
HAL Id: hal-00111333
https://hal.science/hal-00111333

Submitted on 12 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reciprocity principle and crack identification in
transient thermal problems

Abda Ben Abda, Huy Duong Bui

To cite this version:
Abda Ben Abda, Huy Duong Bui. Reciprocity principle and crack identification in transient thermal
problems. Journal of Inverse and Ill-posed Problems, 2013, 9, pp.1-6. �10.1515/jiip.2001.9.1.1�. �hal-
00111333�

https://hal.science/hal-00111333
https://hal.archives-ouvertes.fr


Reciprocity principle and crack identification in

transient thermal problems

A. BEN ABDA∗ and H.D. BUI†

Abstract — We consider the inverse problem of crack determination related to the

nondestructive thermal testing of materials process. Using arbitrary transient heat

flux applied to the external boundary and measuring the induced temperature, we

prove that the overspecified datum suffice to reconstruct planar cracks.

1. INTRODUCTION

The problem under consideration arises in non-destructive thermal testing of
materials. Up to our knowledge, theoretical results on identifiability of cracks
are seldom and focus on the laplace equation (i. e. the steady state thermal equa-
tion or electrical equation). The uniqueness (identifiability) result for buried
crack has been first given by Friedman and Vogelius [11]. They proved that two
appropriate current fluxes, together with the corresponding voltages, are neces-
sary and suffice to uniquely determine a single crack. Bryan and Vogelius [10],
followed by Alessandrini and Diaz Valenzuela [1] examined the multiple crack
problem always in 2D situation. In 3D situation, a complete result has been
given by Alessandrini and DiBeneditto [2]. When complete data is available
on the boundary Andrieux and Ben Abda introduced in [4, 5] the reciprocity
gap concept which turned out to be a relevant tool for recovering 3D planar
cracks in the case of Laplace equation. An analogous result has been proven
by Andrieux, Ben Abda and Bui [6] for the electrostatic system. Recently Bui,
Constantinescu and Maigre [9] proved an identifiability result for the problem
of planar crack recovery in 3D transient acoustic problem. For a given Neu-
mann boundary condition we shall suppose that Dirichlet boundary condition
is measured for finite time (or all times). The crack will be considered fixed
over the time and it will be simultaneously characterised by a free boundary
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condition and a jump of the thermal solution at its passage. The normal to the
host plane inversion process has been given by Andrieux in [3], and is recalled
here, the plane identification is then achieved. The last section is devoted to
the complete identification process.

2. THE RECIPROCITY GAP FUNCTIONAL

IN THE TRANSIENT CASE

Let us consider the direct modelling problem:

∂u

∂t
−∆u = 0 in (Ω\σ)× [0, T ]

u(x, 0) = 0 in (Ω\σ)
u = un on ∂Ω

∂nu = 0 on σ.

The overdetermined condition is given by:

∂u

∂n
(x, 0) = Φn on σ.

Let w be a scalar field satisfying the following backward heat conduction prob-
lem

∂w

∂t
+∆w = 0 in Ω× [0, T ]

w(x, T ) = 0 in Ω.

The reciprocity gap function is therefore defined by:

RG(w) :=

∫ T

0

∫

∂Ω

(

Φmw − um
∂w

∂n

)

. (1)

The following lemma expresses RG(w) in terms of an integral involving the
unknown geometry σ.

Lemma 1.

RG(w) :=

∫ T

0

∫

σ

[

u
]∂w

∂n
. (2)

Proof. The proof is achieved by Green’s formula.
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3. THE HOST PLANE DETERMINATION

As for the steady state heat conduction control, the host plane determination
is explicit, nevertheless there is no inversion formulae in that case.

Let us recall that in the laplacian situation the inversion formulae rely on
the assumption that the main value of the solution’s jump on the crack does
not vanish.

In the transient case the assumption on the jump is more severe. In all this
section, we suppose that the heat flux Φ induces a solution u such that (A1)
[

u
]

> 0 on the crack.

For the determination of the normal of the plane we refer to [3]. This result
is recalled in the following proposition:

Proposition 1. Under the assumption (A1), the normal �N is given by:

�N = Arg min
|�n|=1

[

max
|�m|=1, �n·�m=0

F (�n ∧ �m)
]

where F (n) = RG(v�n) and v�n(x, t) = 1 − erf(�x · �n/(2
√
T − t)), erf is the error

function.

Once the normal to the host plane is determined, let us operate a frame
change such that the Ox3 axes is directed by �n. In the new framework one has
π : x3 − C = 0.

Proposition 2. Consider the auxiliary scalar field

wβ(x, t;T ) =
1

√

4π(T − t)
exp

(

− (x3 − β)2

4(T − t)

)

.

Denote by f(β) := RG(wβ). Assuming (A), C is a simple zero of f .

Proof. By Lemma 1,

RG(wβ) = f(β) =

∫ T

0

∫

σ

[

u
] β − C

4(T − C)
exp

(−(C − β)2

4(T − t)

) 1
√

4π(T − t)
,

it turns out, assuming (A), that C is a simple zero of f .

4. COMPLETE IDENTIFICATION

As in the steady state heat conduction problem, we establish the next lemma
relating the crack to the support of the jump of the heat solution.

Lemma 2.

supp[u] = σ.
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By supp[u] we mean the spatial support of [u] defined as follows

supp[u] = {x ∈ R2 / ∃t ∈ [0,∞[, [u(x, t)] �= 0}.

Proof. Obviously supp[u] ⊂ σ. Assume that σ �⊂ supp[u]. Let x0 ∈ σ \ ∂σ
be given. Then, there is an open submanifold σ0 ⊂ σ \ ∂σ and an open ball B
such that ∂(B∩σ) = σ0 and ∂B± = σ±

0 , B = B+∪B−∪σ0. u|B± are solutions
of the homogeneous heat equation with homogeneous Neumann data on σ±

0 ,
which is assumed to be real analytic (planar of linear manifold). Therefore, u|σ0

are real analytic functions. By the Cauchy –Kovalevskaya theorem, one deduces
that [u] is real analytic on σ and vanishes on σ0, that is [u] = 0 on σ0 unless
supp[u] = σ.

Let us consider the auxiliary scalar field w:

w(x, t, s1, s2, q) = exp(iqt) exp(−i(s1x1 + s2x2)) exp(x3(s
2
1 + s22 − iq)1/2)

where s1, s2 are two real parameters and q is a complex one q = qR + iqI , with
qI > 0.

Lemma 3.

RG(w) =

∫ ∞

0

∫

R2

[

u
]

exp(−iqt) exp(−i(s1x1 + s2x2)) dt dx1 dx2

= (s21 + s22 − iq)−1/2

∫ ∞

0

∫

∂Ωext

(un∂nw − wΦn).

Denote by D(x, t) the jump of u across σ (D(x, t) = [u]) and let us consider
the Laplace transform of [u]

H(x, q) =

∫ ∞

0

[u] exp(iqt) dt.

Lemma 4.

suppH(x, q) = suppD(x, t).

Proof. Let x �∈ suppD(x, t), therefore [u] = 0 and H(x, q) = 0. Therefore
suppD(x, t) ⊂ suppH .

The inverse Laplace transform gives the other inclusion.

Theorem 1. The crack σ is uniquely determined by the measurement
(un,Φn).

Proof. Recalling Lemma 2, one obtains the following equation

∫

R∈

H(x, t) exp(−i(s1x1 + s2x2))

= (s21 + s22 − iq)−1/2

∫

[0,∞[

dt

∫

∂Ωext

(un∂nw − wΦn), (3)
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as we have chosen q, q = qR + iqI , qI > 0, the right hand side of the previous
identity is therefore a “smooth” function F (s). Let us check that it is a Fourier
transform of a distribution H(x1, x2, q) belonging to S′

R2 .
Since Ω is a bounded domain, Ω and ∂Ω are included in a cube C = {|x1| ≤ a,

|x2| ≤ a, |x3| ≤ a}. Consider the complex extension F (z) of the function F ,
z = (z1, z2) = (s1 + iv1, s2 + iv2).

The singularities of F (z) do not meet the real axes. For large |z|, one has
the following majoration

|F (z)| ≤ C0 exp(a(|z1|+ |z2|)) exp(a(|z1|2 + |z2|2)1/2)
≤ C0 exp(2a(|z1|+ |z2|)),

where C0 is a non negative constant.
Therefore F (z) is of exponential type and the equation (3) is invertible by

the Paley –Wiener theorem. Hence, H(x1, x2, q0) is uniquely determined and
so is D(x, t) (by Laplace inversion).
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