a prescribed model. Non-parametric

modeling, which will be the only one considered in

the following, determines both the model and the

coefficients thereof.

Major breakthroughs in non-parametric modeling

have been achieved by genetic programming (GP)

[8–10], which extends the principles of genetic algo-

rithms and evolutionary computation [11,12] to struc-

tured (infinite) search spaces. Its stochastic search

allows GP to explore practically and robustly, if not

necessarily efficiently, huge search spaces. Indeed,

many applications concerned with non-parametric

modeling have been successfully tackled by GP

[13–17].

However, GP suffers from a major limitation with

respect to MD. Although the knowledge-based issues

of evolutionary computation have been widely ac-

knowledged [18,19], canonical GP offers no straight-

forward way of exploiting domain knowledge, namely

the expert expectations or requirements regarding the

sought model. In MD, a most trivial kind of domain

knowledge is dimensional analysis; variables are typed

depending on their measurement units (e.g. meter, sec-

ond, kilogram, etc.), and admissible models are dimen-

sionally consistent (meter and second should not be

added). Dimensional consistency, or more generally

domain knowledge, can thus be viewed as constraints

on the model space. Such constraints are meant to dras-

tically and soundly reduce the search space, thereby in-

creasing the chances of success everything else being

equal. Such a constraint can be enforced within GP by

means of penalization on non-consistent models [20].

Still, the most natural way of dealing with con-

straints in optimization is, if possible, to get rid of them

by re-designing the search space and/or the evolution

initialization and operators [21]. Within GP and gen-

eralizing the strongly typed GP framework [22,23],

Gruau shows that context-free grammars (CFGs) can

be both used to declaratively specify the set of ad-

missible models, and to enforce the production of ad-

missible offspring from admissible parents [24]. The

coupling of CFGs and GP has been studied by several

authors (see [25–27] among others). The expressive-

ness of CFGs is demonstrated by showing how these

can be used to enforce dimensional consistency; an

automatic grammar generator implementing dimen-

sional consistency, first described in [28], is presented.

Unfortunately, grammar-guided GP (G3P) is ob-

served to perform poorly when it involves a reasonably

complex grammar (i.e. when the admissible search

space is small, which is the case for dimensionally

consistent solutions) [26]. We blamed this shortcom-

ing on the initialization step, for the following reasons.

On one hand, the standard sampling of the admissible

search space might result in poorly diversified individ-

uals. On the other hand, as emphasized by [29,30], the

initial population quality can have a considerable im-

pact on the overall result (up to several orders of mag-

nitude). A new initialization procedure for G3P, that

produces admissible individuals of limited size that

are sufficiently diverse was therefore proposed [28].

1.1. Applications

In this paper, the main application concerns the

identification of an analytic model of materials be-

havior from experimental data [37]. Such a task is

essential for material scientists in order to characterize

recently developed materials. One of the most com-

mon test for on-site applications is the indentation test

described in Fig. 1. This test consists of pushing a hard

indenter with a standardized shape against the mate-

rial to be tested. The applied force is recorded together

with the penetration depth of the indenter, and the

result is a force–displacement curve, or a force–time

curve for time dependent materials, as shown in Fig. 1.

The goal of the learning task is to find out an ana-

lytical model which can explain the physics lying be-

hind these curves. It should be noted, however, that

except for some classes of materials, this is an open

problem which has no solution. Therefore, in order to

develop the automatic learning tool in a better con-

trolled environment, a simpler application is also con-

sidered. This second case consists of a visco-elastic

model known as the Kelvin–Voigt model. The model

is sketched in Fig. 2a, and consists of a spring K

in parallel with a dashpot C. When this model is
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Fig. 1. Sketch of the experimental setup, and typical results.

submitted to a step-function force of amplitude F from

the time t = 0, the displacement u is easily derived

from the equation of motion of the system:

u(t) =
F

K
(1 − e−Kt/C) (1)

A second, more complex case, is the four-element

model sketched in Fig. 2b. This model has a response

to a step function force given by:

x(t) =
F

K1
+

Ft

C1
+

F

K2
(1 − e−Kt/C2) (2)

1.2. Organization

This paper is organized as follows. First of all,

Section 2 presents a brief overview of classical ge-

netic programming. Section 3 reviews some related

works and discusses how to take into account prior

knowledge within GP. In order for this paper to be

self contained, Section 4 briefly describes context-free

Fig. 2. The Kelvin–Voigt model, and the four-element model.

grammars. Section 5 demonstrates how grammars can

be used to automatically encode dimensional consis-

tency. Section 6 details how to modify the GP compo-

nents to accommodate a CFG, notably focusing on the

initialization procedure. Last sections are devoted to

the empirical validation of the presented G3P scheme

on problems inspired from real-world applications in

mechanical modeling, the identification of materials

behavioral law. Section 7 describes the test applica-

tions. Section 7.2 presents our empirical setting and

discusses the experimental results. The paper ends

with some perspectives for further research.

2. Elementary genetic programming

Genetic programming consists of a special class of

evolutionary algorithms for which the evolution takes

place over tree representations of computer programs

rather than over linear genomes. The basic scheme of

an evolutionary algorithm can be described as follows:

• Create a random population of solutions.

• Evaluate the fitness of each individual (solution).

• While the stopping criteria is not satisfied,

◦ select the best parents in the current population

according to fitness;

◦ recombine them in order to generate offsprings;

◦ mutate some of them in a random direction.

• End of the algorithm.

The tree representation, and the crossover (recom-

bination) and mutation operators are illustrated by

the following example, where a function of the three

variables a, b and c is required using the four basic
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Fig. 3. Function representation and crossover operator of the basic

GP algorithm.

arithmetic operators (+, −, ∗, /). Fig. 3 shows in the

upper part two individuals equivalent to the functions:

f1(a, b, c) = (a − c) + (b − a) ∗ b and

f2(a, b, c) = a +

(

b

a

)

∗ (c + b) (3)

The crossover operator consists of selecting two sub-

trees in two preselected parents, and swapping these

subtrees in order to generate new solutions which con-

tains the building blocks of the “good” parents. Fig. 3

shows in the bottom part the two offsprings obtained

by the recombination of the two parents. These off-

springs correspond to the following functions:

f3(a, b, c) = (a − c) +

(

b

a

)

and

f4(a, b, c) = a + ((b − a) ∗ b) ∗ (c + b) (4)

The mutation operator of the basic GP algorithm con-

sists in applying the crossover operator between a se-

lected parent and a randomly generated tree. In the

context of genetic programming for symbolic regres-

sion, or function identification, the fitness function is

based on the distance between the solution given by the

algorithm and the experimental results to be learned.

In the present application, the quadratic distance be-

tween the experimental curves and the learned func-

tions was employed. This fitness function should, of

course, be minimized by the algorithm.

3. Evolutionary non-parametric modeling

The branch of evolutionary computation concerned

with non-parametric modeling is genetic programming

[8–10]. Genetic programming extends the principles of

genetic algorithms to tree-structured spaces, described

from a set of operators or nodes N , and a set of ter-

minals or leaves T . As trees of any depth can be gen-

erated, evolution truly explores an unbounded search

space. 1 As an example, consider the tree-structured

space defined from nodes plus and multiply and leaves

x (variable) and R (any real-valued constant). This

space includes polynomials of variable x of any de-

gree.

Canonical GP relies on the hypothesis of closure

of the search space [8], which assumes that the re-

turn value of any subtree is a valid argument for any

function. This ensures that simple crossover and mu-

tation (respectively swapping sub-trees and replacing

an arbitrary (part of) subtree by a random one) shall

produce admissible offsprings. On the other hand,

this assumption forbids any syntactic or semantic re-

strictions to be done. Some simple restrictions can be

handled through the operator design, e.g. a protected

division is designed to handle the case of a null di-

visor. All other restrictions must be accounted for

through the fitness function design, e.g. penalizing

non-viable individuals. The closure assumption thus

implies strong limitations:

• The search space is huge, even for problems of mod-

erate difficulty [31]: it is exponential with respect

to the number of terminals and operators and the

maximum tree depth allowed.

• No consideration is taken for the variable types

(integers, real numbers, complex numbers, etc.) or

dimensions (meter, second, kilogram, etc.), which

implies that the search space includes a number of

irrelevant individuals [32].

• The general shape of the generated trees is arbi-

trary; the expert prior knowledge can only dictate

the operator set.

In summary, the price to pay for simple GP evolu-

tion operators is that the search space is much larger

1 Practically, an upper bound is set on the maximum tree depth,

which might raise difficulties during the initialization step; this

point is discussed in more detail in Section 6.
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than the set of relevant individuals. GP implicitly deals

with a constrained optimization problem, where the

constraints reflect the domain expert or GPer prior

knowledge. The importance for evolutionary compu-

tation to take the expert knowledge into account is

now generally acknowledged [18,19], and several au-

thors have addressed the coding of expert knowledge

through GP biases.

A first class of bias concerns the shape of the sought

solution. A significant improvement in the success rate

of a GP application can be obtained by biasing the

shape of the parse trees toward some shapes judged

interesting [31,33]. This can be done through setting

or adapting the selection probabilities of the operators

[33], or via syntactic constraints [31].

Actually, most GP biases are expressed as syntac-

tic constraints. Koza used syntactic constraints (e.g.

setting the root operator or restricting the crossover

according to the operator types) to either enforce the

production of viable individuals or improve GP effi-

ciency in his early work [8]. Automatically defined

functions (ADF) can also be viewed as particular

kinds of syntactic constraints, controlling the opera-

tors hierarchy in order to enforce GP scalability [9].

Syntactic constraints might also regard the types

of the variables manipulated by the tree expression.

These constraints might express the operator restric-

tions (e.g. the cosine operator should be applied on

angular variables only) and the admissible combina-

tions of operators. In the strongly typed GP (STGP)

proposed by Montana [22] and extended by Haynes

et al. [23], a type label is associated to every termi-

nal, and every operator argument. The crossover and

mutation procedures are then constrained accordingly;

crossover operates by swapping a subtree with another

subtree of the same type, and mutation replaces a sub-

tree with a random subtree of the same type. Along

the same lines, type constraints might reflect seman-

tic restrictions, such as those related to dimensional

analysis. A first step toward dimensionally aware GP

was proposed by Keijzer and Babovic [20]. The di-

mensionality of each expression is encoded by a label,

listing the exponents of the basic units. The require-

ments on the label of a subtree derive from those of

its parent and sibling nodes.

As shown by Montana [22], it is relatively easy for

crossover and mutation to accommodate syntactic con-

straints. But these might render the initialization step

significantly more difficult. In Keijzer and Babovic’s

approach for instance [20], during initialization one

has to generate a subtree of any prescribed label (com-

pound unit); still, there does not necessarily exist a

terminal associated to the desired label. Initialization

thus calls an ad hoc function, DimTransform, which

might introduce non-physically meaningful constructs

hindering the physical relevance of the final tree. The

fitness design hence takes care of this undesired side

effect, by penalizing the individuals with many calls

to DimTransform.

Next section describes a general framework for

specifying or constraining the GP search space,

namely context-free grammars [34]. How to accom-

modate these specifications within genetic program-

ming is studied in Section 6.

4. Context-free grammars

As reminded by Gruau, syntactic constraints his-

torically pertain to the theory of formal language and

grammars; a grammar is meant to describe all ad-

missible expressions of a language. In his pioneering

work [24], Gruau showed how context-free grammars

(CFGs) allow one to bias the GP search space through

syntactic constraints, neatly expressing the admissible

search space and significantly reducing the exploration

effort. A publicly available GP software implementing

the use of context-free grammars has been realized by

Hörner [25].

In order for this paper to be self-contained, this

section briefly reminds the CFG formalism. A stan-

dard way of characterizing a context-free grammar,

known as Backus–Naur expression, is by a four-tuple

{S, N, T , P }, where S denotes the start symbol, N

the set of non-terminal symbols, T the set of terminal

symbols, and P is the set of production rules. Fig. 4

shows the CFG describing the polynomials of variable

X, to be compared with the standard GP description

from the node set N = {+, ×} and terminal set T =

{x,R}.

Any expression is built up from the start symbol S.

For each non-terminal symbol (e.g. 〈E〉) there exists

a production rule stating all possible ways of rewrit-

ing the non-terminal symbol, named derivations (e.g.

the two possible derivations for 〈E〉 are 〈O〉〈E〉〈E〉

and 〈V 〉). Each non-terminal symbol is rewritten by
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Fig. 4. The grammar for polynomials of any degree of variable x.

selecting a derivation until the expression contains ter-

minals only. In evolutionary terms, one could consider

the derivation tree as the genotype of the individual.

The derivation tree gives rise to a parse tree that con-

stitutes the phenotype and whose fitness is ultimately

computed (Fig. 5).

The distinct roles of non-terminals and terminals

in GP and CFG are shown from the derivation tree

and the corresponding expression tree (Fig. 5). In both

cases, non-terminal symbols correspond to the nodes

of the tree, while terminal symbols are the leaves. But

operators are leaves of the derivation tree (CFG ter-

minal symbols), whereas they are nodes of the expres-

sion tree (GP non-terminal symbols). This difference

implies that crossover and mutation will operate in

different ways, depending on whether they apply on

the derivation or the expression tree; this point will be

discussed further in Section 6.1.

The advantage of CFGs is to allow for fine-grained

restrictions on the combinations of operators and vari-

Fig. 5. Derivation tree and corresponding parse tree.

ables. Assume for instance that the parent node of a

plus node should only be a multiply node, and con-

versely. Such a restriction is written down by modi-

fying the above CFG as follows (only modified items

are shown):

N := {〈add E〉, 〈mult E〉, 〈O〉, 〈V 〉}

S := 〈add E〉|〈mult E〉

〈add E〉 := (+〈mult E〉〈mult E〉)|〈V 〉

〈mult E >:= (×〈add E〉〈add E〉)|〈V 〉

Canonical GP cannot declaratively accommodate such

restrictions, i.e. through the description of N and T

only. Procedural modifications are required to avoid or

discourage non-complying individuals, through either

the initialization procedure and evolution operators, or

the fitness design.
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5. Dimensional analysis through CFGs

For our purpose, it remains to show that context-free

grammars can be used to encode reasonably complex

prior knowledge in the domain of machine discovery.

The particular prior knowledge considered in the fol-

lowing is dimensional consistency, for two reasons.

First of all, dimensional consistency constitutes a fairly

general domain knowledge relevant to machine dis-

covery. Secondly, it is very efficient in the sense that

it drastically reduces the number of admissible solu-

tions.

Two restrictions are done. The set of admissible

compound units is finite, and only arithmetic opera-

tors (plus, multiply and divide) are applied on

non-dimensionless expressions.

Under these restrictions, dimensional analysis can

be expressed through a CFG [28].

Fig. 6. Generation of the dimensional grammar.

Let u1, . . . , uK denote the K elementary units

of the problem domain. For instance, in the domain

of macro-mechanical modeling the three elementary

units are meter, second and kilogram. Borrow-

ing to the formalism used in [20], any compound unit

based on these K elementary units is described as a

vector of RK ; e.g. the Newton unit (kilogram ×

meter/second 2) is represented as (1, −2, 1). The

set D of allowed compound units is given as a finite

subset of RK (e.g. in the example domain, K = 3

and D is {−2, −1, 0, 1, 2}3).

To each unit u in D is associated a non-terminal

symbol 〈Nu〉. The production rule associated to 〈Nu〉

describes all possible ways of constructing an expres-

sion of unit u:

1. by selecting a terminal symbol (problem variable)

with unit u;
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2. by adding or subtracting expressions with unit u;

3. by multiplying two expressions with respective

units v and w, such that u = v +• w, or

4. by dividing an expression of unit v by an expression

of unit w, such that u = v −• w, where +• and

−•, respectively, denote the vector addition and

subtraction on RK .

Other possibilities, not considered in the following,

would be by taking the square root of an expression

of unit 2u, or the cubic root of an expression of unit

3u; but clearly, the use of fractional power operators

cannot be extended beyond certain limits.

In the particular case of dimensionless expressions

(u = (0, . . . , 0)), any other operator (e.g. exp, log,

etc.) can be used.

The number |D| of allowed units is exponential in

the number of exponents allowed for an elementary

unit on average (e.g. |D| = 53 = 125 in our ex-

ample), which makes it necessary to devise an au-

tomatic generator for the CFG. Note however, that

although the grammar size is actually exponential,

using it to enforce dimensional consistency entails

no computational overhead compared to using some

dimensionally-consistent crossover or mutation proce-

dures.

The automatic CFG generator takes as input the

unit of each terminal symbol, the set D of admissible

units, and the unit us of the sought solution. The set

of domain variables with unit u, possibly empty, is

noted Vu. The algorithm for automatically generating

the production rules is depicted in Fig. 6.

Note that any additional cue on the shape of the

solution might easily be given by the expert, through

the production rule associated to the start symbol. For

instance, if the sought model should involve an inverse

exponential of the time variable t , the first production

rule becomes:

S := 〈Nus〉 e−(〈N0〉t)

6. Grammar-guided genetic programming

CFGs allow one to declaratively characterize the

GP search space. As the closure hypothesis does no

longer hold, the standard GP components need be

modified, giving rise to the grammar-guided GP (G3P)

framework. After briefly discussing the case of G3P

crossover and mutation, this section focuses on the

initialization procedure.

6.1. G3P crossover and mutation

CFG compliant crossover and mutation operators

should produce admissible offspring from admissible

parents. As mentioned earlier on, the required modi-

fications are rather straightforward [22,24,25].

Within G3P, genetic individuals are provided with

two descriptions: the derivation tree, or genotype, en-

codes the expression tree, or phenotype. G3P crossover

and mutation apply on the genotypes, contrasting with

canonical GP crossover and mutation applying on the

phenotypes.

G3P crossover selects with uniform probability a

node in the first parent carrying any non-terminal

symbol, 2 say 〈Nu〉. If the second parent has no node

carrying symbol 〈Nu〉, the crossover is rejected. Oth-

erwise, a node carrying symbol 〈Nu〉 is selected with

uniform probability in the second parent, and the two

subtrees rooted in the selected nodes are swapped.

G3P mutation likewise selects with uniform prob-

ability a node carrying a non-terminal symbol 〈Nu〉,

and replaces the subtree rooted from this node with

any expression rewriting 〈Nu〉 (same as crossover with

a random parent).

It is worth noting that handling the genotypes

instead of the phenotypes remarkably modifies the

crossover effects. As a proof, which is new to our

best knowledge, note that phenotypic GP crossover

(operating on the expression trees) cannot produce

an offspring which differs from a parent by an op-

erator only; phenotypic crossover can but modify a

whole expression subtree. Quite the contrary, geno-

typic G3P crossover (operating on the derivation

trees) can access a leave of the derivation tree, hence

modify an operator independently from its arguments

(Fig 5).

The propensity of G3P crossover to achieve such

restricted modifications appears quite desirable. In

opposition, the canonical GP setting requires the indi-

viduals to grow before canonical GP crossover could

operate small modifications [8]; and such growth

clearly congests the evolution process.

2 Note that the crossover point must be a non-terminal; otherwise

crossover can only be ineffective, swapping a terminal with itself.
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Fig. 7. The grammar for polynomial fractions of a, b, and c.

6.2. CFG compliant initialization

In the G3P framework, initialization should both

sample the search space as uniformly as possible, and

respect the maximum tree-depth prescribed by the

user.

However, in a reasonably complex CFG such as

the dimensional one (Section 5), most non-terminal

symbols cannot be resolved directly into a terminal.

And in all cases, the fraction of terminal derivations

is so small anyway that there is little chance for a uni-

form process to select a terminal derivation. Further-

more, in the general case the rewriting rules impose

no limitations on the number of recursive calls to a

non-terminal symbol. 3 A uniform initialization pro-

cedure thus tends to build up very deep trees, as noted

by Ryan et al. [26], and oversized trees are massively

rejected.

Similar difficulties are met in all constrained evolu-

tionary schemes using a death penalty, when the ad-

missible search space constitutes a small fraction of

the search space [21].

A possibility would be to favor the selection of ter-

minal variables whenever possible, e.g. through setting

high probabilities on the corresponding derivations.

Unfortunately, unless these probabilities are very care-

fully tuned, this leads to construct poorly diversified

individuals, and evolution practically never recovers

from such a poor initial population. As stressed by

Daida [29], the importance of the initial population

cannot be overestimated.

3 Although one might upper bound the number of such recursions

[24] this requires one to have fairly precise ideas on the shape of

the solutions sought.

The heuristics first presented in [28] for overcoming

the initialization difficulties within G3P, proceeds by

dynamically masking the derivations that would lead

to oversized trees.

To each symbol 〈Nu〉 is associated an integer in-

dex i(Nu) giving the depth of the smallest tree resolv-

ing 〈Nu〉 into terminal symbols; an integer index is

similarly associated to each derivation ‘deriv’. These

indices are recursively computed from the following

considerations:

• The index of a terminal variable is 1.

• The index of a non-terminal symbol is the minimum

index of its derivations:

〈Nu〉 := deriv1| . . . |derivK ; ⇒ i(Nu)

= min
k=1,... ,K

i(derivk)

• The index of a derivation involving an operator is

one plus the maximum index of its operands:

i(〈op〉〈Nu〉〈Nv〉) = 1 + max(i(Nu), i(Nv))

As an example, let us consider the CFG describing

all polynomial fractions of variables a, b, and c with

rational coefficients (Fig 7).

The index of non-terminal symbol V is 1. Hence, the

index of derivation (〈op〉〈V 〉〈V 〉) is 2, and the index

of non-terminal symbol E is also 2.

Let DMax denote the maximum tree depth set by the

expert. Obviously DMax must be greater than the in-

dex of the start symbol S (DMax ≥ i(S)), otherwise no

individual in the CFG space satisfies the depth limita-

tion and the admissible space is empty. Along the same

lines, any non-terminal symbol Nu such that i(Nu) is

9



Fig. 8. Dynamically pruning the derivations.

greater than DMax is useless and should therefore re-

moved from the CFG, together with all derivations in-

volving them. For instance, if DMax were set to 2, all

derivations of E but the last one in the above example,

should be removed.

Indices are employed to enforce the upper bound

on tree size as follows. Consider a given occurrence

of some non-terminal symbol Nu, situated at level

m of the tree under construction. The maximum

depth allowed for rewriting this occurrence of Nu is

DMax − m. Only those derivations of Nu with in-

dex less than DMax − m are therefore allowed; and

at least one such derivation must exist, since oth-

erwise symbol Nu would not have been allowed to

use at level m. Other derivations are locally masked

since they would lead to construct an oversized

tree.

Practically, the derivation used to rewrite this oc-

currence of Nu is uniformly selected among the

admissible derivations. This way, it is impossible

for the initialization algorithm to engage into a

path providing no solution within the allowed tree

depth: all constructed individuals are admissible with

respect to both the CFG and the maximum tree-

depth.

As an example, let DMax be set to 4, and see how

the derivation tree develops. It starts with S, read-

ily rewritten as 〈E〉. Assume that the first derivation

〈op〉〈E〉〈E〉 is chosen. Assume then that the leftmost

〈E〉 symbol is rewritten using the second deriva-

tion 〈op〉〈E〉〈V 〉. At that point, the limitation on the

tree depth imposes the leftmost 〈E〉 symbol to be

rewritten using the shortest derivation 〈op〉〈V 〉〈V 〉

(Fig. 8).

The advantage of this procedure is that the initial

population does not suffer from any loss of diversity;

the set of admissible individuals is uniformly sampled,

as the dynamic masking of the derivations does not

introduce any unnecessary restrictions. 4

7. Numerical experiments

In this section the G3P is empirically validated on

the artificial problems described in the introduction,

and then is tested on the real application for which

the solution is unknown. The goal is to identify the

behavior laws of new materials, which has important

applications especially for polymers and composite

materials [36,37]. In the two test problems, a target

model is analytically defined, and numerical examples

are generated with random values of the materials pa-

rameters. Depending on the class of materials and the

properties under study, the sought model either is a

force–time relation, or a force–displacement relation.

In the test application 20 pseudo-materials have

been numerically generated from random values of the

material properties. The goal of the learning tool is to

minimize the quadratic distance between these 20 sim-

ulated experiments and the proposed model. There-

fore, a fitness value of zero is expected if the exact

solution is found.

7.1. Grammar generation

Three grammars are considered for the rheologi-

cal models. For the second application (real problem),

4 With regards to formal grammars, the presented heuristics cor-

responds to the use of an attribute grammar [35] with constraints.

A depth attribute is attached to each symbol occurrence and each

derivation rule is associated a constraint on the attributes. A sim-

ple constraint solver is used to check whether a given derivation

path is currently allowed.

10



only the universal and dimensional grammars are con-

sidered.

Universal grammar again specifies the same

search space as canonical GP with operator set N

and terminal set T :

S := 〈E〉

〈E〉 := 〈O〉〈E〉〈E〉|〈V 〉

〈O〉 := +| − | × | ÷ | exp ≡ N

〈V 〉 := F | K | C | t | 1 | 2 | 3 | 4 ≡ T

Universal-exn grammar, which expresses the fact

that the exponent is necessarily negative (material pa-

rameters are always positive, and negative time is not

considered). Within the universal grammar, evolution

must thus create a combination of constants equal to

−1, and multiply the result by another combination

of variables. Instead, the search space can be biased

toward physically plausible solutions by introducing

the negative exponential operator exn, which returns

the exponentiation of the negation of its argument.

Universal-exn grammar differs from the univer-

sal one as operator exn is added to non-terminal

〈O〉.

Dimensional-exn grammar, which takes ad-

vantage of the variable dimensions described on

Table 1. This table allows the automatic generation

of a dimensional grammar as described in Section

5. Operator exn is applicable on dimensionless

expressions.

7.2. Experiment settings

The empirical validation is concerned with evalu-

ating how domain knowledge, provided through vari-

Table 1

Physical units of measurement for the two rheological models

Quantity Mass Length Time

Domain variables

Force, F +1 +1 −2

Elastic element, K +1 0 −2

Viscous element, C +1 0 −1

Time, t 0 0 +1

Solution

Displacement, u 0 +1 0

Table 2

GP and G3P experimental setting

Parameter Value

Population size 4000

Maximum number of generations 500

Probability of crossover 0.8

Probability of tree mutation 0.2

Probability of point mutation 0.8

Tournament size 2

Number of fitness cases 320

Number of independent runs 20

ous grammars, can facilitate the evolution task. After

describing the experiment setting, we present and dis-

cuss the results obtained by canonical GP and G3P on

the test applications.

Canonical GP and G3P both follow a generational

scheme with crossover, tree mutation and point muta-

tion. Crossover swaps a randomly selected tree with

another randomly selected tree (respectively derived

from the same non-terminal symbol) in GP (respec-

tively in G3P). Tree mutation replaces a randomly

selected subtree with a newly generated subtree

(respectively derived from the same non-terminal

symbol) in GP (respectively in G3P). Point muta-

tion replaces a randomly selected variable/constant

with another one (respectively derived from the

same non-terminal symbol) in GP (respectively in

G3P). The relevant parameters are summarized in

Table 2.

Fig. 9. Solution quality obtained with the three grammars for the

Kelvin–Voigt problem.
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Table 3

Comparative results on the Kelvin–Voigt problem (best result for

2,000,000 fitness evaluations, averaged on 20 runs)

Grammar Average fitness S.D.

Universal grammar 100.8 9.2

Universal-exn grammar 69.6 1.1

Dimensional-exn grammar 39.4 5.9

7.3. Results

For both the Kelvin–Voigt and the four-element

model, the exact solution was found in no run, what-

ever the grammar used. Fig. 9 shows the average over

20 runs of the best fitness against the total number

of evaluations for all three grammars considered,

for the most simple case, the Kelvin–Voigt problem.

The baseline corresponds to the universal grammar

(canonical GP); the second grammar differs from

the universal one by the only addition of operator

exn; the third one involves besides all dimensional

constraints.

As could have been expected, the use of exn

significantly improves the overall result. The use of

dimensional constraints improves results even more

significantly, as shown in Table 3.

In spite of the fact that the exact solution was never

found, some of the approximate solutions were, from

an engineering point of view, very similar to the data.

Fig. 10 presents four random materials extracted from

Fig. 11. Correlation between four samples of the real application and the best model found by the learning algorithm: universal grammar

(left); dimensional grammar (right).

Fig. 10. Correlation between the training examples and the learned

model for the four-element problem.

the training set (the dotted curves), together with the

corresponding solutions found by the algorithm (the

solid curves). Although these curves does not corre-

spond exactly to the training examples, they are useful

for material selection.

Finally, for the real application of unknown solu-

tion, similar results were found. No exact solution

(zero fitness) was found, regardless of the parameters

of the algorithm. Fig. 11 shows, however, that using

a universal grammar, the best solution consists of a

compromise lying in between all of the training sam-

ples. Using a dimensional grammar, the algorithm is

able to find out a solution that matches more closely

each of the samples.
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8. Conclusion and perspectives

This paper has investigated how to enhance genetic

programming by taking into account prior knowledge

related to the application domain.

After Gruau [24], the formalism of context-free

grammars appears to be both efficient and manage-

able to express a wide range of syntactic constraints

about the shape or properties of sought solutions.

Grammar-guided GP, generalizing STGP [22], im-

proves on canonical GP by restricting the search to

admissible solutions, which represent a negligible

fraction of the total search space.

The power of CF grammars has been demonstrated

by showing how dimensional consistency can be en-

coded within such a grammar. Though the size of di-

mensional grammar is exponential in the number of

elementary units in the domain, grammar-guided GP

suffers from no computational overhead compared to

typed GP. Compared to fitness-based ways of favoring

dimensionally consistent solutions [20], the advantage

of G3P is a drastic reduction of the GP search space.

Besides, grammars also allow the expert to encode

his/her priors regarding the shape of the target model.

One barrier to the wide use of G3P was identified

as the initialization mechanism, for the maximum tree

depth allowed for the trees usually conflicts with a

great many constraints. This limitation has been ad-

dressed by a new heuristics, based on the dynamic

masking of non-admissible constructs and derivations.

This way, a sufficiently diversified initial population

within the allowed maximal tree size might be created.

The advantage of the approach has been experi-

mentally demonstrated on two test problems inspired

from real-world applications. Indeed, the use of expert

grammars is show to significantly improve the overall

identification results.

The main limitation of G3P for dimensionally-aware

GP is that a limited range of units is considered so far.

Further research will investigate the use of fractional

units together with a broader range of operators (e.g.

square or cubic roots). This could be made possible by

considering twice as many basic units (using rational

instead of integer exponents).

Another difficulty for genetic programming regards

the adjustment of real-valued parameters, which was

not considered in our test problem. A perspective of

research is to investigate how G3P could be used to

restrict the range of values explored, according to the

expert’s indications.
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